1
|
Ohshima J, Abe S, Morita M, Tanaka N, Yamaguchi M, Hayashi M. Time-course study of genetic changes in periodontal ligament regeneration after tooth replantation in a mouse model. Sci Rep 2024; 14:15502. [PMID: 38969768 PMCID: PMC11226448 DOI: 10.1038/s41598-024-66542-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
This research focused on analyzing gene expression changes in the periodontal ligament (PDL) after tooth re-plantation to identify key genes and pathways involved in healing and regeneration. Utilizing a mouse model, mRNA was extracted from the PDL at various intervals post-replantation for RNA sequencing analysis, spanning from 3 to 56 days. The results revealed significant shifts in gene expression, particularly notable on day 28, supported by hierarchical clustering and principal component analysis. Gene ontology (GO) enrichment analysis highlighted an upregulation in olfactory receptor and G protein-coupled receptor signaling pathways at this time point. These findings were validated through reverse transcription-quantitative PCR (RT-qPCR), with immunochemical staining localizing olfactory receptor gene expression to the PDL and surrounding tissues. Moreover, a scratch assay indicated that olfactory receptor genes might facilitate wound healing in human PDL fibroblasts. These results underscore the importance of the 28-day post-transplant phase as a potential "tipping point" in PDL healing and regeneration. In conclusion, this research sheds light on the potential role of olfactory receptor genes in PDL regeneration, providing a foundation for developing new therapeutic approaches in tooth replantation and transplantation, with broader implications for regenerative medicine in oral health.
Collapse
Affiliation(s)
- Jun Ohshima
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shotaro Abe
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masayoshi Morita
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobutake Tanaka
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masaya Yamaguchi
- Bioinformatics Research Unit, Osaka University Graduate School of Dentistry, Osaka, Japan
- Bioinformatics Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Sano H, Nakakura-Ohshima K, Quispe-Salcedo A, Okada Y, Sato T, Ohshima H. Early revascularization activates quiescent dental pulp stem cells following tooth replantation in mice. Regen Ther 2023; 24:582-591. [PMID: 38028939 PMCID: PMC10656221 DOI: 10.1016/j.reth.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The intentional perforation of the pulp chamber floor before tooth replantation promotes pulpal healing by facilitating the revascularization of the pulp cavity. This study aimed to elucidate the effects of this method on the dynamics of quiescent dental pulp stem cells (DPSCs). Methods The right and left maxillary first molars of Crlj:CD1 mice and TetOP-histone 2B (H2B)-green fluorescent protein (GFP) mice were extracted. The left molars were immediately replanted as the control group (CG), whereas the pulp chamber floor of the right molars were perforated before the tooth was replanted as the experimental group (EG). Immunohistochemistry for Nestin and GFP, and quantitative RT-PCR for Nestin, Opn, CD11c, and Oct3/4 mRNA were performed. Results The rate of Nestin-positive perimeter along the pulp-dentin border in the EG tended to be higher than that of the CG at days 5 and 7 and was significantly increased between days 3 and 7. The rate of GFP-positive cells in the EG was significantly higher than that of the CG at days 5 and/or 7 in the mesial and middle coronal pulp. CD11c mRNA in the EG at day 5 was significantly higher than that of the CG and tended to be higher than that of the CG during the observation period. Oct3/4 mRNA expression in the EG was significantly higher than that of the CG at day 7. Conclusions The current experimental model demonstrated the promotion of the survival of DPSCs and their differentiation into odontoblast-like cells (OBLCs). Thus, the use of this model is expected to clarify the crosstalk mechanism between immune cells, including macrophages and dendritic cells, and DPSCs with regards to pulpal healing after tooth replantation. It also provides insight into the differentiation process of DPSCs into OBLCs.
Collapse
Affiliation(s)
- Hiroto Sano
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Kuniko Nakakura-Ohshima
- Division of Pediatric Dentistry, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Angela Quispe-Salcedo
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuo Okada
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Takuichi Sato
- Division of Clinical Chemistry, Department of Medical Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
3
|
Sano H, Nakakura-Ohshima K, Okada Y, Sato T, Ohshima H. The effect of intentionally perforating the floor of the pulp chamber on pulpal healing after tooth replantation in mice. J Oral Biosci 2023; 65:31-39. [PMID: 36737038 DOI: 10.1016/j.job.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Shortening the root of a mouse molar prior to tooth replantation results in early revascularization in the pulp cavity and activation of the dental pulp quiescent stem cells. This study aimed to validate the effects of pulp chamber floor perforation on pulpal healing after tooth replantation as a strategy to promote early revascularization into the pulp. METHODS The maxillary first molars of three-week-old Crlj:CD1 mice were extracted and repositioned into the original socket: the left teeth were immediately replanted (control group: CG), whereas the floor of the pulp chamber of the right teeth was perforated with a tungsten carbide bur before tooth replantation (experimental group: EG). The samples were collected from three days to eight weeks postoperatively. In addition to the TUNEL assay, immunohistochemistry for Nestin, CK14, and Ki-67 was conducted. RESULTS In the EG, early revascularization occurred with a decrease in apoptosis and an increase in cell proliferation, facilitating pulpal healing, compared with the CG. The rate of Nestin-positive perimeter in the distal root significantly increased on days 5 and 14 and the amount of Nestin-positive hard tissue increased on day 14. However, on day 7, the number of epithelial cell rests of Malassez in the EG significantly decreased, making the EG susceptible to ankylosis at the floor. CONCLUSIONS Intentionally perforating the floor of the pulp chamber provides a route for early revascularization, resulting in better pulpal healing after tooth replantation.
Collapse
Affiliation(s)
- Hiroto Sano
- Division of Clinical Chemistry, Department of Medical Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan; Department of Pathology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Kuniko Nakakura-Ohshima
- Division of Pediatric Dentistry, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuo Okada
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Takuichi Sato
- Division of Clinical Chemistry, Department of Medical Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
4
|
Suzuki-Barrera K, Makishi S, Nakatomi M, Saito K, Ida-Yonemochi H, Ohshima H. Role of osteopontin in the process of pulpal healing following tooth replantation in mice. Regen Ther 2022; 21:460-468. [PMID: 36313391 PMCID: PMC9587125 DOI: 10.1016/j.reth.2022.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction The role of osteopontin (OPN) following severe injury remains to be elucidated, especially its relationship with type I collagen (encoded by the Col1a1 gene) secretion by newly-differentiated odontoblast-like cells (OBLCs). In this study, we examined the role of OPN in the process of reparative dentin formation with a focus on reinnervation and revascularization after tooth replantation in Opn knockout (KO) and wild-type (WT) mice. Methods Maxillary first molars of 2- and 3-week-old-Opn KO and WT mice (Opn KO 2W, Opn KO 3W, WT 2W, and WT 3W groups) were replanted, followed by fixation 3–56 days after operation. Following micro-computed tomography analysis, the decalcified samples were processed for immunohistochemistry for Ki67, Nestin, PGP 9.5, and CD31 and in situ hybridization for Col1a1. Results An intense inflammatory reaction occurred to disrupt pulpal healing in the replanted teeth of the Opn KO 3W group, whereas dental pulp achieved healing in the Opn KO 2W and WT groups. The tertiary dentin in the Opn KO 3W group was significantly decreased in area compared with the Opn KO 2W and WT groups, with a significantly low percentage of Nestin-positive, newly-differentiated OBLCs during postoperative days 7–14. In the Opn KO 3W group, the blood vessels were significantly decreased in area and pulp healing was disturbed with a failure of pulpal revascularization and reinnervation. Conclusions OPN is necessary for proper reinnervation and revascularization to deposit reparative dentin following severe injury within the dental pulp of erupted teeth with advanced root development. Osteopontin deficiency inhibits hard tissue formation in advanced erupted teeth. Odontoblast-like cells may be different origins between mild and severe injuries. Osteopontin has an important role for proper reinnervation and revascularization. Osteopontin is necessary to deposit reparative dentin in advanced erupted teeth.
Collapse
Key Words
- Animal model
- Blood supply
- Dentinogenesis
- GFP, green fluorescent protein
- H&E, hematoxylin and eosin
- H2B, histone 2B
- Innervation
- KO, knockout
- M1, first molars
- MSCs, mesenchymal stem cells
- OBLCs, odontoblast-like cells
- OPN, osteopontin
- Osteopontin
- SCAP, stem cells derived from the apical papilla
- SCs, Schwann cells
- Tooth replantation
- VEGF, vascular endothelial growth factor
- WT, wild-type
- μCT, micro-computed tomography
Collapse
Affiliation(s)
- Kiyoko Suzuki-Barrera
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Sanako Makishi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Mitsushiro Nakatomi
- Department of Human, Information and Life Sciences, School of Health Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kotaro Saito
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan,Corresponding author. Fax: +81-25-227-0804.
| |
Collapse
|
5
|
Radiological and Microbiological Evaluation of the Efficacy of Alveolar Bone Repair Using Autogenous Dentin Matrix—Preliminary Study. COATINGS 2022. [DOI: 10.3390/coatings12070909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dental procedures for alveolar bone augmentation may be carried out using autologous bone graft material derived from the patient’s own tooth. The material obtained is subjected to strict procedures aimed at reducing the amount of bacteria in the autograft. The aim of this study was the evaluation of the efficacy of the autogenous dentine matrix produced by grinding the patient’s own tooth for the augmentation of maxillary bone defects and the evaluation of the microbiological status of the material obtained. Alveolar bone repair was performed with an autogenous dentin matrix in four patients. In each case, an autogenous bone graft substitute obtained by grinding the patient’s own tooth was used. The tooth-derived material was then used for alveolar augmentation. The obtained material was tested to assess its microbiological profile. For the purpose of comparison, other materials and tissues were also subjected to microbiological testing. Bone healing was assessed by CBCT (cone beam computed tomography) scanning before and 6 months after surgery using the Hounsfield scale and the ImageJ software. Analysis of the bone regeneration process based on the bone density score in Hounsfield units showed significant differences in measurements on CBCT scans carried out on the treatment site, before surgery, and 6 months after it, using ImageJ software. All bacteria detected in the bone augmentation material constituted the patient’s bacterial flora. The microorganisms present in the augmentation material were also present in the patient’s bone and soft tissues. The use of an autogenous dentin matrix for alveolar bone repair ensures that the proper volume is obtained and that alveolar bone shape is preserved and does not introduce pathogenic microorganisms into the patient. The procedure for preparing and using an autogenous dentin matrix is described based on one clinical case.
Collapse
|
6
|
Biological characteristics of dental pulp stem cells and their potential use in regenerative medicine. J Oral Biosci 2022; 64:26-36. [PMID: 35031479 DOI: 10.1016/j.job.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Regenerative medicine has emerged as a multidisciplinary field with the promising potential of renewing tissues and organs. The main types of adult stem cells used in clinical trials are hematopoietic and mesenchymal stem cells (MSCs). Stem cells are defined as self-renewing clonogenic progenitor cells that can generate one or more types of specialized cells. HIGHLIGHT MSCs form adipose, cartilage, and bone tissue. Their protective and regenerative effects, such as mitogenic, anti-apoptotic, anti-inflammatory, and angiogenic effects, are mediated through paracrine and endocrine mechanisms. Dental pulp is a valuable source of stem cells because the collection of dental pulp for stem cell isolation is non-invasive, in contrast to conventional sources, such as bone marrow and adipose tissue. Teeth are an excellent source of dental pulp stem cells (DPSCs) for therapeutic procedures and they can be easily obtained after tooth extraction or the shedding of deciduous teeth. Thus, there is increased interest in optimizing and establishing standard procedures for obtaining DPSCs; preserving well-defined DPSC cultures for specific applications; and increasing the efficiency, reproducibility, and safety of the clinical use of DPSCs. CONCLUSION This review comprehensively describes the biological characteristics and origins of DPSCs, their identification and harvesting, key aspects related to their characterization, their multilineage differentiation potential, current clinical applications, and their potential use in regenerative medicine for future dental and medical applications.
Collapse
|
7
|
Nakakura-Ohshima K, Quispe-Salcedo A, Sano H, Hayasaki H, Ohshima H. The effects of reducing the root length by apicoectomy on dental pulp revascularization following tooth replantation in mice. Dent Traumatol 2021; 37:677-690. [PMID: 33861506 DOI: 10.1111/edt.12679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND/AIM Root length is a critical factor for dental pulp regeneration following tooth replantation. The aim of this study was to analyze the effects of reducing the root length by apicoectomy on the pulp healing process using a model for tooth replantation. MATERIAL AND METHODS After extraction of the upper first molars (M1) of 3-week-old mice, the roots from the experimental group (EG) were shortened to half to two-thirds of their length before replantation, whereas in the control group (CG) the extracted teeth were immediately repositioned into their alveolar sockets. To determine the effects of root resection on the survival of inherent pulp cells, this study included tooth transplantation with root resection using wild-type (WT) and green fluorescent protein (GFP) transgenic mice. The M1 of GFP transgenic mice were transplanted into the alveolar socket of the M1 of WT mice. The roots of the right M1 were shortened (EG), whereas the left M1 remained untreated (CG). RESULTS Apoptotic cells in the EG significantly decreased in number compared with the CG at day 3. Cell proliferative activity in the EG was significantly higher than that in the CG in the root pulp during days 3-5, and nestin-positive odontoblast-like cells began to arrange themselves along the pulp-dentin border in the cusp area at day 5 in the EG but not in the CG. At week 2, tertiary dentin had formed throughout the pulp in the EG, whereas the combined tissue of dentin and bone occupied the pulp space in 60% of the CG. Root resection also positively affected the survival of inherent pulp cells to differentiate into odontoblast-like cells as demonstrated by transplantation using GFP transgenic mice. CONCLUSIONS Reducing the root length accelerated pulp regeneration following tooth replantation due to the better environment for revascularization.
Collapse
Affiliation(s)
- Kuniko Nakakura-Ohshima
- Division of Pediatric Dentistry, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Angela Quispe-Salcedo
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,School of Stomatology, Faculty of Health Science, Universidad Científica del Sur, Lima, Peru
| | - Hiroto Sano
- Division of Clinical Chemistry, Department of Medical Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan.,Department of Pathology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
8
|
Tanaka S, Toriumi T, Ito T, Okuwa Y, Futenma T, Otake K, Akiyama Y, Kurita K, Nagao T, Honda M. Histological analysis of dental pulp response in immature or mature teeth after extra-oral subcutaneous transplantation into mice dorsum. J Oral Sci 2021; 63:184-190. [PMID: 33731506 DOI: 10.2334/josnusd.20-0611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE The aim of this study was to assess the response of dental pulp associated with donor or host cells in the pulp chamber and root canal after extra-oral transplantation. METHODS Wild type or green fluorescent protein (GFP) transgenic first molars from 3-week, 6-week, and 12-week mice were transplanted into the subcutaneous layer of GFP mice or wild type mice. The teeth were histologically and immunohistochemically examined at 5 weeks after transplantation. RESULTS Blood vessels present in the original coronal pulp had anastomosed with those from the recipient tissue that had invaded the root canal. Two distinct eosin-stained extracellular matrices were observed in the pulp chamber and root canal. Acellular matrix composed of nestin-positive, odontoblast-like cells invaded from the outside and was seen in the root canal of 3-week teeth. Cellular matrix comprising alkaline phosphatase (ALP)-positive fibroblast-like cells appeared in the original coronal pulp. In the root canal of the 6-week and 12-week teeth, cellular extracellular matrix consisting of ALP-positive fibroblast-like cells had invaded the recipient tissue. CONCLUSION Dental pulp from immature teeth might be able to regenerate dentin-like tissue. This model could be useful in the development of an optimized vitalization treatment.
Collapse
Affiliation(s)
- Sho Tanaka
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University
| | - Taku Toriumi
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University
| | - Tatsuaki Ito
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University
| | - Yuta Okuwa
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University
| | - Taku Futenma
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University
| | - Keita Otake
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University
| | - Yasunori Akiyama
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University
| | - Kenichi Kurita
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University
| | - Toru Nagao
- Department of Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University
| | - Masaki Honda
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
9
|
Lee DJ, Lee SJ, Lee MJ, Kim EJ, Ohshima H, Jung HS. The role of angiogenesis and pulpal healing in tooth replantation and allograft transplantation. Biochem Biophys Rep 2021; 26:100945. [PMID: 33681479 PMCID: PMC7907976 DOI: 10.1016/j.bbrep.2021.100945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/05/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022] Open
Abstract
Tooth transplantation is one of the treatment options for extracted teeth that can be considered before dental implantation. Although the success rate of tooth transplantation is lower than that of implantation, tooth replantation and transplantation have the great advantage of using natural teeth. Tooth replantation might be considered a promising option in some cases. In present study, the expression patterns of revascularization and pulpal healing, which are the most important for the pulp viability, were analyzed after tooth replantation and allograft in mice. The inflammatory response and root dentin resorption were observed and not different between replantation and allograft in initiation of healing process. However, bonelike tissue formation, pulp revascularization and pulp healing were faster in replantation. The difference of healing patterns between tooth replantation and allograft found in present study will be helpful to select the treatment option and to understand healing mechanism. The expression of healing markers begins in root canal and moves to pulp cavity. Pulp healing response becomes normal in 7 days after tooth replantation. Overall healing process in tooth replantation is faster than allograft.
Collapse
Affiliation(s)
- Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Seung-Jun Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Min-Jung Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Depart of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Corresponding author. Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
- Corresponding author. Yonsei University College of Dentistry, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
10
|
Gaviño Orduña JF, García García M, Dominguez P, Caviedes Bucheli J, Martin Biedma B, Abella Sans F, Manzanares Céspedes MC. Successful pulp revascularization of an autotransplantated mature premolar with fragile fracture apicoectomy and plasma rich in growth factors: a 3-year follow-up. Int Endod J 2019; 53:421-433. [PMID: 31587320 DOI: 10.1111/iej.13230] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Abstract
AIM This case report demonstrates a positive outcome of the adjuvant use of fragile fracture (FF), which is a technique used to harvest dental pulp stem cells (DPSCs), and platelet-rich plasma (PRP) in a mandibular premolar (tooth 44) with a completely formed root that was transplanted into a surgically created socket and which maintained pulp vitality and function. SUMMARY After virtual surgical planning, a 3D tooth replica of tooth 44 was fabricated. A surgical socket was created in the position of tooth 14; then, tooth 44 was extracted and the root dentine was abraded using a turbine diamond bur 3 mm from the apex until a circular groove was prepared around the outer circumference of the root; and then, an FF was performed without damaging the pulp tissue. PRP was placed in the socket, after which the donor tooth was inserted in the recipient area. At 2 weeks post-treatment, orthodontic traction was applied. At 3-year follow-up, the tooth had adequate alignment and was asymptomatic. Response to pulp testing was positive, and the presence of pulp canal obliteration was observed as a sign of pulpal healing. KEY LEARNING POINTS Autotransplantation is a good alternative for replacing missing teeth, with repair of tissues and pulp revascularization. Revascularization of an autotransplanted mature tooth using the fragile fracture technique and PRP scaffold is a feasible option and might have positive effects on the long-term outcome of the procedure. Including completely formed teeth as donors in autotransplantation, maintaining vitality and their functions is an option that warrants further study.
Collapse
Affiliation(s)
- J F Gaviño Orduña
- Department of Odonto-Stomatology, School of Dentistry, University of Barcelona, Barcelona, Spain
| | - M García García
- Department of Odonto-Stomatology, School of Dentistry, University of Barcelona, Barcelona, Spain
| | - P Dominguez
- Department of Odonto-Stomatology, School of Dentistry, University of Barcelona, Barcelona, Spain
| | - J Caviedes Bucheli
- Centro de Investigaciones Odontologicas (CIO) Pontificia, Universidad Javeriana, Bogota, Colombia
| | - B Martin Biedma
- Unit of Dental Pathology and Therapeutics II, School of Medicine and Dentistry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - F Abella Sans
- Department of Endodontics, Universitat Internacional de Catalunya, Barcelona, Spain
| | - M C Manzanares Céspedes
- Department of Odonto-Stomatology, School of Dentistry, University of Barcelona, Barcelona, Spain.,Department of Experimental Pathology and Therapeutics, School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Saito K, Ohshima H. The putative role of insulin-like growth factor (IGF)-binding protein 5 independent of IGF in the maintenance of pulpal homeostasis in mice. Regen Ther 2019; 11:217-224. [PMID: 31516919 PMCID: PMC6732709 DOI: 10.1016/j.reth.2019.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Although insulin-like growth factor binding protein 5 (IGFBP5) may play a crucial role in activating the functions of periodontal and bone marrow stem cells, the factors responsible for regulating the maintenance of dental pulp stem cells (DPSCs) remain to be clarified. This study aimed to elucidate the role of IGFBP5 in maintaining pulpal homeostasis during tooth development and pulpal healing after tooth injury in doxycycline-inducible TetOP-histone 2B (H2B)-green fluorescent protein (GFP) transgenic mice (GFP expression was induced at E14.5 or E15.5) by using TUNEL assay, RT-PCR, in situ hybridization for Igfbp5, and immunohistochemistry for IGFBP5, Nestin, and GFP. To observe the pulpal response to exogenous stimuli, the roots of the maxillary first molars were resected, and the coronal portion was autografted into the sublingual region. Intense IGFBP5/Igfbp5 expression was observed in cells from the center of the pulp tissue and the subodontoblastic layer in developing teeth during postnatal Week 4. Intense H2B-GFP-expressing label-retaining cells (LRCs) were localized in the subodontoblastic layer in addition to the center of the pulp tissue, suggesting that slowly dividing cell populations reside in these areas. During postoperative days 3–7, the LRCs were maintained in the dental pulp, showed an IGFBP5-positve reaction in their nuclei, and lacked a TUNEL-positive reaction. In situ hybridization and RT-PCR analyses confirmed the expression of Igfbp5 in the dental pulp. These findings suggest that IGFBP5 play a pivotal role in regulating the survival and apoptosis of DPSCs during both tooth development and pulpal healing following tooth injury.
Collapse
Key Words
- ANOVA, one-way analysis of variance
- Apoptosis
- DAB, diaminobenzidine
- DPSC, dental pulp stem cell
- Dental pulp
- GFP, green fluorescent protein
- H&E, hematoxylin and eosin
- H2B, histone 2B
- IGF, insulin-like growth factor
- IGF-IR, insulin-like growth factor I receptor
- IGFBP5, insulin-like growth factor binding protein 5
- LRC, label-retaining cell
- MAS, Matsunami adhesive silane
- Mice (Transgenic)
- PDLSCs, periodontal ligament stem cells
- RT-PCR, reverse transcriptase-polymerase chain reaction
- Stem cells
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling
- Transplantation
Collapse
|
12
|
Nestin expression is differently regulated between odontoblasts and the subodontoblastic layer in mice. Histochem Cell Biol 2018; 149:383-391. [DOI: 10.1007/s00418-018-1651-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 01/22/2023]
|
13
|
Differentiation capacity and maintenance of dental pulp stem/progenitor cells in the process of pulpal healing following tooth injuries. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Sugawara S, Shigetani Y, Kenmotsu S, Okiji T, Ohshima H. Evaluation of a new mouse model for studying dental pulpal responses to GaAlAs laser irradiation. J Oral Biosci 2017. [DOI: 10.1016/j.job.2016.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Al‐Sharabi N, Xue Y, Udea M, Mustafa K, Fristad I. Influence of bone marrow stromal cell secreted molecules on pulpal and periodontal healing in replanted immature rat molars. Dent Traumatol 2015; 32:231-9. [DOI: 10.1111/edt.12246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Niyaz Al‐Sharabi
- Department of Clinical Dentistry Center for Clinical Dental Research University of Bergen Bergen Norway
| | - Ying Xue
- Department of Clinical Dentistry Center for Clinical Dental Research University of Bergen Bergen Norway
| | - Minora Udea
- Department of Oral and Maxillofacial Surgery University of Nagoya Nagoya Japan
| | - Kamal Mustafa
- Department of Clinical Dentistry Center for Clinical Dental Research University of Bergen Bergen Norway
| | - Inge Fristad
- Department of Clinical Dentistry Center for Clinical Dental Research University of Bergen Bergen Norway
| |
Collapse
|
16
|
Quispe-Salcedo A, Ida-Yonemochi H, Ohshima H. The effects of enzymatically synthesized glycogen on the pulpal healing process of extracted teeth following intentionally delayed replantation in mice. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Nakaki T, Saito K, Ida-Yonemochi H, Nakagawa E, Kenmotsu S, Ohshima H. Contribution of Donor and Host Mesenchyme to the Transplanted Tooth Germs. J Dent Res 2014; 94:112-20. [DOI: 10.1177/0022034514556536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Autologous tooth germ transplantation of immature teeth is an alternative method of tooth replacement that could be used instead of dental implants in younger patients. However, it is paramount that the dental pulp remain vital and that root formation continue in the transplanted location. The goal of this study is to characterize the healing of allogenic tooth grafts in an animal model using GFP-labeled donor or host postnatal mice. In addition, the putative stem cells were labeled before transplantation with a pulse-chase paradigm. Transplanted molars formed cusps and roots and erupted into occlusion by 2 wk postoperatively. Host label-retaining cells (LRCs) were maintained in the center of pulp tissue associating with blood vessels. Dual labeling showed that a proportion of LRCs were incorporated into the odontoblast layer. Host cells, including putative dendritic cells and the endothelium, also immigrated into the pulp tissue but did not contribute to the odontoblast layer. Therefore, LRCs or putative mesenchymal stem cells are retained in the transplanted pulps. Hertwig’s epithelial root sheath remains vital, and epithelial LRCs are present in the donor cervical loops. Thus, the dynamic donor-host interaction occurred in the developing transplant, suggesting that these changes affect the characteristics of the dental pulp.
Collapse
Affiliation(s)
- T. Nakaki
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - K. Saito
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - H. Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - E. Nakagawa
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - S. Kenmotsu
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - H. Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
18
|
Effects of a triple antibiotic solution on pulpal dynamics after intentionally delayed tooth replantation in mice. J Endod 2014; 40:1566-72. [PMID: 25260727 DOI: 10.1016/j.joen.2014.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/05/2014] [Accepted: 05/09/2014] [Indexed: 01/09/2023]
Abstract
INTRODUCTION This study analyzed the detailed biological events underlying pulpal dynamics evoked by 3Mix (the mixture of ciprofloxacin, metronidazole, and minocycline) solution after intentionally delayed tooth replantation because 3Mix improves pulpal healing after tooth injuries. METHODS The maxillary first molars of 3-week-old mice were extracted and immersed in 3Mix solution for 30 minutes in comparison with phosphate buffered saline (PBS) alone. Cell proliferation, apoptosis, and differentiation were assessed in extracted/replanted teeth during days 0-14 using immunohistochemistry, apoptosis assay, and reverse-transcriptase polymerase chain reaction. RESULTS 3Mix solution accelerated odontoblast differentiation in the coronal pulp on day 7 and tertiary dentin formation on day 14, whereas the regenerative process was delayed in the PBS group. Cell proliferation and apoptosis occurred in the pulp of the 3Mix group during days 5-7 and subsequently decreased from days 7-14. On day 5, dentin sialophosphoprotein and nestin were first recovered in the 3Mix group, whereas expression levels for alkaline phosphatase, osteopontin, and osteocalcin increased in the PBS group. The expression levels for octamer-binding factor 3/4A and 3/4B reached the maximum level on day 1 and were sharply decreased on day 3 in both groups. High expression levels of Cd11c were first observed in the 3Mix group on day 1 and later at days 5 and 7. CONCLUSIONS The results suggest that the application of 3Mix may suppress osteoblast differentiation by the migration of dendritic cells to the injury site and via the activation of stem/progenitor cells, resulting in the acceleration of odontoblastlike cell differentiation.
Collapse
|
19
|
Mutoh N, Satoh T, Watabe H, Tani-Ishii N. Evaluation of the biocompatibility of resin-based root canal sealers in rat periapical tissue. Dent Mater J 2014; 32:413-9. [PMID: 23719002 DOI: 10.4012/dmj.2012-218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We evaluated the biocompatibility of resin-based root canal sealers (RCSs) in the periapical tissues of rats. Wistar rats underwent tooth replantation for reproducing the response of periapical tissue with RCSs. The resin-based Epipany SE, AH Plus Jet, the eugenol-based sealer (Canals) and a control group were employed. The upper right first molar was extracted and applied with RCSs on apices, and then the tooth was repositioned. Histological evaluation demonstrated that mild inflammation occurred in the periapical tissue with Epiphany and AH Plus Jet sealers on day 7, whereas Canals induced severe-to-moderate inflammation. The statistical analyses demonstrated that the significant differences were observed between Canals and the other groups on day 7 regarding inflammatory response. On day 14, the lesions induced by all sealers were healed and replaced predominantly by fibrous connective tissue. Our results suggest that Epiphany SE and AH Plus Jet are good biocompatible materials.
Collapse
Affiliation(s)
- Noriko Mutoh
- Department of Oral Medicine, Division of Endodontics, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | | | | | | |
Collapse
|
20
|
Saito K, Nakatomi M, Kenmotsu S, Ohshima H. Allogenic tooth transplantation inhibits the maintenance of dental pulp stem/progenitor cells in mice. Cell Tissue Res 2014; 356:357-67. [PMID: 24671256 DOI: 10.1007/s00441-014-1818-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/13/2014] [Indexed: 01/10/2023]
Abstract
Our recent study suggested that allogenic tooth transplantation may affect the maintenance of dental pulp stem/progenitor cells. This study aims to elucidate the influence of allograft on the maintenance of dental pulp stem/progenitor cells following tooth replantation and allo- or auto-genic tooth transplantation in mice using BrdU chasing, immunohistochemistry for BrdU, nestin and Ki67, in situ hybridization for Dspp, transmission electron microscopy and TUNEL assay. Following extraction of the maxillary first molar in BrdU-labeled animals, the tooth was immediately repositioned in the original socket, or the roots were resected and immediately allo- or auto-grafted into the sublingual region in non-labeled or the same animals. In the control group, two types of BrdU label-retaining cells (LRCs) were distributed throughout the dental pulp: those with dense or those with granular reaction for BrdU. In the replants and autogenic transplants, dense LRCs remained in the center of dental pulp associating with the perivascular environment throughout the experimental period and possessed a proliferative capacity and maintained the differentiation capacity into the odontoblast-like cells or fibroblasts. In contrast, LRCs disappeared in the center of the pulp tissue by postoperative week 4 in the allografts. The disappearance of LRCs was attributed to the extensive apoptosis occurring significantly in LRCs except for the newly-differentiated odontoblast-like cells even in cases without immunological rejection. The results suggest that the host and recipient interaction in the allografts disturbs the maintenance of dense LRCs, presumably stem/progenitor cells, resulting in the disappearance of these cell types.
Collapse
Affiliation(s)
- Kotaro Saito
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | | | | | | |
Collapse
|
21
|
Ida-Yonemochi H, Nakatomi M, Ohshima H. Establishment of in vitro culture system for evaluating dentin–pulp complex regeneration with special reference to the differentiation capacity of BrdU label-retaining dental pulp cells. Histochem Cell Biol 2014; 142:323-33. [DOI: 10.1007/s00418-014-1200-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2014] [Indexed: 12/15/2022]
|
22
|
Saito K, Nakatomi M, Ohshima H. Dynamics of Bromodeoxyuridine Label–retaining Dental Pulp Cells during Pulpal Healing after Cavity Preparation in Mice. J Endod 2013; 39:1250-5. [DOI: 10.1016/j.joen.2013.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 06/29/2013] [Accepted: 06/29/2013] [Indexed: 12/24/2022]
|
23
|
Kim YK, Lee J, Um IW, Kim KW, Murata M, Akazawa T, Mitsugi M. Tooth-derived bone graft material. J Korean Assoc Oral Maxillofac Surg 2013; 39:103-11. [PMID: 24471027 PMCID: PMC3858164 DOI: 10.5125/jkaoms.2013.39.3.103] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/01/2013] [Accepted: 05/28/2013] [Indexed: 02/02/2023] Open
Abstract
With successful extraction of growth factors and bone morphogenic proteins (BMPs) from mammalian teeth, many researchers have supported development of a bone substitute using tooth-derived substances. Some studies have also expanded the potential use of teeth as a carrier for growth factors and stem cells. A broad overview of the published findings with regard to tooth-derived regenerative tissue engineering technique is outlined. Considering more than 100 published papers, our team has developed the protocols and techniques for processing of bone graft material using extracted teeth. Based on current studies and studies that will be needed in the future, we can anticipate development of scaffolds, homogenous and xenogenous tooth bone grafts, and dental restorative materials using extracted teeth.
Collapse
Affiliation(s)
- Young-Kyun Kim
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Korea
| | | | | | - Kyung-Wook Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan, Korea
| | - Masaru Murata
- Department of Oral and Maxillofacial Surgery, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Toshiyuki Akazawa
- Department of Industrial Technology Research, Hokkaido Industrial Research Institute, Sapporo, Japan
| | | |
Collapse
|
24
|
Quispe-Salcedo A, Ida-Yonemochi H, Ohshima H. Use of a triple antibiotic solution affects the healing process of intentionally delayed replanted teeth in mice. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
The critical apical diameter to obtain regeneration of the pulp tissue after tooth transplantation, replantation, or regenerative endodontic treatment. J Endod 2013; 39:759-63. [PMID: 23683275 DOI: 10.1016/j.joen.2013.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/31/2013] [Accepted: 02/15/2013] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Regeneration of pulp-like tissue in the pulp chamber after tooth transplantation, replantation, or in regenerative endodontic treatment is only possible if the apical foramen is open. According to the literature, the success of regeneration decreases considerably if the foramen is smaller than 1 mm when measured on radiographs. The aim of this study was to study histologically the relation between the width of the apical foramen and regeneration of tissue in the pulp chamber after autotransplantation. METHODS Fifteen single-rooted mature teeth of 3 adult beagle dogs were used. All experimental teeth were extracted and underwent apicoectomy. The teeth were photographed from the apical side, and the width of the foramen was calculated. The foramen width ranged from 0.24-1.09 mm. All teeth were replanted in infraocclusion. The observation period was 90 days after transplantation. RESULTS The 10 teeth with the smallest apical diameter, ranging between 0.24 and 0.53 mm, showed vital tissue in at least one third of the pulp chamber. The 6 most successful teeth showing vital tissue in the entire pulp chamber had an apical diameter between 0.32 and 0.65 mm, and 80% of the experimental teeth with a diameter varying between 1.09 and 0.31 mm showed vital tissue in at least one third of the pulp chamber 90 days after transplantation. CONCLUSIONS The size of the apical foramen seems not to be the all decisive factor for successful revascularization and ingrowth of new tissue after transplantation. The minimum width of the apical foramen has not been determined, but a size smaller than 1 mm does not prevent revascularization and ingrowth of vital tissue. In this animal study an apical foramen of 0.32 mm did not prevent ingrowth of new tissue in two-thirds of the pulp chamber 90 days after transplantation.
Collapse
|
26
|
Odontoblast response to cavity preparation with Er:YAG laser in rat molars: an immunohistochemical study. Odontology 2012; 101:186-92. [PMID: 22736273 DOI: 10.1007/s10266-012-0078-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
This study aimed to examine the dynamics of odontoblast-lineage cells following cavity preparation with erbium:yttrium-aluminum-garnet (Er:YAG) laser in rat molars. Cavity preparation was made with Er:YAG laser in the mesial surface of the maxillary left first molar of 8-week-old Wistar rats. Contralateral first molar served as unirradiated control. Immediately, 6 and 12 h and 1, 2, 3, 5 and 7 days after the lasing (n = 5, each), specimens were collected and processed for immunohistochemistry for heat-shock protein (HSP)-25 and nestin as markers for odontoblast-lineage cells. Cell proliferation assay using bromodeoxyuridine (BrdU) labeling was also performed. Unirradiated teeth showed HSP-25- and nestin-immunoreactivity in odontoblasts. At 6-12 h after irradiation, the odontoblastic layer was disorganized and some of odontoblasts lost the immunoreactivity to HSP-25 and nestin. At 1-2 days, however, HSP-25- and nestin-immunoreactivities in the odontoblast layer showed a noticeable recovery, resulting in the rearrangement of odontoblast-like cells intensely immunoreactive to HSP-25 and nestin at 3-7 days. BrdU-positive cells showed a significant increase at 2 days (P < 0.05 vs. immediate previous time point; one-way analysis of variance and Scheffé post hoc test), peaked at 3 days and then decreased significantly (P < 0.05). It was concluded that under the present experimental condition in rat molars, cavity preparation with Er:YAG laser induced mild and reversible damage to odontoblasts. The reparative process was characterized by the rearrangement of HSP-25- and nestin-immunoreactive odontoblast-like cells, which took place subsequent to the odontoblastic layer disorganization with partial loss of these immunoreactivities.
Collapse
|
27
|
Ishikawa Y, Ida-Yonemochi H, Nakakura-Ohshima K, Ohshima H. The relationship between cell proliferation and differentiation and mapping of putative dental pulp stem/progenitor cells during mouse molar development by chasing BrdU-labeling. Cell Tissue Res 2012; 348:95-107. [DOI: 10.1007/s00441-012-1347-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/19/2012] [Indexed: 02/06/2023]
|
28
|
Lee Y, Go EJ, Jung HS, Kim E, Jung IY, Lee SJ. Immunohistochemical analysis of pulpal regeneration by nestin expression in replanted teeth. Int Endod J 2012; 45:652-9. [PMID: 22324485 DOI: 10.1111/j.1365-2591.2012.02024.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIM To investigate dental pulp healing after tooth replantation in rats using nestin as an odontoblastic marker for immunohistochemical analysis. METHODOLOGY Twenty-five maxillary right first molars from 25 female Sprague-Dawley rats, aged 4 weeks post-natally, were extracted and immediately repositioned in the original socket within 5 s. Five rats each were later killed on days 3, 5 and weeks 1, 2 and 4. The maxillae were removed en bloc and the tissue samples containing the maxillary right first molars were decalcified, sectioned, mounted and stained with anti-nestin antibody to be observed under a light microscope. RESULTS At 3 days after replantation, there was a localized inflammatory reaction, but pulp revascularization and healing had begun in the root area. At 5 days after replantation, odontoblast-like cells were observed. Reparative dentine deposition was observed beneath the pulp-dentine border from 1 week after replantation, and gradually increased until 2 weeks after replantation. The presence of odontoblast-like cells and the formation of reparative dentine continued from the first week throughout the experimental period. At week four, deposition of osteodentine and cementum-like tissues were observed. CONCLUSIONS Pulpal mineralization after replantation initially occurred via the deposition of reparative dentine, followed by the deposition of osteodentine and cementum-like tissues in rat teeth.
Collapse
Affiliation(s)
- Y Lee
- Department of Dentistry, Wonju College of Medicine, Yonsei University, Wonju, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Saito M, Tsuji T. Extracellular matrix administration as a potential therapeutic strategy for periodontal ligament regeneration. Expert Opin Biol Ther 2012; 12:299-309. [DOI: 10.1517/14712598.2012.655267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Quispe-Salcedo A, Ida-Yonemochi H, Nakatomi M, Ohshima H. Expression patterns of nestin and dentin sialoprotein during dentinogenesis in mice. Biomed Res 2012; 33:119-32. [DOI: 10.2220/biomedres.33.119] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
GaAlAs laser irradiation induces active tertiary dentin formation after pulpal apoptosis and cell proliferation in rat molars. J Endod 2011; 37:1086-91. [PMID: 21763899 DOI: 10.1016/j.joen.2011.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/18/2011] [Accepted: 05/03/2011] [Indexed: 01/11/2023]
Abstract
INTRODUCTION This study aimed to clarify pulpal responses to gallium-aluminum-arsenide (GaAlAs) laser irradiation. METHODS Maxillary first molars of 8-week-old rats were irradiated at an output power of 0.5 or 1.5 W for 180 seconds, and the samples were collected at intervals of 0 to 14 days. The demineralized paraffin sections were processed for immunohistochemistry for heat-shock protein (HSP)-25 and nestin in addition to cell proliferation assay using bromodeoxyuridine (BrdU) labeling and apoptosis assay using deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL). RESULTS Intense HSP-25 and nestin immunoreactivities in the odontoblast layer were weakened immediately after 0.5-W irradiation and recovered on day 1, resulting in slight tertiary dentin formation by day 14. On the contrary, 1.5-W irradiation immediately induced the loss of HSP-25 and nestin-immunoreactivities in the odontoblast layer. On day 1, numerous TUNEL-positive cells appeared in a degenerative zone that was surrounded by intense HSP-25 immunoreactivity. BrdU-positive cells occurred within the intensely HSP-25-immunopositive areas during days 2 through 5, whereas TUNEL-positive cells gradually decreased in number by day 5. HSP-25- and nestin-positive odontoblast-like cells were arranged along the pulp-dentin border by day 7, resulting in remarkable tertiary dentin formation on day 14. CONCLUSIONS The output energy determined pulpal healing patterns after GaAlAs laser irradiation; the higher energy induced the apoptosis in the affected dental pulp including odontoblasts followed by active cell proliferation in the intense HSP-25-immunoreactive areas surrounding the degenerative tissue, resulting in abundant tertiary dentin formation. Thus, the optimal GaAlAs laser irradiation elicited intentional tertiary dentin formation in the dental pulp.
Collapse
|
32
|
Responses of BrdU label-retaining dental pulp cells to allogenic tooth transplantation into mouse maxilla. Histochem Cell Biol 2011; 136:649-61. [DOI: 10.1007/s00418-011-0868-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2011] [Indexed: 12/17/2022]
|
33
|
Nakasone N, Yoshie H. Occlusion regulates tooth-root elongation during root development in rat molars. Eur J Oral Sci 2011; 119:418-26. [DOI: 10.1111/j.1600-0722.2011.00856.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Saito M, Kurokawa M, Oda M, Oshima M, Tsutsui K, Kosaka K, Nakao K, Ogawa M, Manabe RI, Suda N, Ganjargal G, Hada Y, Noguchi T, Teranaka T, Sekiguchi K, Yoneda T, Tsuji T. ADAMTSL6β protein rescues fibrillin-1 microfibril disorder in a Marfan syndrome mouse model through the promotion of fibrillin-1 assembly. J Biol Chem 2011; 286:38602-38613. [PMID: 21880733 DOI: 10.1074/jbc.m111.243451] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Marfan syndrome (MFS) is a systemic disorder of the connective tissues caused by insufficient fibrillin-1 microfibril formation and can cause cardiac complications, emphysema, ocular lens dislocation, and severe periodontal disease. ADAMTSL6β (A disintegrin-like metalloprotease domain with thrombospondin type I motifs-like 6β) is a microfibril-associated extracellular matrix protein expressed in various connective tissues that has been implicated in fibrillin-1 microfibril assembly. We here report that ADAMTSL6β plays an essential role in the development and regeneration of connective tissues. ADAMTSL6β expression rescues microfibril disorder after periodontal ligament injury in an MFS mouse model through the promotion of fibrillin-1 microfibril assembly. In addition, improved fibrillin-1 assembly in MFS mice following the administration of ADAMTSL6β attenuates the overactivation of TGF-β signals associated with the increased release of active TGF-β from disrupted fibrillin-1 microfibrils within periodontal ligaments. Our current data thus demonstrate the essential contribution of ADAMTSL6β to fibrillin-1 microfibril formation. These findings also suggest a new therapeutic strategy for the treatment of MFS through ADAMTSL6β-mediated fibrillin-1 microfibril assembly.
Collapse
Affiliation(s)
- Masahiro Saito
- Department of Biological Science and Technology, Faculty of Industrial Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan.
| | - Misaki Kurokawa
- Department of Biological Science and Technology, Faculty of Industrial Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Masahito Oda
- Department of Biological Science and Technology, Faculty of Industrial Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Masamitsu Oshima
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Ko Tsutsui
- Institute for Protein Research, Osaka University, Suita Osaka 565-0871, Japan
| | - Kazutaka Kosaka
- Division of Restorative Dentistry, Department of Oral Medicine, Kanagawa Dental College, Yokosuka Kanagawa 238-8580, Japan
| | - Kazuhisa Nakao
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Miho Ogawa
- Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Organ Technologies Inc., Tokyo, Japan
| | - Ri-Ichiroh Manabe
- RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Naoto Suda
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo 113-0034, Japan
| | - Ganburged Ganjargal
- Maxillofacial Orthognathics, Graduate School, Tokyo Medical and Dental University, Tokyo 113-0034, Japan
| | - Yasunobu Hada
- Department of Biological Science and Technology, Faculty of Industrial Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Oral Implantology and Regenerative Dental Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo 113-0034, Japan
| | - Toshihide Noguchi
- Department of Periodontology, School of Dentistry, Aichi-Gakuin University, Nisshin 470-0195, Japan
| | - Toshio Teranaka
- Division of Restorative Dentistry, Department of Oral Medicine, Kanagawa Dental College, Yokosuka Kanagawa 238-8580, Japan
| | - Kiyotoshi Sekiguchi
- Institute for Protein Research, Osaka University, Suita Osaka 565-0871, Japan
| | - Toshiyuki Yoneda
- Department of Molecular and Cellular Biochemistry, Graduate School of Dentistry, Osaka University, Suita Osaka 565-0871, Japan
| | - Takashi Tsuji
- Department of Biological Science and Technology, Faculty of Industrial Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Organ Technologies Inc., Tokyo, Japan
| |
Collapse
|
35
|
Saito K, Nakatomi M, Ida-Yonemochi H, Kenmotsu SI, Ohshima H. The expression of GM-CSF and osteopontin in immunocompetent cells precedes the odontoblast differentiation following allogenic tooth transplantation in mice. J Histochem Cytochem 2011; 59:518-29. [PMID: 21430263 DOI: 10.1369/0022155411403314] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dental pulp elaborates both bone and dentin under pathological conditions such as tooth replantation/transplantation. This study aims to clarify the expression of granulocyte macrophage colony-stimulating factor (GM-CSF) and osteopontin (OPN) in the process of reparative dentin formation by allogenic tooth transplantation using in situ hybridization for OPN and immunohistochemistry for GM-CSF and OPN at both levels of light and electron microscopes. Following the extraction of the mouse molar, the roots and pulp floor were resected and immediately allografted into the sublingual region. On days 1 to 3, immunocompetent cells such as macrophages and dendritic cells expressed both GM-CSF and OPN, and some of them were arranged along the pulp-dentin border and extended their cellular processes into the dentinal tubules. On days 5 to 7, tubular dentin formation commenced next to the preexisting dentin at the pulp horn where nestin-positive odontoblast-like cells were arranged. Until day 14, bone-like tissue formation occurred in the pulp chamber, where OPN-positive osteoblasts surrounded the bone matrix. These results suggest that the secretion of GM-CSF and OPN by immunocompetent cells such as macrophages and dendritic cells plays a role in the maturation of dendritic cells and the differentiation of odontoblasts, respectively, in the regenerated pulp tissue following tooth transplantation.
Collapse
Affiliation(s)
- Kotaro Saito
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | |
Collapse
|
36
|
Saito K, Ishikawa Y, Nakakura-Ohshima K, Ida-Yonemochi H, Nakatomi M, Kenmotsu SI, Ohshima H. Differentiation capacity of BrdU label-retaining dental pulp cells during pulpal healing following allogenic transplantation in mice. Biomed Res 2011; 32:247-57. [DOI: 10.2220/biomedres.32.247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Nampo T, Watahiki J, Enomoto A, Taguchi T, Ono M, Nakano H, Yamamoto G, Irie T, Tachikawa T, Maki K. A New Method for Alveolar Bone Repair Using Extracted Teeth for the Graft Material. J Periodontol 2010; 81:1264-72. [DOI: 10.1902/jop.2010.100016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Mapping of BrdU label-retaining dental pulp cells in growing teeth and their regenerative capacity after injuries. Histochem Cell Biol 2010; 134:227-41. [DOI: 10.1007/s00418-010-0727-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2010] [Indexed: 12/13/2022]
|
39
|
Lu P, Arai K, Kuboyama N. Possibility of application of calcium carbonate in pulpotomy of rat molars. PEDIATRIC DENTAL JOURNAL 2010. [DOI: 10.1016/s0917-2394(10)70192-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Unno H, Suzuki H, Nakakura-Ohshima K, Jung HS, Ohshima H. Pulpal regeneration following allogenic tooth transplantation into mouse maxilla. Anat Rec (Hoboken) 2009; 292:570-9. [PMID: 19226618 DOI: 10.1002/ar.20831] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autogenic tooth transplantation is now a common procedure in dentistry for replacing a missing tooth. However, there are many difficulties in clinical application of allogenic tooth transplantation because of immunological rejection. This study aims to clarify pulpal regeneration following allogenic tooth transplantation into the mouse maxilla by immunohistochemistry for 5-bromo-2'-deoxyuridine (BrdU) and nestin, and by the histochemistry for tartrate-resistant acid phosphatase (TRAP). The upper right first molar (M1) of 2-week-old mice was extracted and allografted in the original socket in both the littermate and non-littermate after the extraction of M1. Tooth transplantation weakened the nestin-positive reactions in the pulp tissue that had shown immunoreactivity for nestin before operation. On postoperative Days 5-7, tertiary dentin formation commenced next to the preexisting dentin where nestin-positive odontoblast-like cells were arranged in all cases of the littermate group until Day 14, except for one case showing immunological rejection in the pulp chamber. In the non-littermate group, bone-like tissue formation occurred in the pulp chamber in addition to tertiary dentin formation until Day 14. The rate of tertiary dentin was 38%, and the rate of the mixed form of dentin and bone-like tissue formation was 23% (the remainder was immunological rejection). Interestingly, the periodontal tissue recovered even in the case of immunological rejection in which the pulp chamber was replaced by sparse connective tissue. These results suggest that the selection of littermate or non-littermate is decisive for the survival of odontoblast-lineage cells and that the immunological rejection does not influence the periodontal regeneration.
Collapse
Affiliation(s)
- Hideki Unno
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Chuo-Ku, Niigata, Japan
| | | | | | | | | |
Collapse
|
41
|
Yagi Y, Suda N, Yamakoshi Y, Baba O, Moriyama K. In vivo application of amelogenin suppresses root resorption. J Dent Res 2009; 88:176-81. [PMID: 19278991 DOI: 10.1177/0022034508329451] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Amelogenin is recognized as an enamel protein associated with enamel formation. Besides this well-known function, remarkable root resorption has been seen in amelogenin-null mutant mice. Moreover, in vitro culture studies showed that amelogenin suppressed osteoclast differentiation. These studies raised the hypothesis that amelogenin can inhibit root resorption by reducing odontoclast number. To examine this hypothesis, we applied porcine amelogenins in a rat root resorption model, in which maxillary first molars were replanted after being air-dried. Compared with untreated and carrier-treated tooth roots, the application dramatically reduced the odontoclast number on root surfaces and inhibited cementum and root dentin resorption. Amelogenin significantly reduced the number of human odontoclastic cells in culture. It also inhibited RANKL expression in mouse bone marrow cell cultures. All these findings support our hypothesis that amelogenin application suppresses root resorption by inhibiting odontoclast number, and suggest that this is mediated by the regulation of RANKL expression.
Collapse
Affiliation(s)
- Y Yagi
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | | | | | | | | |
Collapse
|
42
|
Takamori Y, Suzuki H, Nakakura-Ohshima K, Cai J, Cho SW, Jung HS, Ohshima H. Capacity of dental pulp differentiation in mouse molars as demonstrated by allogenic tooth transplantation. J Histochem Cytochem 2008; 56:1075-86. [PMID: 18765839 DOI: 10.1369/jhc.2008.951558] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dental pulp elaborates both bone and dentin under pathological conditions such as tooth replantation/transplantation. This study aims to clarify the capability of dental pulp to elaborate bone tissue in addition to dentin by allogenic tooth transplantation using immunohistochemistry and histochemistry. After extraction of the molars of 3-week-old mice, the roots and pulp floor were resected and immediately allografted into the sublingual region in a littermate. In addition, we studied the contribution of donor and host cells to the regenerated pulp tissue using a combination of allogenic tooth transplantation and lacZ transgenic ROSA26 mice. On Days 5-7, tubular dentin formation started next to the preexisting dentin at the pulp horn where nestin-positive odontoblast-like cells were arranged. Until Day 14, bone-like tissue formation occurred in the pulp chamber, where intense tartrate-resistant acid phosphatase-positive cells appeared. Furthermore, allogenic transplantation using ROSA26 mice clearly showed that both donor and host cells differentiated into osteoblast-like cells with the assistance of osteoclast-lineage cells, whereas newly differentiated odontoblasts were exclusively derived from donor cells. These results suggest that the odontoblast and osteoblast lineage cells reside in the dental pulp and that both donor and host cells contribute to bone-like tissue formation in the regenerated pulp tissue.
Collapse
Affiliation(s)
- Yasuhiko Takamori
- DDS, Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Niigata 951-8514, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Kuratate M, Yoshiba K, Shigetani Y, Yoshiba N, Ohshima H, Okiji T. Immunohistochemical Analysis of Nestin, Osteopontin, and Proliferating Cells in the Reparative Process of Exposed Dental Pulp Capped with Mineral Trioxide Aggregate. J Endod 2008; 34:970-4. [DOI: 10.1016/j.joen.2008.03.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 03/26/2008] [Accepted: 03/27/2008] [Indexed: 10/21/2022]
|
44
|
Harada M, Kenmotsu SI, Nakasone N, Nakakura-Ohshima K, Ohshima H. Cell dynamics in the pulpal healing process following cavity preparation in rat molars. Histochem Cell Biol 2008; 130:773-83. [DOI: 10.1007/s00418-008-0438-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2008] [Indexed: 01/09/2023]
|