1
|
Xia TJ, Xie FY, Fan QC, Yin S, Ma JY. Analysis of factors affecting testicular spermatogenesis capacity by using the tissue transcriptome data from GTEx. Reprod Toxicol 2023; 117:108359. [PMID: 36870580 DOI: 10.1016/j.reprotox.2023.108359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
In human, endo- or exogeneous factors might alter the cellular composition, the endocrine and inflammatory micro-environments and the metabolic balance in testis. These factors will further impair the testicular spermatogenesis capacity and alter the transcriptome of testis. Conversely, it should be possible that the alteration of the transcriptomes in testes be used as an indicator to evaluate the testicular spermatogenesis capacity and to predict the causing factors. In this study, using the transcriptome data of human testes and whole blood which were collected by the genotype-tissue expression project (GTEx), we analyzed the transcriptome differences in human testes and explored those factors that affecting spermatogenesis. As a result, testes were clustered into five clusters according to their transcriptomic features, and each cluster of testes was evaluated as having different spermatogenesis capacity. High rank genes of each cluster and the differentially expressed genes in lower functional testes were analyzed. Transcripts in whole blood which may be associated with testis function were also analyzed by the correlation test. As a result, factors such as immune response, oxygen transport, thyrotropin, prostaglandin and tridecapeptide neurotensin were found associated with spermatogenesis. These results revealed multiple clues about the spermatogenesis regulation in testis and provided potential targets to improve the fertility of men in clinic.
Collapse
Affiliation(s)
- Tian-Jin Xia
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China; Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Feng-Yun Xie
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qi-Cheng Fan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Jun-Yu Ma
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
2
|
TRH and TRH-like peptide levels covary with caloric restriction and oral metformin in rat heart and testis. ENDOCRINE AND METABOLIC SCIENCE 2022. [DOI: 10.1016/j.endmts.2022.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
3
|
Zhao Y, Li HX, Wang K, Yan BY, Li W. Regulation of testicular steroidogenesis by Foxa3 via transcriptional modulation of ERα signaling in type 2 diabetes mellitus (T2DM). Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Joustra SD, van Trotsenburg ASP, Sun Y, Losekoot M, Bernard DJ, Biermasz NR, Oostdijk W, Wit JM. IGSF1 deficiency syndrome: A newly uncovered endocrinopathy. ACTA ACUST UNITED AC 2013; 1:e24883. [PMID: 25002994 PMCID: PMC3915563 DOI: 10.4161/rdis.24883] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/15/2013] [Accepted: 04/30/2013] [Indexed: 01/29/2023]
Abstract
A recently uncovered X-linked syndrome, caused by loss-of-function of IGSF1, is characterized by congenital central hypothyroidism and macroorchidism, variable prolactin deficiency, occasional growth hormone deficiency, delayed pubertal testosterone secretion and obesity. We propose to call this endocrinopathy “IGSF1 deficiency syndrome.” Based on an estimated incidence of isolated congenital central hypothyroidism of 1:65,000, we predict that the incidence of IGSF1 deficiency related hypothyroidism is approximately 1:100,000. IGSF1 encodes a plasma membrane immunoglobulin superfamily glycoprotein that is highly expressed in pituitary and testis, but is of unknown function. The variable profile of pituitary dysfunction suggests that IGSF1 may play a role in pituitary paracrine regulation. The clinical significance of the syndrome, particularly the clinical consequences of untreated hypothyroidism, justifies screening family members of patients with IGSF1 mutations for carriership and to study potential carriers of IGSF1 mutations, including patients with idiopathic central hypothyroidism, combined GH and TSH deficiency, macroorchidism or delayed puberty.
Collapse
Affiliation(s)
- Sjoerd D Joustra
- Department of Pediatrics; Leiden University Medical Center; Leiden, The Netherlands ; Department of Endocrinology and Metabolic Disorders; Leiden University Medical Center; Leiden, The Netherlands
| | - A S Paul van Trotsenburg
- Department of Pediatric Endocrinology; Emma Children's Hospital; Academic Medical Center; University of Amsterdam; Amsterdam, The Netherlands
| | - Yu Sun
- Center for Human and Clinical Genetics; Leiden University Medical Center; Leiden, The Netherlands
| | - Monique Losekoot
- Center for Human and Clinical Genetics; Leiden University Medical Center; Leiden, The Netherlands
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics; McGill University; Montreal, QC Canada
| | - Nienke R Biermasz
- Department of Endocrinology and Metabolic Disorders; Leiden University Medical Center; Leiden, The Netherlands
| | - Wilma Oostdijk
- Department of Pediatrics; Leiden University Medical Center; Leiden, The Netherlands
| | - Jan M Wit
- Department of Pediatrics; Leiden University Medical Center; Leiden, The Netherlands
| |
Collapse
|
5
|
Liu ML, Wang H, Wang ZR, Zhang YF, Chen YQ, Zhu FH, Zhang YQ, Ma J, Li Z. TGF-β1 regulation of estrogen production in mature rat Leydig cells. PLoS One 2013; 8:e60197. [PMID: 23555924 PMCID: PMC3612063 DOI: 10.1371/journal.pone.0060197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/22/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Besides androgens, estrogens produced in Leydig cells are also crucial for mammalian germ cell differentiation. Transforming growth factor-β1 (TGF-β1) is now known to have multiple effects on regulation of Leydig cell function. The objective of the present study is to determine whether TGF-β1 regulates estradiol (E2) synthesis in adult rat Leydig cells and then to assess the impact of TGF-β1 on Cx43-based gap junctional intercellular communication (GJIC) between Leydig cells. METHODOLOGY/PRINCIPAL FINDINGS Primary cultured Leydig cells were incubated in the presence of recombinant TGF-β1 and the production of E2 as well as testosterone (T) were measured by RIA. The activity of P450arom was addressed by the tritiated water release assay and the expression of Cyp19 gene was evaluated by Western blotting and real time RT-PCR. The expression of Cx43 and GJIC were investigated with immunofluorescence and fluorescence recovery after photo-bleaching (FRAP), respectively. Results from this study show that TGF-β1 down-regulates the level of E2 secretion and the activity of P450arom in a dose-dependent manner in adult Leydig cells. In addition, the expression of Cx43 and GJIC was closely related to the regulation of E2 and TGF-β1, and E2 treatment in turn restored the inhibition of TGF-β1 on GJIC. CONCLUSIONS Our results indicate, for the first time in adult rat Leydig cells, that TGF-β1 suppresses P450arom activity, as well as the expression of the Cyp19 gene, and that depression of E2 secretion leads to down-regulation of Cx43-based GJIC between Leydig cells.
Collapse
Affiliation(s)
- Man-Li Liu
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
- Department of Human Anatomy and Histology and Embryology, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Huan Wang
- Department of Dermatology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Zong-Ren Wang
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yu-Fen Zhang
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yan-Qiu Chen
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Fang-Hong Zhu
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yuan-Qiang Zhang
- Department of Human Anatomy and Histology and Embryology, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jing Ma
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Zhen Li
- Department of Human Anatomy and Histology and Embryology, the Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
6
|
Li T, Hu J, He GH, Li Y, Zhu CC, Hou WG, Zhang S, Li W, Zhang JS, Wang Z, Liu XP, Yao LB, Zhang YQ. Up-regulation of NDRG2 through nuclear factor-kappa B is required for Leydig cell apoptosis in both human and murine infertile testes. Biochim Biophys Acta Mol Basis Dis 2011; 1822:301-13. [PMID: 22138128 DOI: 10.1016/j.bbadis.2011.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 11/04/2011] [Accepted: 11/14/2011] [Indexed: 12/26/2022]
Abstract
Many pro-apoptotic factors, such as nuclear factor-kappa B (NF-κB) and Fas, play crucial roles in the process of Leydig cell apoptosis, ultimately leading to male sterility, such as in Sertoli cell only syndrome (SCO) and hypospermatogenesis. However, the molecular mechanism of such apoptosis is unclear. Recent reports on N-myc downstream-regulated gene 2 (ndrg2) have suggested that it is involved in cellular differentiation, development, and apoptosis. The unique expression of NDRG2 in SCO and hypospermatogenic testis suggests its pivotal role in those diseases. In this study, we analyzed NDRG2 expression profiles in the testes of normal spermatogenesis patients, hypospermatogenesis patients, and SCO patients, as well as in vivo and in vitro models, which were Sprague-Dawley rats and the Leydig cell line TM3 treated with the Leydig cell-specific toxicant ethane-dimethanesulfonate (EDS). Our data confirm that NDRG2 is normally exclusively located in the cytoplasm of Leydig cells and is up-regulated and translocates into the nucleus under apoptotic stimulations in human and murine testis. Meanwhile, transcription factor NF-κB was activated by EDS administration, bound to the ndrg2 promoter, and further increased in expression, effects that were abolished by NF-κB inhibitor Pyrrolidine dithiocarbamate (PDTC). Furthermore, siRNA knock-down of ndrg2 led to increased proliferative or decreased apoptotic TM3 cells, while over-expression of ndrg2 had the reverse effect. This study reveals that ndrg2 is a novel gene that participates in Leydig cell apoptosis, with essential functions in testicular cells, and suggests its possible role in apoptotic Leydig cells and male fertility.
Collapse
Affiliation(s)
- Teng Li
- Department of Human Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hou W, Hu J, Li Y, Zhao J, Li Z, Liu X, Yao L, Zhang Y. Altered Expression of NDRG2 in the Testes of Experimental Rat Model of Cryptorchidism. Urology 2010; 75:985-91. [DOI: 10.1016/j.urology.2009.05.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/05/2009] [Accepted: 05/16/2009] [Indexed: 11/28/2022]
|
8
|
Quantification of thyrotropin-releasing hormone by liquid chromatography–electrospray mass spectrometry. Amino Acids 2009; 38:1031-41. [DOI: 10.1007/s00726-009-0311-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 05/27/2009] [Indexed: 12/20/2022]
|
9
|
Hou WG, Zhao Y, Shen L, Zhao J, Liu XW, Li Z, Liu XP, Yao LB, Zhang YQ. Differential expression of N-Myc downstream regulated gene 2 (NDRG2) in the rat testis during postnatal development. Cell Tissue Res 2009; 337:257-67. [DOI: 10.1007/s00441-009-0814-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 04/20/2009] [Indexed: 01/04/2023]
|