1
|
Alam C, Kondo M, O'Connor DL, Bendayan R. Clinical Implications of Folate Transport in the Central Nervous System. Trends Pharmacol Sci 2020; 41:349-361. [PMID: 32200980 DOI: 10.1016/j.tips.2020.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Folates are essential for key biosynthetic processes in mammalian cells and play a crucial role in the maintenance of central nervous system homeostasis. Mammals lack the metabolic capacity for folate biosynthesis; hence, folate requirements are largely met through dietary sources. To date, three major folate transport pathways have been characterized: the folate receptors (FRs), reduced folate carrier (RFC), and proton-coupled folate transporter (PCFT). This article reviews current knowledge on the role of folate transport systems in mediating folate delivery to vital tissues, particularly the brain, and how these pathways are modulated by various regulatory mechanisms. We will also briefly highlight the clinical significance of cerebral folate transport in relation to neurodevelopmental disorders associated with folate deficiency.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Misaki Kondo
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Deborah L O'Connor
- Translational Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada; Department of Nutritional Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| |
Collapse
|
2
|
Zamek-Gliszczynski MJ, Zhang X, Mudunuru J, Du Y, Chen JL, Taskar KS, Huang J, Huang Y, Romach EH. Clinical Extrapolation of the Effects of Dolutegravir and Other HIV Integrase Inhibitors on Folate Transport Pathways. Drug Metab Dispos 2019; 47:890-898. [PMID: 31167838 DOI: 10.1124/dmd.119.087635] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022] Open
Abstract
Preliminary analysis of ongoing birth surveillance study identified evidence of potential increased risk for neural tube defects (NTDs) in newborns associated with exposure to dolutegravir at the time of conception. Folate deficiency is a common cause of NTDs. Dolutegravir and other HIV integrase inhibitor drugs were evaluated in vitro for inhibition of folate transport pathways: proton-coupled folate transporter (PCFT), reduced folate carrier (RFC), and folate receptor α (FRα)-mediated endocytosis. Inhibition of folate transport was extrapolated to the clinic by using established approaches for transporters in intestine, distribution tissues, and basolateral and apical membranes of renal proximal tubules (2017 FDA Guidance). The positive controls, methotrexate and pemetrexed, demonstrated clinically relevant inhibition of PCFT, RFC, and FRα in folate absorption, distribution, and renal sparing. Valproic acid was used as a negative control that elicits folate-independent NTDs; valproic acid did not inhibit PCFT, RFC, or FRα At clinical doses and exposures, the observed in vitro inhibition of FRα by dolutegravir and cabotegravir was not flagged as clinically relevant; PCFT and RFC inhibition was not observed in vitro. Bictegravir inhibited both PCFT and FRα, but the observed inhibition did not reach the criteria for clinical relevance. Elvitegravir and raltegravir inhibited PCFT, but only raltegravir inhibition of intestinal PCFT was flagged as potentially clinically relevant at the highest 1.2-g dose (not the 400-mg dose). These studies showed that dolutegravir is not a clinical inhibitor of folate transport pathways, and it is not predicted to elicit clinical decreases in maternal and fetal folate levels. Clinically relevant HIV integrase inhibitor drug class effect on folate transport pathways was not observed. SIGNIFICANCE STATEMENT: Preliminary analysis of ongoing birth surveillance study identified evidence of potential increased risk for neural tube defects (NTDs) in newborns associated with exposure to the HIV integrase inhibitor dolutegravir at the time of conception; folate deficiency is a common cause of NTDs. Dolutegravir and other HIV integrase inhibitor drugs were evaluated in vitro for inhibition of the major folate transport pathways: proton-coupled folate transporter, reduced folate carrier, and folate receptor α-mediated endocytosis. The present studies showed that dolutegravir is not a clinical inhibitor of folate transport pathways, and it is not predicted to elicit clinical decreases in maternal and fetal folate levels. Furthermore, clinically relevant HIV integrase inhibitor drug class effect on folate transport pathways was not observed.
Collapse
Affiliation(s)
- Maciej J Zamek-Gliszczynski
- GlaxoSmithKline, Collegeville, Pennsylvania (M.J.Z.-G., J.M.); GlaxoSmithKline, Ware, United Kingdom (K.S.T.); BioIVT, Santa Clara, California (X.Z., Y.D., J.-L.C., J.H., Y.H.); and ViiV Healthcare, Research Triangle, North Carolina (E.H.R.)
| | - Xuexiang Zhang
- GlaxoSmithKline, Collegeville, Pennsylvania (M.J.Z.-G., J.M.); GlaxoSmithKline, Ware, United Kingdom (K.S.T.); BioIVT, Santa Clara, California (X.Z., Y.D., J.-L.C., J.H., Y.H.); and ViiV Healthcare, Research Triangle, North Carolina (E.H.R.)
| | - Jennypher Mudunuru
- GlaxoSmithKline, Collegeville, Pennsylvania (M.J.Z.-G., J.M.); GlaxoSmithKline, Ware, United Kingdom (K.S.T.); BioIVT, Santa Clara, California (X.Z., Y.D., J.-L.C., J.H., Y.H.); and ViiV Healthcare, Research Triangle, North Carolina (E.H.R.)
| | - Yewei Du
- GlaxoSmithKline, Collegeville, Pennsylvania (M.J.Z.-G., J.M.); GlaxoSmithKline, Ware, United Kingdom (K.S.T.); BioIVT, Santa Clara, California (X.Z., Y.D., J.-L.C., J.H., Y.H.); and ViiV Healthcare, Research Triangle, North Carolina (E.H.R.)
| | - Jian-Lu Chen
- GlaxoSmithKline, Collegeville, Pennsylvania (M.J.Z.-G., J.M.); GlaxoSmithKline, Ware, United Kingdom (K.S.T.); BioIVT, Santa Clara, California (X.Z., Y.D., J.-L.C., J.H., Y.H.); and ViiV Healthcare, Research Triangle, North Carolina (E.H.R.)
| | - Kunal S Taskar
- GlaxoSmithKline, Collegeville, Pennsylvania (M.J.Z.-G., J.M.); GlaxoSmithKline, Ware, United Kingdom (K.S.T.); BioIVT, Santa Clara, California (X.Z., Y.D., J.-L.C., J.H., Y.H.); and ViiV Healthcare, Research Triangle, North Carolina (E.H.R.)
| | - Jane Huang
- GlaxoSmithKline, Collegeville, Pennsylvania (M.J.Z.-G., J.M.); GlaxoSmithKline, Ware, United Kingdom (K.S.T.); BioIVT, Santa Clara, California (X.Z., Y.D., J.-L.C., J.H., Y.H.); and ViiV Healthcare, Research Triangle, North Carolina (E.H.R.)
| | - Yong Huang
- GlaxoSmithKline, Collegeville, Pennsylvania (M.J.Z.-G., J.M.); GlaxoSmithKline, Ware, United Kingdom (K.S.T.); BioIVT, Santa Clara, California (X.Z., Y.D., J.-L.C., J.H., Y.H.); and ViiV Healthcare, Research Triangle, North Carolina (E.H.R.)
| | - Elizabeth H Romach
- GlaxoSmithKline, Collegeville, Pennsylvania (M.J.Z.-G., J.M.); GlaxoSmithKline, Ware, United Kingdom (K.S.T.); BioIVT, Santa Clara, California (X.Z., Y.D., J.-L.C., J.H., Y.H.); and ViiV Healthcare, Research Triangle, North Carolina (E.H.R.)
| |
Collapse
|
3
|
Mahnke H, Ballent M, Baumann S, Imperiale F, von Bergen M, Lanusse C, Lifschitz AL, Honscha W, Halwachs S. The ABCG2 Efflux Transporter in the Mammary Gland Mediates Veterinary Drug Secretion across the Blood-Milk Barrier into Milk of Dairy Cows. ACTA ACUST UNITED AC 2016; 44:700-8. [PMID: 26956640 DOI: 10.1124/dmd.115.068940] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/07/2016] [Indexed: 12/23/2022]
Abstract
In human and mice ATP-binding cassette efflux transporter ABCG2 represents the main route for active drug transport into milk. However, there is no detailed information on the role of ABCG2 in drug secretion and accumulation in milk of dairy animals. We therefore examined ABCG2-mediated drug transport in the bovine mammary gland by parallel pharmacokinetic studies in lactating Jersey cows and in vitro flux studies using the anthelmintic drug monepantel (MNP) as representative bovine ABCG2 (bABCG2) drug substrate. Animals received MNP (Zolvix, Novartis Animal Health Inc.) once (2.5 mg/kg per os) and the concentrations of MNP and the active MNP metabolite MNPSO2 were assessed by high-performance liquid chromatography. Compared with the parent drug MNP, we detected higher MNPSO2 plasma concentrations (expressed as area under the concentration-versus-time curve). Moreover, we observed MNPSO2 excretion into milk of dairy cows with a high milk-to-plasma ratio of 6.75. In mechanistic flux assays, we determined a preferential time-dependent basolateral-to-apical (B > A) MNPSO2 transport across polarized Madin-Darby canine kidney II cells-bABCG2 monolayers using liquid chromatography coupled with tandem mass spectrometry analysis. The B > A MNPSO2 transport was significantly inhibited by the ABCG2 inhibitor fumitremorgin C in bABCG2- but not in mock-transduced MDCKII cells. Additionally, the antibiotic drug enrofloxacin, the benzimidazole anthelmintic oxfendazole and the macrocyclic lactone anthelmintic moxidectin caused a reduction in the MNPSO2(B > A) net efflux. Altogether, this study indicated that therapeutically relevant drugs like the anthelmintic MNP represent substrates of the bovine mammary ABCG2 transporter and may thereby be actively concentrated in dairy milk.
Collapse
Affiliation(s)
- Hanna Mahnke
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine (H.M., W.H., S.H.), Institute of Pharmacy, Faculty of Biosciences, Pharmacy and Psychology (S.B.), University of Leipzig, Leipzig, Germany; Laboratorio de Farmacología, Centro de Investigacion Veterinaria de Tandil, (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Tandil, Argentina (M.B., F.I., C.L., A.L.L.); Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany (S.B., M.vB.); Department of Chemistry and Bioscience, Center for Microbial Communities, University of Aalborg, Aalborg, Denmark (M.vB.)
| | - Mariana Ballent
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine (H.M., W.H., S.H.), Institute of Pharmacy, Faculty of Biosciences, Pharmacy and Psychology (S.B.), University of Leipzig, Leipzig, Germany; Laboratorio de Farmacología, Centro de Investigacion Veterinaria de Tandil, (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Tandil, Argentina (M.B., F.I., C.L., A.L.L.); Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany (S.B., M.vB.); Department of Chemistry and Bioscience, Center for Microbial Communities, University of Aalborg, Aalborg, Denmark (M.vB.)
| | - Sven Baumann
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine (H.M., W.H., S.H.), Institute of Pharmacy, Faculty of Biosciences, Pharmacy and Psychology (S.B.), University of Leipzig, Leipzig, Germany; Laboratorio de Farmacología, Centro de Investigacion Veterinaria de Tandil, (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Tandil, Argentina (M.B., F.I., C.L., A.L.L.); Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany (S.B., M.vB.); Department of Chemistry and Bioscience, Center for Microbial Communities, University of Aalborg, Aalborg, Denmark (M.vB.)
| | - Fernanda Imperiale
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine (H.M., W.H., S.H.), Institute of Pharmacy, Faculty of Biosciences, Pharmacy and Psychology (S.B.), University of Leipzig, Leipzig, Germany; Laboratorio de Farmacología, Centro de Investigacion Veterinaria de Tandil, (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Tandil, Argentina (M.B., F.I., C.L., A.L.L.); Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany (S.B., M.vB.); Department of Chemistry and Bioscience, Center for Microbial Communities, University of Aalborg, Aalborg, Denmark (M.vB.)
| | - Martin von Bergen
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine (H.M., W.H., S.H.), Institute of Pharmacy, Faculty of Biosciences, Pharmacy and Psychology (S.B.), University of Leipzig, Leipzig, Germany; Laboratorio de Farmacología, Centro de Investigacion Veterinaria de Tandil, (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Tandil, Argentina (M.B., F.I., C.L., A.L.L.); Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany (S.B., M.vB.); Department of Chemistry and Bioscience, Center for Microbial Communities, University of Aalborg, Aalborg, Denmark (M.vB.)
| | - Carlos Lanusse
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine (H.M., W.H., S.H.), Institute of Pharmacy, Faculty of Biosciences, Pharmacy and Psychology (S.B.), University of Leipzig, Leipzig, Germany; Laboratorio de Farmacología, Centro de Investigacion Veterinaria de Tandil, (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Tandil, Argentina (M.B., F.I., C.L., A.L.L.); Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany (S.B., M.vB.); Department of Chemistry and Bioscience, Center for Microbial Communities, University of Aalborg, Aalborg, Denmark (M.vB.)
| | - Adrian L Lifschitz
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine (H.M., W.H., S.H.), Institute of Pharmacy, Faculty of Biosciences, Pharmacy and Psychology (S.B.), University of Leipzig, Leipzig, Germany; Laboratorio de Farmacología, Centro de Investigacion Veterinaria de Tandil, (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Tandil, Argentina (M.B., F.I., C.L., A.L.L.); Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany (S.B., M.vB.); Department of Chemistry and Bioscience, Center for Microbial Communities, University of Aalborg, Aalborg, Denmark (M.vB.)
| | - Walther Honscha
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine (H.M., W.H., S.H.), Institute of Pharmacy, Faculty of Biosciences, Pharmacy and Psychology (S.B.), University of Leipzig, Leipzig, Germany; Laboratorio de Farmacología, Centro de Investigacion Veterinaria de Tandil, (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Tandil, Argentina (M.B., F.I., C.L., A.L.L.); Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany (S.B., M.vB.); Department of Chemistry and Bioscience, Center for Microbial Communities, University of Aalborg, Aalborg, Denmark (M.vB.)
| | - Sandra Halwachs
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine (H.M., W.H., S.H.), Institute of Pharmacy, Faculty of Biosciences, Pharmacy and Psychology (S.B.), University of Leipzig, Leipzig, Germany; Laboratorio de Farmacología, Centro de Investigacion Veterinaria de Tandil, (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Tandil, Argentina (M.B., F.I., C.L., A.L.L.); Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany (S.B., M.vB.); Department of Chemistry and Bioscience, Center for Microbial Communities, University of Aalborg, Aalborg, Denmark (M.vB.)
| |
Collapse
|
4
|
Imamura H, Yoshina S, Ikari K, Miyazawa K, Momohara S, Mitani S. Impaired NFKBIE gene function decreases cellular uptake of methotrexate by down-regulating SLC19A1 expression in a human rheumatoid arthritis cell line. Mod Rheumatol 2016; 26:507-16. [PMID: 26587663 PMCID: PMC4898165 DOI: 10.3109/14397595.2015.1112481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective: A non-synonymous single nucleotide polymorphism (nsSNP, rs2233434, Val194Ala) in the NFKBIE (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsilon) gene is known to be a rheumatoid arthritis (RA) susceptibility polymorphism in the Japanese RA population and could be closely associated with nuclear factor kappaB (NF-κB) activity. Inflammation caused by RA is sometimes associated with changes in expression levels of MTX (methotrexate) pathway-related genes. It is of interest to examine whether the NFKBIE gene had any influences on the mode of MTX action. Methods: Both knockdown of NFKBIE gene expression and overexpression of wild-type NFKBIE and Val194Ala mutation were performed. A transfected human RA synovial cell line was cultured and then gene expressions in the MTX pathway were measured. In addition, we measured the uptake and efflux of MTX derivatives under the NFKBIE knockdown condition. Results: Knockdown of NFKBIE reduced the mRNA for SLC19A1, a main MTX membrane transporter, and the intracellular accumulations of MTX derivatives. Moreover, our experiments also confirmed that overexpression of Val194Ala mutant NFKBIE decreased the SLC19A1 mRNA when compared to that of wild-type NFKBIE. Conclusions: We suggest that the impairment of NFKBIE gene function can reduce the uptake of MTX into cells, suggesting that the gene is an important factor for the RA outcome.
Collapse
Affiliation(s)
- Hitoshi Imamura
- a Department of Physiology , Tokyo Women's Medical University School of Medicine , Tokyo , Japan .,b Institute of Rheumatology, Tokyo Women's Medical University , Tokyo , Japan
| | - Sawako Yoshina
- a Department of Physiology , Tokyo Women's Medical University School of Medicine , Tokyo , Japan
| | - Katsunori Ikari
- b Institute of Rheumatology, Tokyo Women's Medical University , Tokyo , Japan
| | - Keiji Miyazawa
- c Discovery Research III, Research and Development, Kissei Pharmaceutical Company , Nagano , Japan , and
| | - Shigeki Momohara
- b Institute of Rheumatology, Tokyo Women's Medical University , Tokyo , Japan
| | - Shohei Mitani
- a Department of Physiology , Tokyo Women's Medical University School of Medicine , Tokyo , Japan .,d Tokyo Women's Medical University Institute for Integrated Medical Sciences , Tokyo , Japan
| |
Collapse
|
5
|
Wassermann L, Halwachs S, Baumann D, Schaefer I, Seibel P, Honscha W. Assessment of ABCG2-mediated transport of xenobiotics across the blood–milk barrier of dairy animals using a new MDCKII in vitro model. Arch Toxicol 2013; 87:1671-82. [DOI: 10.1007/s00204-013-1066-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/23/2013] [Indexed: 01/04/2023]
|
6
|
Hinken M, Halwachs S, Kneuer C, Honscha W. Subcellular localization and distribution of the reduced folate carrier in normal rat tissues. Eur J Histochem 2011; 55:e3. [PMID: 21556118 PMCID: PMC3167344 DOI: 10.4081/ejh.2011.e3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/03/2010] [Accepted: 12/13/2010] [Indexed: 11/23/2022] Open
Abstract
The reduced folate carrier (Rfc1; Slc19a1) mediated transport of reduced folates and antifolate drugs such as methotrexate (MTX) play an essential role in physiological folate homeostasis and MTX cancer chemotherapy. As no systematic reports are as yet available correlating Rfc1 gene expression and protein levels in all tissues crucial for folate and antifolate uptake, storage or elimination, we investigated gene and protein expression of rat Rfc1 (rRfc1) in selected tissues. This included the generation of a specific anti-rRfc1 antibody. Rabbits were immunised with isolated rRfc1 peptides producing specific anti-rRfc1 antiserum targeted to the intracellular C-terminus of the carrier. Using RT-PCR analysis, high rRfc1 transcript levels were detected in colon, kidney, brain, thymus, and spleen. Moderate rRfc1 gene expression was observed in small intestine, liver, bone marrow, lung, and testes whereas transcript levels were negligible in heart, skeletal muscle or leukocytes. Immunohistochemical analyses revealed strong carrier expression in the apical membrane of tunica mucosa epithelial cells of small intestine and colon, in the brush-border membrane of choroid plexus epithelial cells or in endothelial cells of small vessels in brain and heart. Additionally, high rRfc1 protein levels were localized in the basolateral membrane of renal tubular epithelial cells, in the plasma membrane of periportal hepatocytes, and sertoli cells of the testes. Taken together, our results demonstrated that rRfc1 is expressed almost ubiquitously but to very different levels. The predominant tissue distribution supports the essential role of Rfc1 in physiological folate homeostasis. Moreover, our results may contribute to understand antifolate pharmacokinetics and selected organ toxicity associated with MTX chemotherapy.
Collapse
Affiliation(s)
- M Hinken
- Institute of Pharmacology, Pharmacy and Toxicology, Universität Leipzig, Germany.
| | | | | | | |
Collapse
|
7
|
Halwachs S, Schaefer I, Seibel P, Honscha W. Antiepileptic Drugs Reduce the Efficacy of Methotrexate Chemotherapy through Accelerated Degradation of the Reduced Folate Carrier by the Ubiquitin-Proteasome Pathway. Chemotherapy 2011; 57:345-56. [DOI: 10.1159/000330461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 04/07/2011] [Indexed: 12/11/2022]
|
8
|
Substrate-specific binding and conformational changes involving Ser313 and transmembrane domain 8 of the human reduced folate carrier, as determined by site-directed mutagenesis and protein cross-linking. Biochem J 2010; 430:265-74. [PMID: 20557288 PMCID: PMC2947195 DOI: 10.1042/bj20100181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
RFC (reduced folate carrier) is the major transporter for reduced folates and antifolates [e.g. MTX (methotrexate)]. RFC is characterized by two halves, each with six TMD (transmembrane domain) α helices connected by a hydrophilic loop, and cytoplasmic N- and C-termini. We previously identified TMDs 4, 5, 7, 8, 10 and 11 as forming the hydrophilic cavity for translocation of (anti)folates. The proximal end of TMD8 (positions 311–314) was implicated in substrate binding from scanning-cysteine accessibility methods; cysteine replacement of Ser313 resulted in loss of transport. In the present study, Ser313 was mutated to alanine, cysteine, phenylalanine and threonine. Mutant RFCs were expressed in RFC-null R5 HeLa cells. Replacement of Ser313 with cysteine or phenylalanine abolished MTX transport, whereas residual activity was preserved for the alanine and threonine mutants. In stable K562 transfectants, S313A and S313T RFCs showed substantially decreased Vmax values without changes in Kt values for MTX compared with wild-type RFC. S313A and S313T RFCs differentially impacted binding of ten diverse (anti)folate substrates. Cross-linking between TMD8 and TMD5 was studied by expressing cysteine-less TMD1–6 (N6) and TMD7–12 (C6) half-molecules with cysteine insertions spanning these helices in R5 cells, followed by treatment with thiol-reactive homobifunctional cross-linkers. C6–C6 and N6–N6 cross-links were seen for all cysteine pairs. From the N6 and C6 cysteine pairs, Cys175/Cys311 was cross-linked; cross-linking increased in the presence of transport substrates. The results of the present study indicate that the proximal end of TMD8 is juxtaposed to TMD5 and is conformationally active in the presence of transport substrates, and TMD8, including Ser313, probably contributes to the RFC substrate-binding domain.
Collapse
|
9
|
van de Steeg E, Wagenaar E, van der Kruijssen CMM, Burggraaff JEC, de Waart DR, Elferink RPJO, Kenworthy KE, Schinkel AH. Organic anion transporting polypeptide 1a/1b-knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs. J Clin Invest 2010; 120:2942-52. [PMID: 20644253 DOI: 10.1172/jci42168] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 06/09/2010] [Indexed: 01/16/2023] Open
Abstract
Organic anion transporting polypeptides (OATPs) are uptake transporters for a broad range of endogenous compounds and xenobiotics. To investigate the physiologic and pharmacologic roles of OATPs of the 1A and 1B subfamilies, we generated mice lacking all established and predicted mouse Oatp1a/1b transporters (referred to as Slco1a/1b-/- mice, as SLCO genes encode OATPs). Slco1a/1b-/- mice were viable and fertile but exhibited markedly increased plasma levels of bilirubin conjugated to glucuronide and increased plasma levels of unconjugated bile acids. The unexpected conjugated hyperbilirubinemia indicates that Oatp1a/1b transporters normally mediate extensive hepatic reuptake of glucuronidated bilirubin. We therefore hypothesized that substantial sinusoidal secretion and subsequent Oatp1a/1b-mediated reuptake of glucuronidated compounds can occur in hepatocytes under physiologic conditions. This alters our perspective on normal liver functioning. Slco1a/1b-/- mice also showed drastically decreased hepatic uptake and consequently increased systemic exposure following i.v. or oral administration of the OATP substrate drugs methotrexate and fexofenadine. Importantly, intestinal absorption of oral methotrexate or fexofenadine was not affected in Slco1a/1b-/- mice. Further analysis showed that rifampicin was an effective and specific Oatp1a/1b inhibitor in controlling methotrexate pharmacokinetics. These data indicate that Oatp1a/1b transporters play an essential role in hepatic reuptake of conjugated bilirubin and uptake of unconjugated bile acids and drugs. Slco1a/1b-/- mice will provide excellent tools to study further the role of Oatp1a/1b transporters in physiology and drug disposition.
Collapse
Affiliation(s)
- Evita van de Steeg
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Antiepileptic drugs reduce efficacy of methotrexate chemotherapy by downregulation of Reduced folate carrier transport activity. Leukemia 2009; 23:1087-97. [DOI: 10.1038/leu.2009.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Hou Z, Matherly LH. Oligomeric structure of the human reduced folate carrier: identification of homo-oligomers and dominant-negative effects on carrier expression and function. J Biol Chem 2008; 284:3285-3293. [PMID: 19019821 DOI: 10.1074/jbc.m807206200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitously expressed reduced folate carrier (RFC) is the major transport system for folate cofactors in mammalian cells and tissues. Previous considerations of RFC structure and mechanism were based on the notion that RFC monomers were sufficient to mediate transport of folate and antifolate substrates. The present study examines the possibility that human RFC (hRFC) exists as higher order homo-oligomers. By chemical cross-linking, transiently expressed hRFC in hRFC-null HeLa (R5) cells with the homobifunctional cross-linker 1,3-propanediyl bis-methanethiosulfonate and Western blotting, hRFC species with molecular masses of hRFC homo-oligomers were identified. Hemagglutinin- and Myc epitope-tagged hRFC proteins expressed in R5 cells were co-immunoprecipitated from both membrane particulate and surface-enriched membrane fractions, indicating that oligomeric hRFC is expressed at the cell surface. By co-expression of wild type and inactive mutant S138C hRFCs, combined with surface biotinylation and confocal microscopy, a dominant-negative phenotype was demonstrated involving greatly decreased cell surface expression of both mutant and wild type carrier caused by impaired intracellular trafficking. For another hRFC mutant (R373A), expression of oligomeric wild type-mutant hRFC was accompanied by a significant and disproportionate loss of wild type activity unrelated to the level of surface carrier. Collectively, our results demonstrate the existence of hRFC homo-oligomers. They also establish the likely importance of these higher order hRFC structures to intracellular trafficking and carrier function.
Collapse
Affiliation(s)
- Zhanjun Hou
- Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Larry H Matherly
- Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201; Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, Michigan 48201; Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201.
| |
Collapse
|
12
|
Matherly LH, Hou Z. Structure and function of the reduced folate carrier a paradigm of a major facilitator superfamily mammalian nutrient transporter. VITAMINS AND HORMONES 2008; 79:145-84. [PMID: 18804694 DOI: 10.1016/s0083-6729(08)00405-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Folates are essential for life and folate deficiency contributes to a host of health problems including cardiovascular disease, fetal abnormalities, neurological disorders, and cancer. Antifolates, represented by methotrexate, continue to occupy a unique niche among the modern day pharmacopoeia for cancer along with other pathological conditions. This article focuses on the biology of the membrane transport system termed the "reduced folate carrier" or RFC with a particular emphasis on RFC structure and function. The ubiquitously expressed RFC is the major transporter for folates in mammalian cells and tissues. Loss of RFC expression or function portends potentially profound physiological or developmental consequences. For chemotherapeutic antifolates used for cancer, loss of RFC expression or synthesis of mutant RFC protein with impaired function results in antifolate resistance due to incomplete inhibition of cellular enzyme targets and low levels of substrate for polyglutamate synthesis. The functional properties for RFC were first documented nearly 40 years ago in murine leukemia cells. Since 1994, when RFC was first cloned, tremendous advances in the molecular biology of RFC and biochemical approaches for studying the structure of polytopic membrane proteins have led to an increasingly detailed picture of the molecular structure of the carrier, including its membrane topology, its N-glycosylation, identification of functionally and structurally important domains and amino acids, and helix packing associations. Although no crystal structure for RFC is yet available, biochemical and molecular studies, combined with homology modeling, based on homologous bacterial major facilitator superfamily transporters such as LacY, now permit the development of experimentally testable hypotheses designed to establish RFC structure and mechanism.
Collapse
Affiliation(s)
- Larry H Matherly
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
13
|
VanWert AL, Sweet DH. Impaired clearance of methotrexate in organic anion transporter 3 (Slc22a8) knockout mice: a gender specific impact of reduced folates. Pharm Res 2007; 25:453-62. [PMID: 17660957 PMCID: PMC2820254 DOI: 10.1007/s11095-007-9407-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 05/03/2007] [Indexed: 01/11/2023]
Abstract
PURPOSE To elucidate the role of the renal basolateral transporter, Oat3, in the disposition of methotrexate. MATERIALS AND METHODS Chinese hamster ovary cells expressing mouse Oat3 were used to determine kinetics and specificity of inhibition of methotrexate transport. Methotrexate clearance was then examined in vivo in wildtype and Oat3 knockout mice. RESULTS NSAIDs, beta-lactams, and uremic toxins inhibited mOat3-mediated methotrexate uptake by 70-100%, while folate, leucovorin, and 5-methyltetrahydrofolate inhibited transport by 25-50%. A Km of 60.6 +/- 9.3 microM for methotrexate transport was determined. Oat3 knockout mice exhibited reduced methotrexate-to-inulin clearance ratios versus wildtype. Male wildtype mice, but not knockouts or females, demonstrated significantly accelerated methotrexate clearance in response to reduced folates. Reduced folates also markedly inhibited hepatic methotrexate accumulation in males, but not females, and the response was independent of Oat3 function. CONCLUSIONS Oat3 contributes to methotrexate clearance, but represents only one component responsible for methotrexate's elimination. Therefore, in patients, dysfunctional hOAT3 polymorphisms or drug competition for hOAT3 transport may severely impact methotrexate elimination only when redundant means of methotrexate removal are also compromised. Furthermore, the present findings suggest that reduced-folate administration only influences methotrexate disposition in males, with the renal reduced-folate response influenced by OAT3 function.
Collapse
Affiliation(s)
- Adam L VanWert
- Department of Pharmaceutical Sciences, Medical University of South Carolina, 280 Calhoun Street Rm. QE218, PO Box 250140, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
14
|
Matherly LH, Hou Z, Deng Y. Human reduced folate carrier: translation of basic biology to cancer etiology and therapy. Cancer Metastasis Rev 2007; 26:111-28. [PMID: 17334909 DOI: 10.1007/s10555-007-9046-2] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This review attempts to provide a comprehensive overview of the biology of the physiologically and pharmacologically important transport system termed the "reduced folate carrier" (RFC). The ubiquitously expressed RFC has unequivocally established itself as the major transport system in mammalian cells and tissues for a group of compounds including folate cofactors and classical antifolate therapeutics. Loss of RFC expression or function may have potentially profound pathophysiologic consequences including cancer. For chemotherapeutic antifolates used for cancer such as methotrexate or pemetrexed, synthesis of mutant RFCs or loss of RFC transcripts and proteins results in antifolate resistance due to incomplete inhibition of cellular enzyme targets and insufficient substrate for polyglutamate synthesis. Since RFC was first cloned in 1994, tremendous advances have been made in understanding the complex transcriptional and posttranscriptional regulation of RFC, in identifying structurally and functionally important domains and amino acids in the RFC molecule as a prelude to establishing the mechanism of transport, and in characterizing the molecular defects in RFC associated with loss of transport in antifolate resistant cell line models. Many of the insights gained from laboratory models of RFC portend opportunities for modulating carrier expression in drug resistant tumors, and for designing a new generation of agents with improved transport by RFC or substantially enhanced transport by other folate transporters over RFC. Many of the advances in the basic biology of RFC in cell line models are now being directly applied to human cancers in the clinical setting, most notably pediatric acute lymphoblastic leukemia and osteogenic sarcoma.
Collapse
Affiliation(s)
- Larry H Matherly
- Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, The Cancer Biology Graduate Program, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
15
|
Downregulation of the reduced folate carrier transport activity by phenobarbital-type cytochrome P450 inducers and protein kinase C activators. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1671-9. [PMID: 17482559 DOI: 10.1016/j.bbamem.2007.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/26/2007] [Accepted: 03/26/2007] [Indexed: 11/19/2022]
Abstract
The sodium dependent reduced folate carrier (Rfc1; Slc19a1) provides the major route for cellular uptake of reduced folates and antifolate drugs such as methotrexate (MTX) into various tissues. Despite its essential role in folate homeostasis and cancer treatment, little is known about Rfc1 regulation. A barbiturate recognition box, which as yet has only been found in the promoter region of xenobiotic metabolizing enzymes, particularly those of the CYP450 enzyme family, was predicted in the 5' untranslated region of rat rfc1 cDNA. We have therefore investigated the regulation of Rfc1 by phenobarbital (PB)-type CYP450 inducers on the functional, transcriptional and translational level in a suitable in vitro model for rat liver. A decrease of >75% in substrate uptake was observed following treatment (48 h) with 1-10 times therapeutic plasma concentrations of PB-type CYP450 inducers like PB, carbamazepine, chlorpromazine, clotrimazole and with 0.1-1 ng/ml of the constitutive androstane receptor agonist TCPOBOP. This was not associated with reduced mRNA and protein levels. Further mechanistic investigations revealed that short-term treatment (2 h) of cells with protein phosphatase 1/2A inhibitor okadaic acid (80.5 ng/ml) and proteinkinase C inducer phorbol 12-myristate 13-acetate (PMA; 0.62 microg/ml) almost abolished Rfc1 mediated MTX uptake. Finally, the reduction in Rfc1 activity caused by PB, TCPOBOP and PMA was reversed by simultaneous incubation with the specific PKC inhibitor bisindolylmaleimide (BIM; 21 ng/ml). These results demonstrate that clinically relevant concentrations of PB-type CYP450 inducers cause a significant PKC-dependent reduction in Rfc1 uptake activity at the posttranscriptional level.
Collapse
|