1
|
Acharya S, Halder S, Kou W, Kahrilas PJ, Pandolfino JE, Patankar NA. A fully resolved multiphysics model of gastric peristalsis and bolus emptying in the upper gastrointestinal tract. Comput Biol Med 2022; 143:104948. [PMID: 35091365 PMCID: PMC9014465 DOI: 10.1016/j.compbiomed.2021.104948] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022]
Abstract
Over the past few decades, in silico modeling of organ systems has significantly furthered our understanding of their physiology and biomechanical function. In spite of the relative importance of the digestive system in normal functioning of the human body, there is a scarcity of high-fidelity models for the upper gastrointestinal tract including the esophagus and the stomach. In this work, we present a detailed numerical model of the upper gastrointestinal tract that not only accounts for the fiber architecture of the muscle walls, but also the multiphasic components they help transport during normal digestive function. Construction details for 3D models of representative stomach geometry are presented along with a simple strategy for assigning circular and longitudinal muscle fiber orientations for each layer. We developed a fully resolved model of the stomach to simulate gastric peristalsis by systematically activating muscle fibers embedded in the stomach. Following this, for the first time, we simulate gravity-driven bolus emptying into the stomach due to density differences between ingested contents and fluid contents of the stomach. Finally, we present a case of retrograde flow of fluid from the stomach into the esophagus, resembling the phenomenon of acid reflux. This detailed computational model of the upper gastrointestinal tract provides a foundation for future models to investigate the biomechanics of acid reflux and probe various strategies for gastric bypass surgeries to address the growing problem of obesity.
Collapse
Affiliation(s)
- Shashank Acharya
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Sourav Halder
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Wenjun Kou
- Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Peter J Kahrilas
- Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - John E Pandolfino
- Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Neelesh A Patankar
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA; Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
2
|
Zhao J, McMahon B, Fox M, Gregersen H. The esophagiome: integrated anatomical, mechanical, and physiological analysis of the esophago-gastric segment. Ann N Y Acad Sci 2018; 1434:5-20. [DOI: 10.1111/nyas.13869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jingbo Zhao
- GIOME Academy, Department of Clinical Medicine; Aarhus University; Aarhus Denmark
| | - Barry McMahon
- Trinity Academic Gastroenterology Group; Tallaght Hospital and Trinity College; Dublin Ireland
| | - Mark Fox
- Abdominal Center: Gastroenterology; St. Claraspital Basel Switzerland
- Neurogastroenterology and Motility Research Group; University Hospital Zürich; Zürich Switzerland
| | - Hans Gregersen
- GIOME, Department of Surgery; Prince of Wales Hospital and Chinese University of Hong Kong; Shatin Hong Kong SAR
- California Medical Innovations Institute; San Diego California
| |
Collapse
|
3
|
Liao D, Gregersen H, Agger P, Laustsen C, Ringgaard S, Stødkilde-Jørgensen H, Zhao J. 3D reconstruction and fiber quantification in the pig lower esophageal sphincter region using
in vitro
diffusion tensor imaging. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aa976e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Kou W, Griffith BE, Pandolfino JE, Kahrilas PJ, Patankar NA. A continuum mechanics-based musculo-mechanical model for esophageal transport. JOURNAL OF COMPUTATIONAL PHYSICS 2017; 348:433-459. [PMID: 29081541 PMCID: PMC5655876 DOI: 10.1016/j.jcp.2017.07.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this work, we extend our previous esophageal transport model using an immersed boundary (IB) method with discrete fiber-based structural model, to one using a continuum mechanics-based model that is approximated based on finite elements (IB-FE). To deal with the leakage of flow when the Lagrangian mesh becomes coarser than the fluid mesh, we employ adaptive interaction quadrature points to deal with Lagrangian-Eulerian interaction equations based on a previous work (Griffith and Luo [1]). In particular, we introduce a new anisotropic adaptive interaction quadrature rule. The new rule permits us to vary the interaction quadrature points not only at each time-step and element but also at different orientations per element. This helps to avoid the leakage issue without sacrificing the computational efficiency and accuracy in dealing with the interaction equations. For the material model, we extend our previous fiber-based model to a continuum-based model. We present formulations for general fiber-reinforced material models in the IB-FE framework. The new material model can handle non-linear elasticity and fiber-matrix interactions, and thus permits us to consider more realistic material behavior of biological tissues. To validate our method, we first study a case in which a three-dimensional short tube is dilated. Results on the pressure-displacement relationship and the stress distribution matches very well with those obtained from the implicit FE method. We remark that in our IB-FE case, the three-dimensional tube undergoes a very large deformation and the Lagrangian mesh-size becomes about 6 times of Eulerian mesh-size in the circumferential orientation. To validate the performance of the method in handling fiber-matrix material models, we perform a second study on dilating a long fiber-reinforced tube. Errors are small when we compare numerical solutions with analytical solutions. The technique is then applied to the problem of esophageal transport. We use two fiber-reinforced models for the esophageal tissue: a bi-linear model and an exponential model. We present three cases on esophageal transport that differ in the material model and the muscle fiber architecture. The overall transport features are consistent with those observed from the previous model. We remark that the continuum-based model can handle more realistic and complicated material behavior. This is demonstrated in our third case where a spatially varying fiber architecture is included based on experimental study. We find that this unique muscle fiber architecture could generate a so-called pressure transition zone, which is a luminal pressure pattern that is of clinical interest. This suggests an important role of muscle fiber architecture in esophageal transport.
Collapse
Affiliation(s)
| | - Boyce E. Griffith
- Departments of Mathematics and Biomedical Engineering, University
of North Carolina at Chapel Hill, Phillips Hall, Campus Box 3250, Chapel
Hill, North Carolina 27599-3250, USA
| | - John E. Pandolfino
- Department of Medicine, Feinberg School of Medicine, Northwestern
University, 676 North Saint Clair Street, 14th Floor, Chicago, Illinois
60611, USA
| | - Peter J. Kahrilas
- Department of Medicine, Feinberg School of Medicine, Northwestern
University, 676 North Saint Clair Street, 14th Floor, Chicago, Illinois
60611, USA
| | | |
Collapse
|
5
|
Kou W, Pandolfino JE, Kahrilas PJ, Patankar NA. Could the peristaltic transition zone be caused by non-uniform esophageal muscle fiber architecture? A simulation study. Neurogastroenterol Motil 2017; 29:10.1111/nmo.13022. [PMID: 28054418 PMCID: PMC5423838 DOI: 10.1111/nmo.13022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/29/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Based on a fully coupled computational model of esophageal transport, we analyzed how varied esophageal muscle fiber architecture and/or dual contraction waves (CWs) affect bolus transport. Specifically, we studied the luminal pressure profile in those cases to better understand possible origins of the peristaltic transition zone. METHODS Two groups of studies were conducted using a computational model. The first studied esophageal transport with circumferential-longitudinal fiber architecture, helical fiber architecture and various combinations of the two. In the second group, cases with dual CWs and varied muscle fiber architecture were simulated. Overall transport characteristics were examined and the space-time profiles of luminal pressure were plotted and compared. KEY RESULTS Helical muscle fiber architecture featured reduced circumferential wall stress, greater esophageal distensibility, and greater axial shortening. Non-uniform fiber architecture featured a peristaltic pressure trough between two high-pressure segments. The distal pressure segment showed greater amplitude than the proximal segment, consistent with experimental data. Dual CWs also featured a pressure trough between two high-pressure segments. However, the minimum pressure in the region of overlap was much lower, and the amplitudes of the two high-pressure segments were similar. CONCLUSIONS & INFERENCES The efficacy of esophageal transport is greatly affected by muscle fiber architecture. The peristaltic transition zone may be attributable to non-uniform architecture of muscle fibers along the length of the esophagus and/or dual CWs. The difference in amplitude between the proximal and distal pressure segments may be attributable to non-uniform muscle fiber architecture.
Collapse
Affiliation(s)
- Wenjun Kou
- Program of Theoretical and Applied Mechanics, Northwestern University, Evanston, Illinois
| | | | - Peter J. Kahrilas
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Neelesh A. Patankar
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois
| |
Collapse
|
6
|
Kou W, Pandolfino JE, Kahrilas PJ, Patankar NA. Simulation studies of the role of esophageal mucosa in bolus transport. Biomech Model Mechanobiol 2017; 16:1001-1009. [PMID: 28050744 DOI: 10.1007/s10237-016-0867-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Based on a fully coupled computational model for esophageal transport, we analyzed the role of the mucosa (including the submucosa) in esophageal bolus transport and how bolus transport is affected by mucosal stiffness. Two groups of studies were conducted using a computational model. In the first group, a base case that represents normal esophageal transport and two hypothetical cases were simulated: (1) esophageal mucosa replaced by muscle and (2) esophagus without mucosa. For the base case, the geometric configuration of the esophageal wall was examined and the mechanical role of mucosa was analyzed. For the hypothetical cases, the pressure field and transport features were examined. In the second group of studies, cases with mucosa of varying stiffness were simulated. Overall transport characteristics were examined, and both pressure and geometry were analyzed. Results show that a compliant mucosa helped accommodate the incoming bolus and lubricate the moving bolus. Bolus transport was marginally achieved without mucosa or with mucosa replaced by muscle. A stiff mucosa greatly impaired bolus transport due to the lowered esophageal distensibility and increased luminal pressure. We conclude that mucosa is essential for normal esophageal transport function. Mechanically stiffened mucosa reduces the distensibility of the esophagus by obstructing luminal opening and bolus transport. Mucosal stiffening may be relevant in diseases characterized by reduced esophageal distensibility, elevated intrabolus pressure, and/or hypertensive muscle contraction such as eosinophilic esophagitis and jackhammer esophagus.
Collapse
Affiliation(s)
- Wenjun Kou
- Theoretical and Applied Mechanics, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - John E Pandolfino
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North Saint Clair Street, 14th Floor, Chicago, IL, 60611, USA
| | - Peter J Kahrilas
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North Saint Clair Street, 14th Floor, Chicago, IL, 60611, USA
| | - Neelesh A Patankar
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| |
Collapse
|
7
|
Gregersen H, Liao D, Brasseur JG. The Esophagiome: concept, status, and future perspectives. Ann N Y Acad Sci 2016; 1380:6-18. [PMID: 27570939 DOI: 10.1111/nyas.13200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022]
Abstract
The term "Esophagiome" is meant to imply a holistic, multiscale treatment of esophageal function from cellular and muscle physiology to the mechanical responses that transport and mix fluid contents. The development and application of multiscale mathematical models of esophageal function are central to the Esophagiome concept. These model elements underlie the development of a "virtual esophagus" modeling framework to characterize and analyze function and disease by quantitatively contrasting normal and pathophysiological function. Functional models incorporate anatomical details with sensory-motor properties and functional responses, especially related to biomechanical functions, such as bolus transport and gastrointestinal fluid mixing. This brief review provides insight into Esophagiome research. Future advanced models can provide predictive evaluations of the therapeutic consequences of surgical and endoscopic treatments and will aim to facilitate clinical diagnostics and treatment.
Collapse
Affiliation(s)
- Hans Gregersen
- GIOME, College of Bioengineering, Chongqing University, China. .,GIOME, Department of Surgery, Prince of Wales Hospital, College of Medicine, Chinese University of Hong Kong, Hong Kong SAR.
| | - Donghua Liao
- GIOME Academy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - James G Brasseur
- Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado
| |
Collapse
|
8
|
Hoffman MP, Taylor EN, Aninwene GE, Sadayappan S, Gilbert RJ. Assessing the multiscale architecture of muscular tissue with Q-space magnetic resonance imaging: Review. Microsc Res Tech 2016; 81:162-170. [PMID: 27696640 DOI: 10.1002/jemt.22777] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 01/14/2023]
Abstract
Contraction of muscular tissue requires the synchronized shortening of myofibers arrayed in complex geometrical patterns. Imaging such myofiber patterns with diffusion-weighted MRI reveals architectural ensembles that underlie force generation at the organ scale. Restricted proton diffusion is a stochastic process resulting from random translational motion that may be used to probe the directionality of myofibers in whole tissue. During diffusion-weighted MRI, magnetic field gradients are applied to determine the directional dependence of proton diffusion through the analysis of a diffusional probability distribution function (PDF). The directions of principal (maximal) diffusion within the PDF are associated with similarly aligned diffusion maxima in adjacent voxels to derive multivoxel tracts. Diffusion-weighted MRI with tractography thus constitutes a multiscale method for depicting patterns of cellular organization within biological tissues. We provide in this review, details of the method by which generalized Q-space imaging is used to interrogate multidimensional diffusion space, and thereby to infer the organization of muscular tissue. Q-space imaging derives the lowest possible angular separation of diffusion maxima by optimizing the conditions by which magnetic field gradients are applied to a given tissue. To illustrate, we present the methods and applications associated with Q-space imaging of the multiscale myoarchitecture associated with the human and rodent tongues. These representations emphasize the intricate and continuous nature of muscle fiber organization and suggest a method to depict structural "blueprints" for skeletal and cardiac muscle tissue.
Collapse
Affiliation(s)
- Matthew P Hoffman
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Erik N Taylor
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - George E Aninwene
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University of Chicago, Maywood, IL, 60153, USA
| | - Richard J Gilbert
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Mittal RK. Regulation and dysregulation of esophageal peristalsis by the integrated function of circular and longitudinal muscle layers in health and disease. Am J Physiol Gastrointest Liver Physiol 2016; 311:G431-43. [PMID: 27445346 PMCID: PMC5076012 DOI: 10.1152/ajpgi.00182.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/17/2016] [Indexed: 01/31/2023]
Abstract
Muscularis propria throughout the entire gastrointestinal tract including the esophagus is comprised of circular and longitudinal muscle layers. Based on the studies conducted in the colon and the small intestine, for more than a century, it has been debated whether the two muscle layers contract synchronously or reciprocally during the ascending contraction and descending relaxation of the peristaltic reflex. Recent studies in the esophagus and colon prove that the two muscle layers indeed contract and relax together in almost perfect synchrony during ascending contraction and descending relaxation of the peristaltic reflex, respectively. Studies in patients with various types of esophageal motor disorders reveal temporal disassociation between the circular and longitudinal muscle layers. We suggest that the discoordination between the two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain. Certain pathologies may selectively target one and not the other muscle layer, e.g., in eosinophilic esophagitis there is a selective dysfunction of the longitudinal muscle layer. In achalasia esophagus, swallows are accompanied by the strong contraction of the longitudinal muscle without circular muscle contraction. The possibility that the discoordination between two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain are discussed. The purpose of this review is to summarize the regulation and dysregulation of peristalsis by the coordinated and discoordinated function of circular and longitudinal muscle layers in health and diseased states.
Collapse
Affiliation(s)
- Ravinder K. Mittal
- Department of Medicine, Division of Gastroenterology, San Diego VA Health Care System, San Diego, California and University of California, San Diego, California
| |
Collapse
|
10
|
Patterns of intersecting fiber arrays revealed in whole muscle with generalized Q-space imaging. Biophys J 2016; 108:2740-9. [PMID: 26039175 DOI: 10.1016/j.bpj.2015.03.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/01/2015] [Accepted: 03/31/2015] [Indexed: 01/15/2023] Open
Abstract
The multiscale attributes of mammalian muscle confer significant challenges for structural imaging in vivo. To achieve this, we employed a magnetic resonance method, termed "generalized Q-space imaging", that considers the effect of spatially distributed diffusion-weighted magnetic field gradients and diffusion sensitivities on the morphology of Q-space. This approach results in a subvoxel scaled probability distribution function whose shape correlates with local fiber orientation. The principal fiber populations identified within these probability distribution functions can then be associated by streamline methods to create multivoxel tractlike constructs that depict the macroscale orientation of myofiber arrays. We performed a simulation of Q-space input parameters, including magnetic field gradient strength and direction, diffusion sensitivity, and diffusional sampling to determine the optimal achievable fiber angle separation in the minimum scan time. We applied this approach to resolve intravoxel crossing myofiber arrays in the setting of the human tongue, an organ with anatomic complexity based on the presence of hierarchical arrays of intersecting myocytes. Using parameters defined by simulation, we imaged at 3T the fanlike configuration of the human genioglossus and the laterally positioned merging fibers of the styloglossus, inferior longitudinalis, chondroglossus, and verticalis. Comparative scans of the excised mouse tongue at 7T demonstrated similar midline and lateral crossing fiber patterns, whereas histological analysis confirmed the presence and distribution of these myofiber arrays at the microscopic scale. Our results demonstrate a magnetic resonance method for acquiring and displaying diffusional data that defines highly ordered myofiber patterns in architecturally complex tissue. Such patterns suggest inherent multiscale fiber organization and provide a basis for structure-function analyses in vivo and in model tissues.
Collapse
|
11
|
Patel N, Jiang Y, Mittal RK, Kim TH, Ledgerwood M, Bhargava V. Circular and longitudinal muscles shortening indicates sliding patterns during peristalsis and transient lower esophageal sphincter relaxation. Am J Physiol Gastrointest Liver Physiol 2015; 309:G360-7. [PMID: 26045610 PMCID: PMC4556947 DOI: 10.1152/ajpgi.00067.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/02/2015] [Indexed: 01/31/2023]
Abstract
Esophageal axial shortening is caused by longitudinal muscle (LM) contraction, but circular muscle (CM) may also contribute to axial shortening because of its spiral morphology. The goal of our study was to show patterns of contraction of CM and LM layers during peristalsis and transient lower esophageal sphincter (LES) relaxation (TLESR). In rats, esophageal and LES morphology was assessed by histology and immunohistochemistry, and function with the use of piezo-electric crystals and manometry. Electrical stimulation of the vagus nerve was used to induce esophageal contractions. In 18 healthy subjects, manometry and high frequency intraluminal ultrasound imaging during swallow-induced esophageal contractions and TLESR were evaluated. CM and LM thicknesses were measured (40 swallows and 30 TLESRs) as markers of axial shortening, before and at peak contraction, as well as during TLESRs. Animal studies revealed muscular connections between the LM and CM layers of the LES but not in the esophagus. During vagal stimulated esophageal contraction there was relative movement between the LM and CM. Human studies show that LM-to-CM (LM/CM) thickness ratio at baseline was 1. At the peak of swallow-induced contraction LM/CM ratio decreased significantly (<1), whereas the reverse was the case during TLESR (>2). The pattern of contraction of CM and LM suggests sliding of the two muscles. Furthermore, the sliding patterns are in the opposite direction during peristalsis and TLESR.
Collapse
Affiliation(s)
- Nirali Patel
- 1Department of Medicine, University of California San Diego, San Diego, California; and
| | - Yanfen Jiang
- 1Department of Medicine, University of California San Diego, San Diego, California; and
| | - Ravinder K. Mittal
- 1Department of Medicine, University of California San Diego, San Diego, California; and ,2San Diego Veterans Affairs Healthcare System, San Diego, California
| | - Tae Ho Kim
- 1Department of Medicine, University of California San Diego, San Diego, California; and
| | - Melissa Ledgerwood
- 1Department of Medicine, University of California San Diego, San Diego, California; and
| | - Valmik Bhargava
- Department of Medicine, University of California San Diego, San Diego, California; and San Diego Veterans Affairs Healthcare System, San Diego, California
| |
Collapse
|
12
|
Kou W, Pandolfino JE, Kahrilas PJ, Patankar NA. Simulation studies of circular muscle contraction, longitudinal muscle shortening, and their coordination in esophageal transport. Am J Physiol Gastrointest Liver Physiol 2015; 309:G238-47. [PMID: 26113296 PMCID: PMC4537927 DOI: 10.1152/ajpgi.00058.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/17/2015] [Indexed: 01/31/2023]
Abstract
On the basis of a fully coupled active musculomechanical model for esophageal transport, we aimed to find the roles of circular muscle (CM) contraction and longitudinal muscle (LM) shortening in esophageal transport, and the influence of their coordination. Two groups of studies were conducted using a computational model. In the first group, bolus transport with only CM contraction, only LM shortening, or both was simulated. Overall features and detailed information on pressure and the cross-sectional area (CSA) of mucosal and the two muscle layers were analyzed. In the second group, bolus transport with varying delay in CM contraction or LM shortening was simulated. The effect of delay on esophageal transport was studied. For cases showing abnormal transport, pressure and CSA were further analyzed. CM contraction by itself was sufficient to transport bolus, but LM shortening by itself was not. CM contraction decreased the CSA and the radius of the muscle layer locally, but LM shortening increased the CSA. Synchronized CM contraction and LM shortening led to overlapping of muscle CSA and pressure peaks. Advancing LM shortening adversely influenced bolus transport, whereas lagging LM shortening was irrelevant to bolus transport. In conclusion, CM contraction generates high squeezing pressure, which plays a primary role in esophageal transport. LM shortening increases muscle CSA, which helps to strengthen CM contraction. Advancing LM shortening decreases esophageal distensibility in the bolus region. Lagging LM shortening no longer helps esophageal transport. Synchronized CM contraction and LM shortening seems to be most effective for esophageal transport.
Collapse
Affiliation(s)
- Wenjun Kou
- 1Program of Theoretical and Applied Mechanics, Northwestern University, Evanston, Illinois;
| | - John E. Pandolfino
- 2Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and
| | - Peter J. Kahrilas
- 2Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and
| | - Neelesh A. Patankar
- 3Department of Mechanical Engineering, Northwestern University, Evanston, Illinois
| |
Collapse
|
13
|
Abstract
Manometry and impedance provide only surrogate information regarding longitudinal wall function and are focused on contractile amplitude and lumen content. Ultrasound imaging provides a unique perspective of esophageal function by providing important information regarding longitudinal muscle contraction. Laser Doppler assessment of perfusion may be an important complementary tool to assess abnormal wall blood perfusion as a possible mechanism of pain.
Collapse
Affiliation(s)
- Ravinder K. Mittal
- Department of Medicine, Division of Gastroenterology, San Diego VA Health Care System & University of California, San Diego, CA, USA
| |
Collapse
|
14
|
Yamada I, Hikishima K, Miyasaka N, Kawano T, Tokairin Y, Ito E, Kobayashi D, Eishi Y, Okano H. Esophageal carcinoma: ex vivo evaluation with diffusion-tensor MR imaging and tractography at 7 T. Radiology 2014; 272:164-73. [PMID: 24654973 DOI: 10.1148/radiol.14132170] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine the feasibility of diffusion-tensor magnetic resonance (MR) imaging and tractography as a means of evaluating the depth of mural invasion by esophageal carcinomas. MATERIALS AND METHODS This study was approved by the institutional review board, and written informed consent was obtained from each patient. Twenty esophageal specimens, each containing a carcinoma, were studied with a 7.0-T MR imaging system equipped with a four-channel phased-array surface coil. Diffusion-tensor MR images were obtained with a field of view of 50-60 mm × 25-30 mm, matrix of 256 × 128, section thickness of 1 mm, b value of 1000 sec/mm(2), and motion-probing gradient in seven noncollinear directions. The MR images were compared with the histopathologic findings as the reference standard. The differences in diffusion-tensor MR imaging parameters between the carcinoma and the layers of the esophageal wall were statistically analyzed by using the Dunnett test. RESULTS In all 20 carcinomas (100%), the diffusion-weighted images, apparent diffusion coefficient (ADC) maps, fractional anisotropy (FA) maps, λ1 maps, and direction-encoded color FA maps made it possible to determine the depth of tumor invasion of the esophageal wall that was observed during histopathologic examination. The λ1 maps showed the best contrast between the carcinomas and the layers of the esophageal wall. The carcinomas had both lower ADC values and lower FA values than the normal esophageal wall; thus, the carcinomas were clearly demarcated from the normal esophageal wall. Diffusion-tensor tractography images were also useful for determining the depth of tumor invasion of the esophageal wall. CONCLUSION Diffusion-tensor MR imaging and tractography are feasible in esophageal specimens and provide excellent morphologic data for the evaluation of mural invasion by esophageal carcinomas.
Collapse
Affiliation(s)
- Ichiro Yamada
- From the Departments of Diagnostic Radiology and Oncology (I.Y.), Pediatrics, Perinatal and Maternal Medicine (N.M.), Esophagogastric Surgery (T.K., Y.T.), and Pathology (E.I., D.K., Y.E.), Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; Department of Physiology, Keio University School of Medicine, Tokyo, Japan (K.H., H.O.); and Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan (K.H.)
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yamada I, Hikishima K, Miyasaka N, Tokairin Y, Kawano T, Ito E, Kobayashi D, Eishi Y, Okano H, Shibuya H. Diffusion-tensor MRI and tractography of the esophageal wall ex vivo. J Magn Reson Imaging 2013; 40:567-76. [DOI: 10.1002/jmri.24411] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/22/2013] [Indexed: 01/10/2023] Open
Affiliation(s)
- Ichiro Yamada
- Department of Diagnostic Radiology and Oncology; Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| | - Keigo Hikishima
- Department of Physiology; Keio University School of Medicine; Tokyo Japan
- Central Institute for Experimental Animals; Kanagawa Japan
| | - Naoyuki Miyasaka
- Department of Pediatrics; Perinatal and Maternal Medicine; Tokyo Medical and Dental University; Tokyo Japan
| | - Yutaka Tokairin
- Department of Esophagogastric Surgery; Tokyo Medical and Dental University; Tokyo Japan
| | - Tatsuyuki Kawano
- Department of Esophagogastric Surgery; Tokyo Medical and Dental University; Tokyo Japan
| | - Eisaku Ito
- Department of Pathology; Tokyo Medical and Dental University; Tokyo Japan
| | - Daisuke Kobayashi
- Department of Pathology; Tokyo Medical and Dental University; Tokyo Japan
| | - Yoshinobu Eishi
- Department of Pathology; Tokyo Medical and Dental University; Tokyo Japan
| | - Hideyuki Okano
- Department of Physiology; Keio University School of Medicine; Tokyo Japan
| | - Hitoshi Shibuya
- Department of Diagnostic Radiology and Oncology; Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
16
|
Nicodème F, Lin Z, Pandolfino JE, Kahrilas PJ. Esophagogastric Junction pressure morphology: comparison between a station pull-through and real-time 3D-HRM representation. Neurogastroenterol Motil 2013; 25:e591-8. [PMID: 23734788 PMCID: PMC3735634 DOI: 10.1111/nmo.12168] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/13/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Esophagogastric junction (EGJ) competence is the fundamental defense against reflux making it of great clinical significance. However, characterizing EGJ competence with conventional manometric methodologies has been confounded by its anatomic and physiological complexity. Recent technological advances in miniaturization and electronics have led to the development of a novel device that may overcome these challenges. METHODS Nine volunteer subjects were studied with a novel 3D-HRM device providing 7.5 mm axial and 45° radial pressure resolution within the EGJ. Real-time measurements were made at rest and compared to simulations of a conventional pull-through made with the same device. Moreover, 3D-HRM recordings were analyzed to differentiate contributing pressure signals within the EGJ attributable to lower esophageal sphincter (LES), diaphragm, and vasculature. KEY RESULTS 3D-HRM recordings suggested that sphincter length assessed by a pull-through method greatly exaggerated the estimate of LES length by failing to discriminate among circumferential contractile pressure and asymmetric extrinsic pressure signals attributable to diaphragmatic and vascular structures. Real-time 3D EGJ recordings found that the dominant constituents of EGJ pressure at rest were attributable to the diaphragm. CONCLUSIONS & INFERENCES 3D-HRM permits real-time recording of EGJ pressure morphology facilitating analysis of the EGJ constituents responsible for its function as a reflux barrier making it a promising tool in the study of GERD pathophysiology. The enhanced axial and radial recording resolution of the device should facilitate further studies to explore perturbations in the physiological constituents of EGJ pressure in health and disease.
Collapse
Affiliation(s)
- Frédéric Nicodème
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, U.S.A,Department of Thoracic Surgery, Université de Montréal, Montréal, QC, Canada
| | - Zhiyue Lin
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, U.S.A
| | - John E. Pandolfino
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, U.S.A
| | - Peter J. Kahrilas
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, U.S.A
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The muscularis propria of the esophagus is organized into circular and longitudinal muscle layers. The function of the longitudinal muscle and its role in bolus propulsion are not clear. The goal of this review is to summarize what is known of the role of the longitudinal muscle in health, as well as in sensory and motor disorders of the esophagus. RECENT FINDINGS Simultaneous manometry and ultrasound imaging reveal that, during peristalsis, the two muscle layers of the esophagus contract in perfect synchrony. On the contrary, during transient lower esophageal sphincter (LES) relaxation, longitudinal muscle contracts independent of the circular muscle. Recent studies have provided novel insights into the role of the longitudinal muscle in LES relaxation and descending relaxation of the esophagus. In certain diseases (e.g. some motility disorders of the esophagus), there is discoordination between the two muscle layers, which likely plays an important role in the genesis of dysphagia and delayed esophageal emptying. There is close temporal correlation between prolonged contractions of the longitudinal muscles of the esophagus and esophageal 'angina-like' pain. Novel techniques to record longitudinal muscle contraction are reviewed. SUMMARY Longitudinal muscles of the esophagus play a key role in the physiology and pathophysiology of esophageal sensory and motor function. Neuro-pharmacologic controls of circular and longitudinal muscle are different, which provides an opportunity for the development of novel pharmacological therapies in the treatment of esophageal sensory and motor disorders.
Collapse
|
18
|
|
19
|
Deconvolution in diffusion spectrum imaging. Neuroimage 2009; 50:136-49. [PMID: 19962440 DOI: 10.1016/j.neuroimage.2009.11.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/19/2009] [Accepted: 11/24/2009] [Indexed: 11/22/2022] Open
Abstract
Diffusion spectrum magnetic resonance imaging (DSI) allows the estimation of the displacement probability density function (pdf) of water molecules, which contain valuable information about the microgeometry of the medium where the diffusion process occurs. It provides a more general approach to disentangle complex fiber structures in biological tissues because it does not assume any particular model of diffusion; even so, it has a number of limitations that remain unstudied. For instance, the theoretical model used to compute the displacement pdf is based on a Fourier transformation defined in the whole measurement space; however, in practice, it is computed using discrete signals with a finite support. As a consequence, the displacement pdf obtained from the experiments is the convolution between the true pdf and a point spread function (PSF) that completely depends on the experimental sampling scheme. In this work, a general framework to rectify and decontaminate the displacement pdf reconstructed from DSI is introduced. This framework is based on model-free deconvolution techniques that allow obtaining clearer and sharper DSI estimates. The method was tested in synthetic data as well as in real data measured from a healthy human volunteer. The results demonstrated that the angular resolution of DSI can be increased, potentially revealing new real fiber components and reducing both the artefactual peaks and the uncertainty of the local diffusion orientational distribution. Furthermore, the deconvolution process provides scalar maps of quantities derived from the propagator, such as the zero displacement probability, with higher tissue contrast.
Collapse
|
20
|
Esophagus tissue engineering: in vitro generation of esophageal epithelial cell sheets and viability on scaffold. J Pediatr Surg 2009; 44:896-901. [PMID: 19433165 DOI: 10.1016/j.jpedsurg.2009.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Accepted: 01/15/2009] [Indexed: 12/16/2022]
Abstract
PURPOSE Management of long gap esophageal atresia poses challenges. The surgical techniques for esophageal replacement are associated with complications and high morbidity. The aim of this study was to develop protocols to obtain single layer sheets of esophageal epithelial cells (EECs) and to investigate their survival on collagen scaffolds. METHODS Esophageal epithelial cells were sourced from adult Sprague-Dawley rats. Briefly, the esophagus was treated with dispase to separate the epithelial layer and further trypsined to obtained EEC. The esophageal epithelial cells were cultured in vitro and seeded on to new generation of 3-dimensional collagen scaffolds. RESULTS Esophageal epithelial cells organized after 48 hours in culture and formed clusters after 72 to 96 hours. Organization of the EEC was completed after 7 days in culture and characteristic sheets of EEC with the histologic morphology of mature esophageal epithelium were obtained after 14 days of culture. Immunohistochemistry demonstrated pure EEC culture using cytokeratin (CK-14) markers. The esophageal epithelial cells transferred on to collagen polymers demonstrated excellent viability after 8 weeks of in vitro culture. CONCLUSION Successful protocols for EEC isolation and proliferation have been established. The engineering of sheets of EEC and the viability of EEC on collagen scaffolds for 8 weeks in vitro, which are prerequisites for esophagus tissue engineering, was demonstrated.
Collapse
|
21
|
Gaige TA, Kwon HS, Dai G, Cabral VC, Wang R, Nam YS, Engelward BP, Wedeen VJ, So PTC, Gilbert RJ. Multiscale structural analysis of mouse lingual myoarchitecture employing diffusion spectrum magnetic resonance imaging and multiphoton microscopy. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:064005. [PMID: 19123652 DOI: 10.1117/1.3046724] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The tongue consists of a complex, multiscale array of myofibers that comprise the anatomical underpinning of lingual mechanical function. 3-D myoarchitecture was imaged in mouse tongues with diffusion spectrum magnetic resonance imaging (DSI) at 9.4 T (b(max) 7000 smm, 150-microm isotropic voxels), a method that derives the preferential diffusion of water/voxel, and high-throughput (10 fps) two-photon microscope (TPM). Net fiber alignment was represented for each method in terms of the local maxima of an orientational distribution function (ODF) derived from the local diffusion (DSI) and 3-D structural autocorrelation (TPM), respectively. Mesoscale myofiber tracts were generated by alignment of the principal orientation vectors of the ODFs. These data revealed a consistent relationship between the properties of the respective ODFs and the virtual superimposition of the distributed mesoscale myofiber tracts. The identification of a mesoscale anatomical construct, which specifically links the microscopic and macroscopic spatial scales, provides a method for relating the orientation and distribution of cells and subcellular components with overall tissue morphology, thus contributing to the development of multiscale methods for mechanical analysis.
Collapse
Affiliation(s)
- Terry A Gaige
- Massachusetts Institute of Technology, Department of Mechanical and Biological Engineering, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|