1
|
Luquin E, Paternain B, Zugasti I, Santomá C, Mengual E. Stereological estimations and neurochemical characterization of neurons expressing GABAA and GABAB receptors in the rat pedunculopontine and laterodorsal tegmental nuclei. Brain Struct Funct 2022; 227:89-110. [PMID: 34510281 PMCID: PMC8741722 DOI: 10.1007/s00429-021-02375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 08/31/2021] [Indexed: 11/29/2022]
Abstract
To better understand GABAergic transmission at two targets of basal ganglia downstream projections, the pedunculopontine (PPN) and laterodorsal (LDT) tegmental nuclei, the anatomical localization of GABAA and GABAB receptors was investigated in both nuclei. Specifically, the total number of neurons expressing the GABAA receptor γ2 subunit (GABAAR γ2) and the GABAB receptor R2 subunit (GABAB R2) in PPN and LDT was estimated using stereological methods, and the neurochemical phenotype of cells expressing each subunit was also determined. The mean number of non-cholinergic cells expressing GABAAR γ2 was 9850 ± 1856 in the PPN and 8285 ± 962 in the LDT, whereas those expressing GABAB R2 were 7310 ± 1970 and 9170 ± 1900 in the PPN and LDT, respectively. In addition, all cholinergic neurons in both nuclei co-expressed GABAAR γ2 and 95-98% of them co-expressed GABAB R2. Triple labeling using in situ hybridization revealed that 77% of GAD67 mRNA-positive cells in the PPT and 49% in the LDT expressed GABAAR γ2, while 90% (PPN) and 65% (LDT) of Vglut2 mRNA-positive cells also expressed GABAAR γ2. In contrast, a similar proportion (~2/3) of glutamatergic and GABAergic cells co-expressed GABAB R2 in both nuclei. The heterogeneous distribution of GABAAR and GABABR among non-cholinergic cells in PPN and LDT may give rise to physiological differences within each neurochemical subpopulation. In addition, the dissimilar proportion of GABAAR γ2-expressing glutamatergic and GABAergic neurons in the PPN and LDT may contribute to some of the functional differences found between the two nuclei.
Collapse
Affiliation(s)
- Esther Luquin
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Beatriz Paternain
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Inés Zugasti
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Carmen Santomá
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Elisa Mengual
- Department of Pathology, Anatomy, and Physiology, School of Medicine, University of Navarra, Ed. Los Castaños, Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
2
|
Yorgason JT, Wadsworth HA, Anderson EJ, Williams BM, Brundage JN, Hedges DM, Stockard AL, Jones ST, Arthur SB, Hansen DM, Schilaty ND, Jang EY, Lee AM, Wallner M, Steffensen SC. Modulation of dopamine release by ethanol is mediated by atypical GABA A receptors on cholinergic interneurons in the nucleus accumbens. Addict Biol 2022; 27:e13108. [PMID: 34713509 DOI: 10.1111/adb.13108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Previous studies indicate that moderate-to-high ethanol (EtOH) concentrations enhance dopamine (DA) neurotransmission in the mesolimbic DA system from the ventral tegmental area (VTA) and projecting to the nucleus accumbens core (NAc). However, voltammetry studies demonstrate that moderate-to-high EtOH concentrations decrease evoked DA release at NAc terminals. The involvement of γ-aminobutyric acid (GABA) receptors (GABAA Rs), glycine (GLY) receptors (GLYRs) and cholinergic interneurons (CINs) in mediating EtOH inhibition of evoked NAc DA release were examined. Fast scan cyclic voltammetry, electrophysiology, optogenetics and immunohistochemistry techniques were used to evaluate the effects of acute and chronic EtOH exposure on DA release and CIN activity in C57/BL6, CD-1, transgenic mice and δ-subunit knockout (KO) mice (δ-/-). Ethanol decreased DA release in mice with an IC50 of 80 mM ex vivo and 2.0 g/kg in vivo. GABA and GLY decreased evoked DA release at 1-10 mM. Typical GABAA R agonists inhibited DA release at high concentrations. Typical GABAA R antagonists had minimal effects on EtOH inhibition of evoked DA release. However, EtOH inhibition of DA release was blocked by the α4 β3 δ GABAA R antagonist Ro15-4513, the GLYR antagonist strychnine and by the GABA ρ1 (Rho-1) antagonist TPMPA (10 μM) and reduced significantly in GABAA R δ-/- mice. Rho-1 expression was observed in CINs. Ethanol inhibited GABAergic synaptic input to CINs from the VTA and enhanced firing rate, both of which were blocked by TPMPA. Results herein suggest that EtOH inhibition of DA release in the NAc is modulated by GLYRs and atypical GABAA Rs on CINs containing δ- and Rho-subunits.
Collapse
Affiliation(s)
- Jordan T Yorgason
- Department of Cellular Biology and Physiology, Brigham Young University, Provo, Utah, USA
| | - Hillary A Wadsworth
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Elizabeth J Anderson
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Benjamin M Williams
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - James N Brundage
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - David M Hedges
- Enterprise Information Management, Billings Clinic, Billings, Montana, USA
| | - Alyssa L Stockard
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Stephen T Jones
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Summer B Arthur
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - David Micah Hansen
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Nathan D Schilaty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Eun Young Jang
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Anna M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Martin Wallner
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
| | - Scott C Steffensen
- Department of Psychology and Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
3
|
Sawant A, Ebbinghaus BN, Bleckert A, Gamlin C, Yu WQ, Berson D, Rudolph U, Sinha R, Hoon M. Organization and emergence of a mixed GABA-glycine retinal circuit that provides inhibition to mouse ON-sustained alpha retinal ganglion cells. Cell Rep 2021; 34:108858. [PMID: 33730586 PMCID: PMC8030271 DOI: 10.1016/j.celrep.2021.108858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 12/07/2020] [Accepted: 02/19/2021] [Indexed: 12/04/2022] Open
Abstract
In the retina, amacrine interneurons inhibit retinal ganglion cell (RGC) dendrites to shape retinal output. Amacrine cells typically use either GABA or glycine to exert synaptic inhibition. Here, we combined transgenic tools with immunohistochemistry, electrophysiology, and 3D electron microscopy to determine the composition and organization of inhibitory synapses across the dendritic arbor of a well-characterized RGC type in the mouse retina: the ON-sustained alpha RGC. We find mixed GABA-glycine receptor synapses across this RGC type, unveiling the existence of "mixed" inhibitory synapses in the retinal circuit. Presynaptic amacrine boutons with dual release sites are apposed to ON-sustained alpha RGC postsynapses. We further reveal the sequence of postsynaptic assembly for these mixed synapses: GABA receptors precede glycine receptors, and a lack of early GABA receptor expression impedes the recruitment of glycine receptors. Together our findings uncover the organization and developmental profile of an additional motif of inhibition in the mammalian retina.
Collapse
Affiliation(s)
- Abhilash Sawant
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Briana N Ebbinghaus
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam Bleckert
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Clare Gamlin
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - David Berson
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Raunak Sinha
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Mrinalini Hoon
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Egger V, Diamond JS. A17 Amacrine Cells and Olfactory Granule Cells: Parallel Processors of Early Sensory Information. Front Cell Neurosci 2020; 14:600537. [PMID: 33250720 PMCID: PMC7674606 DOI: 10.3389/fncel.2020.600537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
Neurons typically receive synaptic input in their dendritic arbor, integrate inputs in their soma, and send output action potentials through their axon, following Cajal's law of dynamic polarization. Two notable exceptions are retinal amacrine cells and olfactory granule cells (GCs), which flout Cajal's edict by providing synaptic output from the same dendrites that collect synaptic input. Amacrine cells, a diverse cell class comprising >60 subtypes, employ various dendritic input/output strategies, but A17 amacrine cells (A17s) in particular share further interesting functional characteristics with GCs: both receive excitatory synaptic input from neurons in the primary glutamatergic pathway and return immediate, reciprocal feedback via GABAergic inhibitory synapses to the same synaptic terminals that provided input. Both neurons thereby process signals locally within their dendrites, shaping many parallels, signaling pathways independently. The similarities between A17s and GCs cast into relief striking differences that may indicate distinct processing roles within their respective circuits: First, they employ partially dissimilar molecular mechanisms to transform excitatory input into inhibitory output; second, GCs fire action potentials, whereas A17s do not. Third, GC signals may be influenced by cortical feedback, whereas the mammalian retina receives no such retrograde input. Finally, A17s constitute just one subtype within a diverse class that is specialized in a particular task, whereas the more homogeneous GCs may play more diverse signaling roles via multiple processing modes. Here, we review these analogies and distinctions between A17 amacrine cells and granule cells, hoping to gain further insight into the operating principles of these two sensory circuits.
Collapse
Affiliation(s)
- Veronica Egger
- Department of Neurophysiology, Institute of Zoology, Universität Regensburg, Regensburg, Germany
| | - Jeffrey S. Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Eliasen JN, Krall J, Frølund B, Kohlmeier KA. Sex-specific alterations in GABA receptor-mediated responses in laterodorsal tegmentum are associated with prenatal exposure to nicotine. Dev Neurobiol 2020; 80:178-199. [PMID: 32628361 DOI: 10.1002/dneu.22772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Smoking during pregnancy is associated with deleterious physiological and cognitive effects on the offspring, which are likely due to nicotine-induced alteration in the development of neurotransmitter systems. Prenatal nicotine exposure (PNE) in rodents is associated with changes in behaviors controlled in part by the pontine laterodorsal tegmentum (LDT), and LDT excitatory signaling is altered in a sex and age-dependent manner by PNE. As effects on GABAergic LDT signaling are unknown, we used calcium imaging to evaluate GABAA receptor- (GABAA R as well as GABAA -ρ R) and GABAB receptor (GABAB R)-mediated calcium responses in LDT brain slices from female and male PNE mice in two different age groups. Overall, in older PNE females, changes in calcium induced by stimulation of GABAA R and GABAB R, including GABAA -ρ R were shifted toward calcium rises. In both young and old males, PNE was associated with alterations in calcium mediated by all three receptors; however, the GABAA R was the most affected. These results show for the first time that PNE is associated with alterations in GABAergic transmission in the LDT in a sex- and age-dependent manner, and these data are the first to show PNE-associated alterations in functionality of GABA receptors in any nucleus. PNE-associated alterations in LDT GABAergic transmission within the LDT would be expected to alter output to target regions and could play a role in LDT-implicated, negative behavioral outcomes following gestational exposure to smoking. Accordingly, our data provide further supportive evidence of the importance of eliminating the consumption of nicotine during pregnancy.
Collapse
Affiliation(s)
- Jannik Nicklas Eliasen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Krall
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Moore-Dotson JM, Eggers ED. Reductions in Calcium Signaling Limit Inhibition to Diabetic Retinal Rod Bipolar Cells. Invest Ophthalmol Vis Sci 2020; 60:4063-4073. [PMID: 31560762 PMCID: PMC6779064 DOI: 10.1167/iovs.19-27137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose The balance of neuronal excitation and inhibition is important for proper retinal signaling. A previous report showed that diabetes selectively reduces light-evoked inhibition to the retinal dim light rod pathway, changing this balance. Here, changes in mechanisms of retinal inhibitory synaptic transmission after 6 weeks of diabetes are investigated. Methods Diabetes was induced in C57BL/6J mice by three intraperitoneal injections of streptozotocin (STZ, 75 mg/kg), and confirmed by blood glucose levels more than 200 mg/dL. After 6 weeks, whole-cell voltage-clamp recordings of electrically evoked inhibitory postsynaptic currents from rod bipolar cells and light-evoked excitatory postsynaptic currents from A17-amacrine cells were made in dark-adapted retinal slices. Results Diabetes shortened the timecourse of directly activated lateral GABAergic inhibitory amacrine cell inputs to rod bipolar cells. The timing of GABA release onto rod bipolar cells depends on a prolonged amacrine cell calcium signal that is reduced by slow calcium buffering. Therefore, the effects of calcium buffering with EGTA-acetoxymethyl ester (AM) on diabetic GABAergic signaling were tested. EGTA-AM reduced GABAergic signaling in diabetic retinas more strongly, suggesting that diabetic amacrine cells have reduced calcium signals. Additionally, the timing of release from reciprocal inhibitory inputs to diabetic rod bipolar cells was reduced, but the activation of the A17 amacrine cells responsible for this inhibition was not changed. Conclusions These results suggest that reduced light-evoked inhibitory input to rod bipolar cells is due to reduced and shortened calcium signals in presynaptic GABAergic amacrine cells. A reduction in calcium signaling may be a common mechanism limiting inhibition in the retina.
Collapse
Affiliation(s)
- Johnnie M Moore-Dotson
- Departments of Physiology and Biomedical Engineering, University of Arizona, Tucson, Arizona, United States
| | - Erika D Eggers
- Departments of Physiology and Biomedical Engineering, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|
7
|
Sieghart W, Savić MM. International Union of Basic and Clinical Pharmacology. CVI: GABAA Receptor Subtype- and Function-selective Ligands: Key Issues in Translation to Humans. Pharmacol Rev 2018; 70:836-878. [DOI: 10.1124/pr.117.014449] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
8
|
Rosas-Arellano A, Tejeda-Guzmán C, Lorca-Ponce E, Palma-Tirado L, Mantellero CA, Rojas P, Missirlis F, Castro MA. Huntington's disease leads to decrease of GABA-A tonic subunits in the D2 neostriatal pathway and their relocalization into the synaptic cleft. Neurobiol Dis 2018; 110:142-153. [DOI: 10.1016/j.nbd.2017.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/12/2017] [Accepted: 11/27/2017] [Indexed: 01/24/2023] Open
|
9
|
Persistent GABAA/C responses to gabazine, taurine and beta-alanine in rat hypoglossal motoneurons. Neuroscience 2016; 330:191-204. [PMID: 27246441 DOI: 10.1016/j.neuroscience.2016.05.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022]
Abstract
In hypoglossal motoneurons, a sustained anionic current, sensitive to a blocker of ρ-containing GABA receptors, (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and insensitive to bicuculline, was previously shown to be activated by gabazine. In order to better characterize the receptors involved, the sensitivity of this atypical response to pentobarbital (30μM), allopregnanolone (0.3μM) and midazolam (0.5μM) was first investigated. Pentobarbital potentiated the response, whereas the steroid and the benzodiazepine were ineffective. The results indicate the involvement of hybrid heteromeric receptors, including at least a GABA receptor ρ subunit and a γ subunit, accounting for the pentobarbital-sensitivity. The effects of the endogenous β amino acids, taurine and β-alanine, which are released under various pathological conditions and show neuroprotective properties, were then studied. In the presence of the glycine receptor blocker strychnine (1μM), both taurine (0.3-1mM) and β-alanine (0.3mM) activated sustained anionic currents, which were partly blocked by TPMPA (100μM). Thus, both β amino acids activated ρ-containing GABA receptors in hypoglossal motoneurons. Bicuculline (20μM) reduced responses to taurine and β-alanine, but small sustained responses persisted in the presence of both strychnine and bicuculline. Responses to β-alanine were slightly increased by allopregnanolone, indicating a contribution of the bicuculline- and neurosteroid-sensitive GABAA receptors underlying tonic inhibition in these motoneurons. Since sustained activation of anionic channels inhibits most mature principal neurons, the ρ-containing GABA receptors permanently activated by taurine and β-alanine might contribute to some of their neuroprotective properties under damaging overexcitatory situations.
Collapse
|
10
|
Bassi GS, do C Malvar D, Cunha TM, Cunha FQ, Kanashiro A. Spinal GABA-B receptor modulates neutrophil recruitment to the knee joint in zymosan-induced arthritis. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:851-61. [PMID: 27106212 DOI: 10.1007/s00210-016-1248-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/14/2016] [Indexed: 12/25/2022]
Abstract
Recent studies have demonstrated that the central nervous system controls inflammatory responses by activating complex efferent neuroimmune pathways. The present study was designed to evaluate the role that central gamma-aminobutyric acid type B (GABA-B) receptor plays in neutrophil migration in a murine model of zymosan-induced arthritis by using different pharmacological tools. We observed that intrathecal administration of baclofen, a selective GABA-B agonist, exacerbated the inflammatory response in the knee after zymosan administration characterized by an increase in the neutrophil recruitment and knee joint edema, whereas saclofen, a GABA-B antagonist, exerted the opposite effect. Intrathecal pretreatment of the animals with SB203580 (an inhibitor of p38 mitogen-activated protein kinase) blocked the pro-inflammatory effect of baclofen. On the other hand, systemic administration of guanethidine, a sympatholytic drug that inhibits catecholamine release, and nadolol, a beta-adrenergic receptor antagonist, reversed the effect of saclofen. Moreover, saclofen suppressed the release of the pro-inflammatory cytokines into the knee joint (ELISA) and pain-related behaviors (open field test). Since the anti-inflammatory effect of saclofen depends on the sympathetic nervous system integrity, we observed that isoproterenol, a beta-adrenergic receptor agonist, mimics the central GABA-B blockade decreasing knee joint neutrophil recruitment. Together, these results demonstrate that the pharmacological manipulation of spinal GABAergic transmission aids control of neutrophil migration to the inflamed joint by modulating the activation of the knee joint-innervating sympathetic terminal fibers through a mechanism dependent on peripheral beta-adrenergic receptors and central components, such as p38 MAPK.
Collapse
Affiliation(s)
- Gabriel S Bassi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - David do C Malvar
- Department of Pharmaceutical Sciences, Federal Rural University of Rio de Janeiro, BR 465/Km 07, 23890-000, Seropédica, RJ, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Alexandre Kanashiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
11
|
Grimes WN, Zhang J, Tian H, Graydon CW, Hoon M, Rieke F, Diamond JS. Complex inhibitory microcircuitry regulates retinal signaling near visual threshold. J Neurophysiol 2015; 114:341-53. [PMID: 25972578 DOI: 10.1152/jn.00017.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/10/2015] [Indexed: 11/22/2022] Open
Abstract
Neuronal microcircuits, small, localized signaling motifs involving two or more neurons, underlie signal processing and computation in the brain. Compartmentalized signaling within a neuron may enable it to participate in multiple, independent microcircuits. Each A17 amacrine cell in the mammalian retina contains within its dendrites hundreds of synaptic feedback microcircuits that operate independently to modulate feedforward signaling in the inner retina. Each of these microcircuits comprises a small (<1 μm) synaptic varicosity that typically receives one excitatory synapse from a presynaptic rod bipolar cell (RBC) and returns two reciprocal inhibitory synapses back onto the same RBC terminal. Feedback inhibition from the A17 sculpts the feedforward signal from the RBC to the AII, a critical component of the circuitry mediating night vision. Here, we show that the two inhibitory synapses from the A17 to the RBC express kinetically distinct populations of GABA receptors: rapidly activating GABA(A)Rs are enriched at one synapse while more slowly activating GABA(C)Rs are enriched at the other. Anatomical and electrophysiological data suggest that macromolecular complexes of voltage-gated (Cav) channels and Ca(2+)-activated K(+) channels help to regulate GABA release from A17 varicosities and limit GABA(C)R activation under certain conditions. Finally, we find that selective elimination of A17-mediated feedback inhibition reduces the signal to noise ratio of responses to dim flashes recorded in the feedforward pathway (i.e., the AII amacrine cell). We conclude that A17-mediated feedback inhibition improves the signal to noise ratio of RBC-AII transmission near visual threshold, thereby improving visual sensitivity at night.
Collapse
Affiliation(s)
- William N Grimes
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland; Department of Physiology and Biophysics, Howard Hughes Medical Institute at the University of Washington, Seattle, Washington; and
| | - Jun Zhang
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Hua Tian
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Cole W Graydon
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Mrinalini Hoon
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Fred Rieke
- Department of Physiology and Biophysics, Howard Hughes Medical Institute at the University of Washington, Seattle, Washington; and
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland;
| |
Collapse
|
12
|
Linck L, Binder J, Haynl C, Enz R. Endocytosis of GABAC
receptors depends on subunit composition and is regulated by protein kinase C-ζ and protein phosphatase 1. J Neurochem 2015; 134:233-46. [DOI: 10.1111/jnc.13126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/01/2015] [Accepted: 04/09/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Lisa Linck
- Institut für Biochemie (Emil-Fischer-Zentrum); Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Jasmin Binder
- Institut für Biochemie (Emil-Fischer-Zentrum); Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Christian Haynl
- Institut für Biochemie (Emil-Fischer-Zentrum); Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Ralf Enz
- Institut für Biochemie (Emil-Fischer-Zentrum); Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| |
Collapse
|
13
|
Not GABA but glycine mediates segmental, propriospinal, and bulbospinal postsynaptic inhibition in adult mouse spinal forelimb motor neurons. J Neurosci 2015; 35:1991-8. [PMID: 25653357 DOI: 10.1523/jneurosci.1627-14.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The general view is that both glycine (Eccles, 1964) and GABA (Curtis and Felix, 1971) evoke postsynaptic inhibition in spinal motor neurons. In newborn or juvenile animals, there are conflicting results showing postsynaptic inhibition in motor neurons by corelease of GABA and glycine (Jonas et al., 1998) or by glycine alone (Bhumbra et al., 2012). To resolve the relative contributions of GABA and glycine to postsynaptic inhibition, we performed in vivo intracellular recordings from forelimb motor neurons in adult mice. Postsynaptic potentials evoked from segmental, propriospinal, and bulbospinal systems in motor neurons were compared across four different conditions: control, after gabazine, gabazine followed by strychnine, and strychnine alone. No significant differences were observed in the proportion of IPSPs and EPSPs between control and gabazine conditions. In contrast, EPSPs but not IPSPs were recorded after adding strychnine with gabazine or administering strychnine alone, suggesting an exclusive role for glycine in postsynaptic inhibition. To test whether the injected (intraperitoneal) dose of gabazine blocked GABAergic inhibitory transmission, we evoked GABAA receptor-mediated monosynaptic IPSPs in deep cerebellar nuclei neurons by stimulation of Purkinje cell fibers. No monosynaptic IPSPs could be recorded in the presence of gabazine, showing the efficacy of gabazine treatment. Our results demonstrate that, in the intact adult mouse, the postsynaptic inhibitory effects in spinal motor neurons exerted by three different systems, intrasegmental and intersegmental as well as supraspinal, are exclusively glycinergic. These findings emphasize the importance of glycinergic postsynaptic inhibition in motor neurons and challenge the view that GABA also contributes.
Collapse
|
14
|
Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina. Neuroscience 2014; 277:55-71. [DOI: 10.1016/j.neuroscience.2014.06.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 02/07/2023]
|
15
|
Blednov YA, Benavidez JM, Black M, Leiter CR, Osterndorff-Kahanek E, Johnson D, Borghese CM, Hanrahan JR, Johnston GAR, Chebib M, Harris RA. GABAA receptors containing ρ1 subunits contribute to in vivo effects of ethanol in mice. PLoS One 2014; 9:e85525. [PMID: 24454882 PMCID: PMC3894180 DOI: 10.1371/journal.pone.0085525] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022] Open
Abstract
GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ1” antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ2” antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo.
Collapse
Affiliation(s)
- Yuri A. Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jillian M. Benavidez
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Mendy Black
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Courtney R. Leiter
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Elizabeth Osterndorff-Kahanek
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - David Johnson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Cecilia M. Borghese
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jane R. Hanrahan
- Faculty of Pharmacy, The University of Sydney, Sydney NSW, Australia
| | | | - Mary Chebib
- Faculty of Pharmacy, The University of Sydney, Sydney NSW, Australia
| | - R. Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
16
|
Petazzi P, Sandoval J, Szczesna K, Jorge OC, Roa L, Sayols S, Gomez A, Huertas D, Esteller M. Dysregulation of the long non-coding RNA transcriptome in a Rett syndrome mouse model. RNA Biol 2013; 10:1197-203. [PMID: 23611944 PMCID: PMC3849168 DOI: 10.4161/rna.24286] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mecp2 is a transcriptional repressor protein that is mutated in Rett syndrome, a neurodevelopmental disorder that is the second most common cause of mental retardation in women. It has been shown that the loss of the Mecp2 protein in Rett syndrome cells alters the transcriptional silencing of coding genes and microRNAs. Herein, we have studied the impact of Mecp2 impairment in a Rett syndrome mouse model on the global transcriptional patterns of long non-coding RNAs (lncRNAs). Using a microarray platform that assesses 41,232 unique lncRNA transcripts, we have identified the aberrant lncRNA transcriptome that is present in the brain of Rett syndrome mice. The study of the most relevant lncRNAs altered in the assay highlighted the upregulation of the AK081227 and AK087060 transcripts in Mecp2-null mice brains. Chromatin immunoprecipitation demonstrated the Mecp2 occupancy in the 5′-end genomic loci of the described lncRNAs and its absence in Rett syndrome mice. Most importantly, we were able to show that the overexpression of AK081227 mediated by the Mecp2 loss was associated with the downregulation of its host coding protein gene, the gamma-aminobutyric acid receptor subunit Rho 2 (Gabrr2). Overall, our findings indicate that the transcriptional dysregulation of lncRNAs upon Mecp2 loss contributes to the neurological phenotype of Rett syndrome and highlights the complex interaction between ncRNAs and coding-RNAs.
Collapse
Affiliation(s)
- Paolo Petazzi
- 1 Cancer Epigenetics and Biology Program (PEBC); Bellvitge Biomedical Research Institute (IDIBELL); Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Loria CJ, Stevens AM, Crummy E, Casadesus G, Jacono FJ, Dick TE, Siegel RE. Respiratory and behavioral dysfunction following loss of the GABAA receptor α4 subunit. Brain Behav 2013; 3:104-13. [PMID: 23533098 PMCID: PMC3607152 DOI: 10.1002/brb3.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/21/2012] [Accepted: 01/02/2013] [Indexed: 11/10/2022] Open
Abstract
γ-Aminobutyric acid type A (GABAA) receptor plasticity participates in mediating adaptation to environmental change. Previous studies in rats demonstrated that extrasynaptic GABAA receptor subunits and receptors in the pons, a brainstem region involved in respiratory control, are upregulated by exposure to sustained hypobaric hypoxia. In these animals, expression of the mRNA encoding the extrasynaptic α4 subunit rose after 3 days in sustained hypoxia, while those encoding the α6 and δ subunits increased dramatically by 2 weeks. However, the participation of extrasynaptic subunits in maintaining respiration in normoxic conditions remains unknown. To examine the importance of α4 in a normal environment, respiratory function, motor and anxiety-like behaviors, and expression of other GABAA receptor subunit mRNAs were compared in wild-type (WT) and α4 subunit-deficient mice. Loss of the α4 subunit did not impact frequency, but did lead to reduced ventilatory pattern variability. In addition, mice lacking the subunit exhibited increased anxiety-like behavior. Finally, α4 subunit loss resulted in reduced expression of other extrasynaptic (α6 and δ) subunit mRNAs in the pons without altering those encoding the most prominent synaptic subunits. These findings on subunit-deficient mice maintained in normoxia, in conjunction with earlier findings on animals maintained in chronic hypoxia, suggest that the expression and regulation of extrasynaptic GABAA receptor subunits in the pons is interdependent and that their levels influence respiratory control as well as adaptation to stress.
Collapse
Affiliation(s)
- C Jean Loria
- Department of Pharmacology, Case Western Reserve University 10900 Euclid Avenue, Cleveland, Ohio, 44106
| | | | | | | | | | | | | |
Collapse
|
18
|
Cesetti T, Ciccolini F, Li Y. GABA Not Only a Neurotransmitter: Osmotic Regulation by GABA(A)R Signaling. Front Cell Neurosci 2012; 6:3. [PMID: 22319472 PMCID: PMC3268181 DOI: 10.3389/fncel.2012.00003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/10/2012] [Indexed: 12/05/2022] Open
Abstract
Mature macroglia and almost all neural progenitor types express γ-aminobutyric (GABA) A receptors (GABAARs), whose activation by ambient or synaptic GABA, leads to influx or efflux of chloride (Cl−) depending on its electro-chemical gradient (ECl). Since the flux of Cl− is indissolubly associated to that of osmotically obliged water, GABAARs regulate water movements by modulating ion gradients. In addition, since water movements also occur through specialized water channels and transporters, GABAAR signaling could affect the movement of water by regulating the function of the channels and transporters involved, thereby affecting not only the direction of the water fluxes but also their dynamics. We will here review recent observations indicating that in neural cells GABAAR-mediated osmotic regulation affects the cellular volume thereby activating multiple intracellular signaling mechanisms important for cell proliferation, maturation, and survival. In addition, we will discuss evidence that the osmotic regulation exerted by GABA may contribute to brain water homeostasis in physiological and in pathological conditions causing brain edema, in which the GABAergic transmission is often altered.
Collapse
Affiliation(s)
- Tiziana Cesetti
- Department of Physiology and Pathophysiology, Interdisciplinary Center for Neurosciences, University of Heidelberg Heidelberg, Germany
| | | | | |
Collapse
|
19
|
Rosas-Arellano A, Machuca-Parra AI, Reyes-Haro D, Miledi R, Martínez-Torres A. Expression of GABAρ receptors in the neostriatum: localization in aspiny, medium spiny neurons and GFAP-positive cells. J Neurochem 2012; 122:900-10. [PMID: 22168837 DOI: 10.1111/j.1471-4159.2011.07621.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
GABAergic transmission in the neostriatum plays a central role in motor coordination, in which a plethora of GABA-A receptor subunits combine to modulate neural inhibition. GABAρ receptors were originally described in the mammalian retina. These receptors possess special electrophysiological and pharmacological properties, forming a characteristic class of ionotropic receptors. In previous studies, we suggested that GABAρ receptors are expressed in the neostriatum, and in this report we show that they are indeed present in all the calretinin-positive interneurons of the neostriatum. In addition, they are located in calbindin-positive interneurons and projection neurons that express the dopamine D(2) receptor. GABAρ receptors were also located in 30% of the glial fibrillary acidic protein-positive cells, and may therefore also contribute to gliotransmission. Quantitative reverse transcription-PCR suggested that the mRNAs of this receptor do not express as much as in the retina, and that GABAρ2 is more abundant than GABAρ1. Electrophysiological recordings in brain slices provided evidence of neurons expressing a cis-4-aminocrotonic acid-activated, 1,2,5,6-tetrahydropyridine-4-yl methylphosphinic acid-sensitive ionotropic GABA receptor, indicating the presence of functional GABAρ receptors in the neostriatum. Finally, electron-microscopy and immunogold located the receptors mainly in perisynaptic as well as in extrasynaptic sites. All these observations reinforce the importance of GABAρ receptors in the neostriatum and contribute to the diversity of inhibitory regulation in this area.
Collapse
Affiliation(s)
- Abraham Rosas-Arellano
- Departamento de Neurobiología Celular y Molecular, Universidad Nacional Autónoma de México, Instituto de Neurobiología, Campus Juriquilla, Querétaro, Mexico
| | | | | | | | | |
Collapse
|
20
|
Puri J, Bellinger LL, Kramer PR. Estrogen in cycling rats alters gene expression in the temporomandibular joint, trigeminal ganglia and trigeminal subnucleus caudalis/upper cervical cord junction. J Cell Physiol 2011; 226:3169-80. [PMID: 21321935 DOI: 10.1002/jcp.22671] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Females report temporomandibular joint (TMJ) pain more than men and studies suggest estrogen modulates this pain response. Our goal in this study was to determine genes that are modulated by physiological levels of 17β-estradiol that could have a role in TMJ pain. To complete this goal, saline or complete Freund's adjuvant was injected in the TMJ when plasma 17β-estradiol was low or when it was at a high proestrus level. TMJ, trigeminal ganglion, and trigeminal subnucleus caudalis/upper cervical cord junction (Vc/C(1-2) ) tissues were isolated from the treated rats and expression of 184 genes was quantitated in each tissue using real-time PCR. Significant changes in the amount of specific transcripts were observed in the TMJ tissues, trigeminal ganglia, and Vc/C(1-2) region when comparing rats with high and low estrogen. GABA A receptor subunit α6 (Gabra6) and the glycine receptor α2 (Glra2) were two genes of interest because of their direct function in neuronal activity and a >29-fold increase in the trigeminal ganglia was observed in proestrus rats with TMJ inflammation. Immunohistochemical studies showed that Gabrα6 and Glrα2 neuronal and not glial expression increased when comparing rats with high and low estrogen. Estrogen receptors α and β are present in neurons of the trigeminal ganglia, whereby 17β-estradiol can alter expression of Gabrα6 and Glrα2. Also, estrogen receptor α (ERα) but not ERβ was observed in satellite glial cells of the trigeminal ganglia. These results demonstrate that genes associated with neurogenic inflammation or neuronal excitability were altered by changes in the concentration of 17β-estradiol.
Collapse
Affiliation(s)
- Jyoti Puri
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas 75246, USA
| | | | | |
Collapse
|
21
|
Martínez-Delgado G, Estrada-Mondragón A, Miledi R, Martínez-Torres A. An Update on GABAρ Receptors. Curr Neuropharmacol 2011; 8:422-33. [PMID: 21629448 PMCID: PMC3080597 DOI: 10.2174/157015910793358141] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 04/08/2010] [Accepted: 06/21/2010] [Indexed: 01/29/2023] Open
Abstract
The present review discusses the functional and molecular diversity of GABAρ receptors. These receptors were originally described in the mammalian retina, and their functional role in the visual pathway has been recently elucidated; however new studies on their distribution in the brain and spinal cord have revealed that they are more spread than originally thought, and thus it will be important to determine their physiological contribution to the GABAergic transmission in other areas of the central nervous system. In addition, molecular modeling has revealed peculiar traits of these receptors that have impacted on the interpretations of the latest pharmacolgical and biophysical findings. Finally, sequencing of several vertebrate genomes has permitted a comparative analysis of the organization of the GABAρ genes.
Collapse
Affiliation(s)
- Gustavo Martínez-Delgado
- Instituto de Neurbiología, Departamento de Neurobiología Celular y Molecular, Laboratorio D15, Campus UNAM Juriquilla. Querétaro 76230, México
| | | | | | | |
Collapse
|
22
|
Rosas-Arellano A, Parodi J, Machuca-Parra AI, Sánchez-Gutiérrez A, Inestrosa NC, Miledi R, Martínez-Torres A. The GABA(A)ρ receptors in hippocampal spontaneous activity and their distribution in hippocampus, amygdala and visual cortex. Neurosci Lett 2011; 500:20-5. [PMID: 21683123 DOI: 10.1016/j.neulet.2011.05.235] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/13/2011] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
Abstract
A bicuculline-resistant and TPMPA-sensitive GABAergic component was identified in hippocampal neurons in culture and in acute isolated brain slices. In both preparations, total GABAergic activity showed two inactivation kinetics: fast and slow. RT-PCR, in situ hybridization (ISH) and immunohistochemistry detected expression of GABAρ subunits. Immunogold and electron microscopy indicated that the receptors are mostly extrasynaptic. In addition, by RT-PCR and immunofluorescence we found GABAρ present in amygdala and visual cortex.
Collapse
Affiliation(s)
- Abraham Rosas-Arellano
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Campus UNAM-Juriquilla, Querétaro, QRO 76230, Mexico
| | | | | | | | | | | | | |
Collapse
|
23
|
Hochman S, Shreckengost J, Kimura H, Quevedo J. Presynaptic inhibition of primary afferents by depolarization: observations supporting nontraditional mechanisms. Ann N Y Acad Sci 2010; 1198:140-52. [PMID: 20536928 DOI: 10.1111/j.1749-6632.2010.05436.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Primary afferent neurotransmission is the fundamental first step in the central processing of sensory stimuli and is controlled by pre- and postsynaptic inhibitory mechanisms. Presynaptic inhibition (PSI) is probably the more powerful form of inhibitory control in all primary afferent fibers. A major mechanism producing afferent PSI is via a channel-mediated depolarization of their intraspinal terminals, which can be recorded extracellularly as a dorsal root potential (DRP). Based on measures of DRP latency it has been inferred that this primary afferent depolarization (PAD) of low-threshold afferents is mediated by minimally trisynaptic pathways with pharmacologically identified GABAergic interneurons forming last-order axo-axonic synapses onto afferent terminals. There is still no "squeaky clean" evidence of this organization. This paper describes recent and historical work that supports the existence of PAD occurring by more direct pathways and with a complex pharmacology that questions the proprietary role of GABA and GABA(A) receptors in this process. Cholinergic transmission in particular may contribute significantly to PAD, including via direct release from primary afferents.
Collapse
Affiliation(s)
- Shawn Hochman
- Department of Physiology, Emory University, Atlanta, Georgia, USA.
| | | | | | | |
Collapse
|
24
|
Waldvogel HJ, Baer K, Eady E, Allen KL, Gilbert RT, Mohler H, Rees MI, Nicholson LFB, Faull RLM. Differential localization of gamma-aminobutyric acid type A and glycine receptor subunits and gephyrin in the human pons, medulla oblongata and uppermost cervical segment of the spinal cord: an immunohistochemical study. J Comp Neurol 2010; 518:305-28. [PMID: 19950251 DOI: 10.1002/cne.22212] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gephyrin is a multifunctional protein responsible for the clustering of glycine receptors (GlyR) and gamma-aminobutyric acid type A receptors (GABA(A)R). GlyR and GABA(A)R are heteropentameric chloride ion channels that facilitate fast-response, inhibitory neurotransmission in the mammalian brain and spinal cord. We investigated the immunohistochemical distribution of gephyrin and the major GABA(A)R and GlyR subunits in the human light microscopically in the rostral and caudal one-thirds of the pons, in the middle and caudal one-thirds of the medulla oblongata, and in the first cervical segment of the spinal cord. The results demonstrate a widespread pattern of immunoreactivity for GlyR and GABA(A)R subunits throughout these regions, including the spinal trigeminal nucleus, abducens nucleus, facial nucleus, pontine reticular formation, dorsal motor nucleus of the vagus nerve, hypoglossal nucleus, lateral cuneate nucleus, and nucleus of the solitary tract. The GABA(A)R alpha(1) and GlyR alpha(1) and beta subunits show high levels of immunoreactivity in these nuclei. The GABA(A)R subunits alpha(2), alpha(3), beta(2,3), and gamma(2) present weaker levels of immunoreactivity. Exceptions are intense levels of GABA(A)R alpha(2) subunit immunoreactivity in the inferior olivary complex and high levels of GABA(A)R alpha(3) subunit immunoreactivity in the locus coeruleus and raphe nuclei. Gephyrin immunoreactivity is highest in the first segment of the cervical spinal cord and hypoglossal nucleus. Our results suggest that a variety of different inhibitory receptor subtypes is responsible for inhibitory functions in the human brainstem and cervical spinal cord and that gephyrin functions as a clustering molecule for major subtypes of these inhibitory neurotransmitter receptors.
Collapse
Affiliation(s)
- H J Waldvogel
- Department of Anatomy with Radiology, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Schlicker K, McCall MA, Schmidt M. GABAC receptor-mediated inhibition is altered but not eliminated in the superior colliculus of GABAC rho1 knockout mice. J Neurophysiol 2009; 101:2974-83. [PMID: 19321639 DOI: 10.1152/jn.91001.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABA(C) receptors (GABA(C)Rs) are widely expressed in the mammalian subcortical visual system, particularly in the retina and superior colliculus (SC). GABA(C)Rs are composed of specific rho1-3 subunits the expression of which varies among visual structures. Thus rho1 subunits are most abundant in retina, and their loss eliminates GABA(C)R expression and function. In the SC, rho2 subunit expression may be equal to or stronger than rho1 subunit expression; however, results across studies vary considerably. To more directly assess the expression of GABA(C)R subunits, we characterized inhibition in the SC of wild-type (WT) and GABA(C) rho1 Null mice that lack expression of GABA(C) rho1 subunits. We used whole cell patch-clamp recordings and evaluated GABA(C)R-mediated modulation of electrically evoked post synaptic currents using either agonists or antagonists in WT mice. In GABA(C) rho1 Null stratum griseum superficiale (SGS) cells, inhibitory postsynaptic currents were shorter in duration and their excitatory postsynaptic currents (EPSCs) were longer, indicating that a slow GABA(C)R-mediated inhibitory component was reduced in each case. In contrast to retina, GABA(C)R-mediated currents in the SC were altered but not eliminated in GABA(C) rho1 Null mice. In the majority of SC cells in GABA(C) rho1 Null mice, GABA(C)R activation could still be induced to alter EPSC peak amplitudes in putative interneurons and in many projection neurons. These results, compared with previously published data, indicate a fundamental difference between retina and SC in the control of GABA(C)R expression and subunit composition.
Collapse
Affiliation(s)
- Katja Schlicker
- Allgemeine Zoologie and Neurobiologie, Ruhr-Universität Bochum, MA 4/56, D-44780 Bochum, Germany
| | | | | |
Collapse
|
26
|
Wahle P, Schmidt M. GABAC receptors are expressed in GABAergic and non-GABAergic neurons of the rat superior colliculus and visual cortex. Exp Brain Res 2009; 199:245-52. [DOI: 10.1007/s00221-009-1710-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 01/09/2009] [Indexed: 10/21/2022]
|
27
|
Sanchez A, Mustapic S, Zuperku EJ, Stucke AG, Hopp FA, Stuth EAE. Role of inhibitory neurotransmission in the control of canine hypoglossal motoneuron activity in vivo. J Neurophysiol 2008; 101:1211-21. [PMID: 19091929 DOI: 10.1152/jn.90279.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoglossal motoneurons (HMNs) innervate all tongue muscles and are vital for maintenance of upper airway patency during inspiration. The relative contributions of the various synaptic inputs to the spontaneous discharge of HMNs in vivo are incompletely understood, especially at the cellular level. The purpose of this study was to determine the role of endogenously activated GABA(A) and glycine receptors in the control of the inspiratory HMN (IHMN) activity in a decerebrate dog model. Multibarrel micropipettes were used to record extracellular unit activity of individual IHMNs during local antagonism of GABA(A) receptors with bicuculline and picrotoxin or glycine receptors with strychnine. Only bicuculline had a significant effect on peak and average discharge frequency and on the slope of the augmenting neuronal discharge pattern. These parameters were increased by 30 +/- 7% (P < 0.001), 30 +/- 8% (P < 0.001), and 25 +/- 7% (P < 0.001), respectively. The effects of picrotoxin and strychnine on the spontaneous neuronal discharge and its pattern were negligible. Our data suggest that bicuculline-sensitive GABAergic, but not picrotoxin-sensitive GABAergic or glycinergic, inhibitory mechanisms actively attenuate the activity of IHMNs in vagotomized decerebrate dogs during hyperoxic hypercapnia. The pattern of GABAergic attenuation of IHMN discharge is characteristic of gain modulation similar to that in respiratory bulbospinal premotor neurons, but the degree of attenuation ( approximately 25%) is less than that seen in bulbospinal premotor neurons ( approximately 60%). The current studies only assess effects on active neuron discharge and do not resolve whether the lack of effect of picrotoxin and strychnine on IHMNs also extends to the inactive expiratory phase.
Collapse
Affiliation(s)
- Antonio Sanchez
- Department of Anesthesiology, Medical College of Wisconsin, Pediatric Anesthesia, Milwaukee, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
28
|
Xu HP, Tian N. Glycine receptor-mediated synaptic transmission regulates the maturation of ganglion cell synaptic connectivity. J Comp Neurol 2008; 509:53-71. [PMID: 18425804 DOI: 10.1002/cne.21727] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is well documented that neuronal activity is required for the developmental segregation of retinal ganglion cell (RGC) synaptic connectivity with ON and OFF bipolar cells in mammalian retina. Our recent study showed that light deprivation preferentially blocked the developmental RGC dendritic redistribution from the center to sublamina a of the inner plexiform layer (IPL). To determine whether OFF signals in visual stimulation are required for OFF RGC dendritic development, the light-evoked responses and dendritic stratification patterns of RGCs in Spastic mutant mice, in which the OFF signal transmission in the rod pathway is largely blocked due to a reduction of glycine receptor (GlyR) expression, were quantitatively studied at different ages and rearing conditions. The dendritic distribution in the IPL of these mice was indistinguishable from wildtype controls at the age of postnatal day (P)12. However, the adult Spastic mutants had altered RGC light-evoked synaptic inputs from ON and OFF pathways, which could not be mimicked by pharmacologically blocking of glycinergic synaptic transmission on age-matched wildtype animals. Spastic mutation also blocked the developmental redistribution of RGC dendrites from the center to sublamina a of the IPL, which mimicked the effects induced by light deprivation on wildtype animals. Moreover, light deprivation of the Spastic mutants had no additional impact on the RGC dendritic distribution and light response patterns. We interpret these results as that visual stimulation regulates the maturation of RGC synaptic activity and connectivity primarily through GlyR-mediated synaptic transmission.
Collapse
Affiliation(s)
- Hong-Ping Xu
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|