1
|
Shen Y, Gao Y, Fu J, Wang C, Tang Y, Chen S, Zhao Y. Lack of Rab27a attenuates foam cell formation and macrophage inflammation in uremic apolipoprotein E knockout mice. J Mol Histol 2023:10.1007/s10735-023-10125-w. [PMID: 37166546 DOI: 10.1007/s10735-023-10125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
As the most common cardiovascular disease, atherosclerosis (AS), is a leading cause of high mortality in patients with chronic renal failure. Rab27a has been reported to regulate the progression of cardiovascular and renal diseases. Nevertheless, little studies investigated the role and mechanism of Rab27a in uremic-accelerated AS (UAAS). An animal model of UAAS was established in apolipoprotein E knockout (apoE-/-) mice using 5/6 nephrectomy (NX). We conducted in vitro and in vivo functional experiments to explore the role of Rab27a in UAAS, including the presence of oxidized low-density lipoprotein (ox-LDL). Rab27a expression was upregulated in the plaque tissues of NX apoE-/- mice. The knockout of Rab27a (Rab27a-/-) reduced AS-induced artery injury, as manifested by the reductions of plaque area, collagen deposition, inflammation and lipid droplet. Besides, cholesterol efflux was increased, while the expression of lipid metabolism-related proteins and the secretions of pro-inflammatory factors were decreased in ox-LDL-induced NX Rab27a-/- apoE-/- mice group. Further, Rab27a deletion inhibited the activation of nuclear factor κB (NF-κB) pathway. In conclusion, our study indicated that Rab27a deficiency attenuated foam cell formation and macrophage inflammation, depending on the NF-κB pathway activation, to inhibit AS progression in uremic apoE-/- mice. This finding may provide a new targeting strategy for UAAS therapy.
Collapse
Affiliation(s)
- Yan Shen
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China.
| | - Yajuan Gao
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Jiani Fu
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Cui Wang
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Yali Tang
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Shengnan Chen
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Shaanxi, 710061, Xi'an, China
| | - Yan Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
2
|
Kunar R, Roy JK. The mRNA decapping protein 2 (DCP2) is a major regulator of developmental events in Drosophila-insights from expression paradigms. Cell Tissue Res 2021; 386:261-280. [PMID: 34536141 DOI: 10.1007/s00441-021-03503-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
The Drosophila genome codes for two decapping proteins, DCP1 and DCP2, out of which DCP2 is the active decapping enzyme. The present endeavour explores the endogenous promoter firing, transcript and protein expression of DCP2 in Drosophila wherein, besides a ubiquitous expression across development, we identify an active expression paradigm during dorsal closure and a plausible moonlighting expression in the Corazonin neurons of the larval brain. We also demonstrate that the ablation of DCP2 leads to embryonic lethality and defects in vital morphogenetic processes whereas a knockdown of DCP2 in the Corazonin neurons reduces the sensitivity to ethanol in adults, thereby ascribing novel regulatory roles to DCP2. Our findings unravel novel putative roles for DCP2 and identify it as a candidate for studies on the regulated interplay of essential molecules during early development in Drosophila, nay the living world.
Collapse
Affiliation(s)
- Rohit Kunar
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India.
| |
Collapse
|
3
|
Rozés-Salvador V, González-Billault C, Conde C. The Recycling Endosome in Nerve Cell Development: One Rab to Rule Them All? Front Cell Dev Biol 2020; 8:603794. [PMID: 33425908 PMCID: PMC7793921 DOI: 10.3389/fcell.2020.603794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Endocytic recycling is an intracellular process that returns internalized molecules back to the plasma membrane and plays crucial roles not only in the reuse of receptor molecules but also in the remodeling of the different components of this membrane. This process is required for a diversity of cellular events, including neuronal morphology acquisition and functional regulation, among others. The recycling endosome (RE) is a key vesicular component involved in endocytic recycling. Recycling back to the cell surface may occur with the participation of several different Rab proteins, which are master regulators of membrane/protein trafficking in nerve cells. The RE consists of a network of interconnected and functionally distinct tubular subdomains that originate from sorting endosomes and transport their cargoes along microtubule tracks, by fast or slow recycling pathways. Different populations of REs, particularly those formed by Rab11, Rab35, and Arf6, are associated with a myriad of signaling proteins. In this review, we discuss the cumulative evidence suggesting the existence of heterogeneous domains of REs, controlling different aspects of neurogenesis, with a particular focus on the commonalities and singularities of these REs and their contribution to nerve development and differentiation in several animal models.
Collapse
Affiliation(s)
- Victoria Rozés-Salvador
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina.,Instituto de Ciencias Básicas, Universidad Nacional de Villa María, Córdoba, Argentina
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Cecilia Conde
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina
| |
Collapse
|
4
|
Choubey PK, Nandy N, Pandey A, Roy JK. Rab11 plays a key role in stellate cell differentiation via non-canonical Notch pathway in Malpighian tubules of Drosophila melanogaster. Dev Biol 2020; 461:19-30. [PMID: 31911183 DOI: 10.1016/j.ydbio.2020.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Rab11, a member of Rab-GTPase family, and a marker of recycling endosomes has been reported to be involved in the differentiation of various tissues in Drosophila. Here we report a novel role of Rab11 in the differentiation of stellate cells via the non-canonical Notch pathway in Malpighian tubules. During Malpighian tubule development caudal visceral mesodermal cells intercalate into the epithelial tubule of ectodermal origin consisting of principal cells, undergo mesenchymal to epithelial transition and differentiate into star shaped stellate cells in adult Malpighian tubule. Two transcription factors, Teashirt and Cut (antagonistic to each other) are known to be expressed in stellate cells and principal cells, respectively, from early stages of development and serve as markers for these cells. Inhibition of Rab11 function or over-expression of activated Notch in stellate cells resulted in the expression of Cut that leads to down-regulation of Teashirt or vice-versa that leads to hampered differentiation of stellate cells. The stellate cells do not transform to star/bar shaped and remain in mesenchymal state in adult Malpighian tubule. Over-expression of Deltex, which plays important role in non-canonical Notch signaling pathway, shows similar phenotype of stellate cells as seen in individuals with down-regulated Rab11, while down-regulation of Deltex in genetic background of Rab11RNAi rescues Teashirt expression and shape of stellate cells. Our experiments suggest that an inhibition or reduction of Rab11 function in stellate cells results in the faulty recycling of Notch receptors to plasma membrane as they accumulate in early and late endosomes, leading to Deltex mediated non-canonical Notch activation.
Collapse
Affiliation(s)
- Praween Kumar Choubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, India.
| | - Nabarun Nandy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, India
| | - Akanksha Pandey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
5
|
Nassari S, Del Olmo T, Jean S. Rabs in Signaling and Embryonic Development. Int J Mol Sci 2020; 21:E1064. [PMID: 32033485 PMCID: PMC7037298 DOI: 10.3390/ijms21031064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Rab GTPases play key roles in various cellular processes. They are essential, among other roles, to membrane trafficking and intracellular signaling events. Both trafficking and signaling events are crucial for proper embryonic development. Indeed, embryogenesis is a complex process in which cells respond to various signals and undergo dramatic changes in their shape, position, and function. Over the last few decades, cellular studies have highlighted the novel signaling roles played by Rab GTPases, while numerous studies have shed light on the important requirements of Rab proteins at various steps of embryonic development. In this review, we aimed to generate an overview of Rab contributions during animal embryogenesis. We first briefly summarize the involvement of Rabs in signaling events. We then extensively highlight the contribution of Rabs in shaping metazoan development and conclude with new approaches that will allow investigation of Rab functions in vivo.
Collapse
Affiliation(s)
| | | | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada; (S.N.); (T.D.O.)
| |
Collapse
|
6
|
Bhuin T, Roy JK. Developmental expression, co-localization and genetic interaction of exocyst component Sec15 with Rab11 during Drosophila development. Exp Cell Res 2019; 381:94-104. [PMID: 31071318 DOI: 10.1016/j.yexcr.2019.04.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
Sec15, a component of an evolutionarily conserved octomeric exocyst complex, has been identified as an interactor of GTP-bound Rab11 in mammals and Drosophila which shows its role in secretion in yeast and intracellular vesicle transport. Here, we report the expression patterns of Drosophila Sec15 (DSec15) transcript and Sec15 protein during Drosophila development. At early embryonic stages, a profound level of maternally loaded DSec15 transcript and protein is found. At cellular blastoderm cells (stage 5 embryos); the expression is seen in pole cells, apical membrane and sub-apical region. The transcript is predominantly accumulated in mesoderm, tracheal pits, gut, LE cells, trachea, and ventral nerve cord as development proceeds. While, a robust expression of Sec15 is seen in amnioserosa (AS), lateral epidermis (LAE), developing trachea, gut, ventral nerve cord and epithelial cells. During larval development, the transcript is also found in all imaginal discs with a distinguished accumulation in the morphogenetic furrow of eye disc, gut, proventriculus and gastric ceacae, garland cells/nephrocytes, malpighian tubules, ovary and testis. Further, we show that Sec15 co-localizes with Rab11 during Drosophila embryonic and larval development. Finally, using a genetic approach, we demonstrate that Sec15 interacts with Rab11 in producing blister during Drosophila wing development.
Collapse
Affiliation(s)
- Tanmay Bhuin
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, India; Department of Zoology, The University of Burdwan, Golapbag, Burdwan, 713104, India.
| | - Jagat K Roy
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, India
| |
Collapse
|
7
|
Post-endocytic sorting of Plexin-D1 controls signal transduction and development of axonal and vascular circuits. Nat Commun 2017; 8:14508. [PMID: 28224988 PMCID: PMC5322531 DOI: 10.1038/ncomms14508] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/06/2017] [Indexed: 12/19/2022] Open
Abstract
Local endocytic events involving receptors for axon guidance cues play a central role in controlling growth cone behaviour. Yet, little is known about the fate of internalized receptors, and whether the sorting events directing them to distinct endosomal pathways control guidance decisions. Here, we show that the receptor Plexin-D1 contains a sorting motif that interacts with the adaptor protein GIPC1 to facilitate transport to recycling endosomes. This sorting process promotes colocalization of Plexin-D1 with vesicular pools of active R-ras, leading to its inactivation. In the absence of interaction with GIPC1, missorting of Plexin-D1 results in loss of signalling activity. Consequently, Gipc1 mutant mice show specific defects in axonal projections, as well as vascular structures, that rely on Plexin-D1 signalling for their development. Thus, intracellular sorting steps that occur after receptor internalization by endocytosis provide a critical level of control of cellular responses to guidance signals. Molecular mechanisms controlling axonal growth cone behaviour are only partially understood. Here the authors reveal a role of an adaptor protein GIPC1 in Plexin-D1 receptor recycling, and show that this process is required for axon track formation and vascular patterning in mice.
Collapse
|
8
|
Zheng C, Diaz-Cuadros M, Chalfie M. Hox Genes Promote Neuronal Subtype Diversification through Posterior Induction in Caenorhabditis elegans. Neuron 2016; 88:514-27. [PMID: 26539892 DOI: 10.1016/j.neuron.2015.09.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/05/2015] [Accepted: 09/19/2015] [Indexed: 10/22/2022]
Abstract
Although Hox genes specify the differentiation of neuronal subtypes along the anterior-posterior axis, their mode of action is not entirely understood. Using two subtypes of the touch receptor neurons (TRNs) in C. elegans, we found that a "posterior induction" mechanism underlies the Hox control of terminal neuronal differentiation. The anterior subtype maintains a default TRN state, whereas the posterior subtype undergoes further morphological and transcriptional specification induced by the posterior Hox proteins, mainly EGL-5/Abd-B. Misexpression of the posterior Hox proteins transformed the anterior TRN subtype toward a posterior identity both morphologically and genetically. The specification of the posterior subtype requires EGL-5-induced repression of TALE cofactors, which antagonize EGL-5 functions, and the activation of rfip-1, a component of recycling endosomes, which mediates Hox activities by promoting subtype-specific neurite outgrowth. Finally, EGL-5 is required for subtype-specific circuit formation by acting in both the sensory neuron and downstream interneuron to promote functional connectivity.
Collapse
Affiliation(s)
- Chaogu Zheng
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
9
|
|
10
|
van Bergeijk P, Adrian M, Hoogenraad CC, Kapitein LC. Optogenetic control of organelle transport and positioning. Nature 2015; 518:111-114. [PMID: 25561173 DOI: 10.1038/nature14128] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/01/2014] [Indexed: 01/20/2023]
Abstract
Proper positioning of organelles by cytoskeleton-based motor proteins underlies cellular events such as signalling, polarization and growth. For many organelles, however, the precise connection between position and function has remained unclear, because strategies to control intracellular organelle positioning with spatiotemporal precision are lacking. Here we establish optical control of intracellular transport by using light-sensitive heterodimerization to recruit specific cytoskeletal motor proteins (kinesin, dynein or myosin) to selected cargoes. We demonstrate that the motility of peroxisomes, recycling endosomes and mitochondria can be locally and repeatedly induced or stopped, allowing rapid organelle repositioning. We applied this approach in primary rat hippocampal neurons to test how local positioning of recycling endosomes contributes to axon outgrowth and found that dynein-driven removal of endosomes from axonal growth cones reversibly suppressed axon growth, whereas kinesin-driven endosome enrichment enhanced growth. Our strategy for optogenetic control of organelle positioning will be widely applicable to explore site-specific organelle functions in different model systems.
Collapse
Affiliation(s)
- Petra van Bergeijk
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Max Adrian
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
11
|
Giorgini F, Steinert JR. Rab11 as a modulator of synaptic transmission. Commun Integr Biol 2013; 6:e26807. [PMID: 24563714 PMCID: PMC3922788 DOI: 10.4161/cib.26807] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 10/12/2013] [Indexed: 01/07/2023] Open
Abstract
Many neurodegenerative disorders are characterized by synaptic dysfunction preceding general neuronal loss and subsequent cognitive or behavioral anomalies. Much recent research has been aimed at understanding the early underlying processes leading to dysfunction at the synapse, as this knowledge would likely inform interventions that could potentially slow progression and delay onset of disease. We have recently reported that synaptic dysfunction in a Drosophila melanogaster model of Huntington's disease (HD) can be prevented by enhanced neuronal expression of Rab11, a Rab family GTPase involved in endosomal recycling, which complements studies that have found disrupted Rab11 activity in several models of this disorder. Indeed, inhibition of Rab11 function in fibroblasts of HD patients has been observed to perturb vesicle formation from recycling endosomes. Therefore, our study investigated a potential role of Rab11 in synaptic dysfunction prior to the onset of HD symptoms, with the aim of finding a possible early intervention to disease progression. We found that Rab11 ameliorates synaptic dysfunction due to expression of mutant huntingtin-the causative protein in HD-by normalizing synaptic vesicle size, which consequently ameliorates locomotor deficits in Drosophila larvae. Here we further consider these results and the implications this work has on potential therapeutic intervention in HD and other neurodegenerative disorders.
Collapse
|
12
|
Fujita A, Koinuma S, Yasuda S, Nagai H, Kamiguchi H, Wada N, Nakamura T. GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70. PLoS One 2013; 8:e79689. [PMID: 24223996 PMCID: PMC3817099 DOI: 10.1371/journal.pone.0079689] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/23/2013] [Indexed: 11/24/2022] Open
Abstract
The use of exocytosis for membrane expansion at nerve growth cones is critical for neurite outgrowth. TC10 is a Rho family GTPase that is essential for specific types of vesicular trafficking to the plasma membrane. Recent studies have shown that TC10 and its effector Exo70, a component of the exocyst tethering complex, contribute to neurite outgrowth. However, the molecular mechanisms of the neuritogenesis-promoting functions of TC10 remain to be established. Here, we propose that GTP hydrolysis of vesicular TC10 near the plasma membrane promotes neurite outgrowth by accelerating vesicle fusion by releasing Exo70. Using Förster resonance energy transfer (FRET)-based biosensors, we show that TC10 activity at the plasma membrane decreased at extending growth cones in hippocampal neurons and nerve growth factor (NGF)-treated PC12 cells. In neuronal cells, TC10 activity at vesicles was higher than its activity at the plasma membrane, and TC10-positive vesicles were found to fuse to the plasma membrane in NGF-treated PC12 cells. Therefore, activity of TC10 at vesicles is presumed to be inactivated near the plasma membrane during neuronal exocytosis. Our model is supported by functional evidence that constitutively active TC10 could not rescue decrease in NGF-induced neurite outgrowth induced by TC10 depletion. Furthermore, TC10 knockdown experiments and colocalization analyses confirmed the involvement of Exo70 in TC10-mediated trafficking in neuronal cells. TC10 frequently resided on vesicles containing Rab11, which is a key regulator of recycling pathways and implicated in neurite outgrowth. In growth cones, most of the vesicles containing the cell adhesion molecule L1 had TC10. Exocytosis of Rab11- and L1-positive vesicles may play a central role in TC10-mediated neurite outgrowth. The combination of this study and our previous work on the role of TC10 in EGF-induced exocytosis in HeLa cells suggests that the signaling machinery containing TC10 proposed here may be broadly used for exocytosis.
Collapse
Affiliation(s)
- Akane Fujita
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Shingo Koinuma
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Sayaka Yasuda
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiroyuki Nagai
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiroyuki Kamiguchi
- Laboratory for Neuronal Growth Mechanism, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan
| | - Takeshi Nakamura
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- * E-mail:
| |
Collapse
|
13
|
Rab11 plays an indispensable role in the differentiation and development of the indirect flight muscles in Drosophila. PLoS One 2013; 8:e73305. [PMID: 24023858 PMCID: PMC3759402 DOI: 10.1371/journal.pone.0073305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/19/2013] [Indexed: 01/10/2023] Open
Abstract
Rab11, an evolutionary conserved, ubiquitously expressed subfamily of small monomeric GTPase has been known to regulate diverse cellular and developmental events, by regulating the exocytotic and transcytotic events inside the cell. Our studies show that Rab11 regulates Drosophila adult myogenesis by controlling proliferation and differentiation of the Adult muscle precursors (AMPs). Blocking Rab11 in the AMPs, which fuse to form the Indirect Flight Muscles (IFMs) of fly, renders flies completely flightless and non-viable. The indirect flight musculature, comprising of the differentially patterned dorsal longitudinal muscles (DLMs) and dorsal ventral muscles (DVMs), is affected to different extents. Abrogating or knocking down normal Rab11 function results in severely disrupted IFMs. DLMs forming from larval templates are reduced in number along with a significant reduction in their fibre size. The de novo developing DVMs are frequently absent. The DLMs in Rab11 hypomorphs are highly reduced, showing as a small constricted mass in one half of the thorax. Further, Rab11 function is essential for growth of these muscles during later half of adult myogenesis, as down regulation of Rab11 in IFMs results in degenerated muscles and broken fibres. Finally, we show that loss of Rab11 activity in the AMPs result in acquisition of migratory characteristic of myoblast as they show cellular protrusion at their polar ends accompanied with loss of cell-cell contacts. Our data provide the first evidence of a trafficking protein playing an indispensable role in regulating early stages of adult muscle development.
Collapse
|
14
|
van den Brink DM, Banerji O, Tear G. Commissureless regulation of axon outgrowth across the midline is independent of Rab function. PLoS One 2013; 8:e64427. [PMID: 23696892 PMCID: PMC3655966 DOI: 10.1371/journal.pone.0064427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/15/2013] [Indexed: 12/13/2022] Open
Abstract
Nervous system function requires that neurons within neural circuits are connected together precisely. These connections form during the process of axon guidance whereby each neuron extends an axon that migrates, often large distances, through a complex environment to reach its synaptic target. This task can be simplified by utilising intermediate targets to divide the route into smaller sections. This requires that axons adapt their behaviour as they migrate towards and away from intermediate targets. In the central nervous system the midline acts as an intermediate target for commissural axons. In Drosophila commissural axons switch from attraction towards to extension away from the midline by regulating the levels of the Roundabout receptor on their cell surface. This is achieved by Commissureless which directs Roundabout to an intracellular compartment in the soma prior to reaching the midline. Once across the midline Roundabout is allowed to reach the surface and acts as a receptor for the repellent ligand Slit that is secreted by cells at the midline. Here we investigated candidate intracellular mechanisms that may facilitate the intracellular targeting of Commissureless and Roundabout within the soma of commissural neurons. Using modified forms of Commissureless or Rabs we show that neither ubiquitination nor Rab activity are necessary for the intracellular targeting of Commissureless. In addition we reveal that axon outgrowth of many populations of neurons within the Drosophila central nervous system is also independent of Rab activity.
Collapse
Affiliation(s)
- Daan M. van den Brink
- Medical Research Council Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Oishik Banerji
- Medical Research Council Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Guy Tear
- Medical Research Council Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Fernández MDLP, Chan YB, Yew JY, Billeter JC, Dreisewerd K, Levine JD, Kravitz EA. Pheromonal and behavioral cues trigger male-to-female aggression in Drosophila. PLoS Biol 2010; 8:e1000541. [PMID: 21124886 PMCID: PMC2990703 DOI: 10.1371/journal.pbio.1000541] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/01/2010] [Indexed: 11/18/2022] Open
Abstract
Appropriate displays of aggression rely on the ability to recognize potential competitors. As in most species, Drosophila males fight with other males and do not attack females. In insects, sex recognition is strongly dependent on chemosensory communication, mediated by cuticular hydrocarbons acting as pheromones. While the roles of chemical and other sensory cues in stimulating male to female courtship have been well characterized in Drosophila, the signals that elicit aggression remain unclear. Here we show that when female pheromones or behavior are masculinized, males recognize females as competitors and switch from courtship to aggression. To masculinize female pheromones, a transgene carrying dsRNA for the sex determination factor transformer (traIR) was targeted to the pheromone producing cells, the oenocytes. Shortly after copulation males attacked these females, indicating that pheromonal cues can override other sensory cues. Surprisingly, masculinization of female behavior by targeting traIR to the nervous system in an otherwise normal female also was sufficient to trigger male aggression. Simultaneous masculinization of both pheromones and behavior induced a complete switch in the normal male response to a female. Control males now fought rather than copulated with these females. In a reciprocal experiment, feminization of the oenocytes and nervous system in males by expression of transformer (traF) elicited high levels of courtship and little or no aggression from control males. Finally, when confronted with flies devoid of pheromones, control males attacked male but not female opponents, suggesting that aggression is not a default behavior in the absence of pheromonal cues. Thus, our results show that masculinization of either pheromones or behavior in females is sufficient to trigger male-to-female aggression. Moreover, by manipulating both the pheromonal profile and the fighting patterns displayed by the opponent, male behavioral responses towards males and females can be completely reversed. Therefore, both pheromonal and behavioral cues are used by Drosophila males in recognizing a conspecific as a competitor.
Collapse
Affiliation(s)
- María de la Paz Fernández
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | |
Collapse
|
16
|
Uno T, Hata K, Hiragaki S, Isoyama Y, Trang LTD, Uno Y, Kanamaru K, Yamagata H, Nakamura M, Takagi M, Takeda M. Small GTPases of the Rab family in the brain of Bombyx mori. Histochem Cell Biol 2010; 134:615-22. [DOI: 10.1007/s00418-010-0755-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2010] [Indexed: 11/24/2022]
Affiliation(s)
- Tomohide Uno
- Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Nada-ku, Kobe, Hyogo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hou L, Wang JX, Zhao XF. Rab32 and the remodeling of the imaginal midgut in Helicoverpa armigera. Amino Acids 2010; 40:953-61. [DOI: 10.1007/s00726-010-0720-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/04/2010] [Indexed: 12/13/2022]
|
18
|
CMT2B-associated Rab7 mutants inhibit neurite outgrowth. Acta Neuropathol 2010; 120:491-501. [PMID: 20464402 DOI: 10.1007/s00401-010-0696-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 12/11/2022]
Abstract
Charco-Marie-Tooth type 2B (CMT2B) neuropathy is a rare autosomal-dominant axonal disorder characterized by distal weakness, muscle atrophy, and prominent sensory loss often complicated by foot ulcerations. CMT2B is associated with mutations of the Rab7 protein, a small GTPase controlling late endocytic traffic. Currently, it is still unknown how these mutations cause the neuropathy. Indeed, CMT2B selectively affects neuronal processes, despite the ubiquitous expression of Rab7. Therefore, this study focused on whether these disorder-associated mutations exert an effect on neurite outgrowth. We observed a marked inhibition of neurite outgrowth upon expression of all the CMT2B-associated mutants in the PC12 and Neuro2A cell lines. Thus, our data strongly support previous genetic data which proposed that these Rab7 mutations are indeed causally related to CMT2B. Inhibition of neurite outgrowth by these CMT2B-associated Rab7 mutants was confirmed biochemically by impaired up-regulation of growth-associated protein 43 (GAP43) in PC12 cells and of the nuclear neuronal differentiation marker NeuN in Neuro2A cells. Expression of a constitutively active Rab7 mutant had a similar effect to the expression of the CMT2B-associated Rab7 mutants. The active behavior of these CMT2B-associated mutants is in line with their previously demonstrated increased GTP loading, thus confirming that active Rab7 mutants are responsible for CMT2B. Our findings provide an explanation for the ability of CMT2B-associated Rab7 mutants to override the activity of wild-type Rab7 in heterozygous patients. Thus, our data suggest that lowering the activity of Rab7 in neurons could be a targeted therapy for CMT2B.
Collapse
|
19
|
Chua CEL, Lim YS, Tang BL. Rab35 - A vesicular traffic-regulating small GTPase with actin modulating roles. FEBS Lett 2009; 584:1-6. [DOI: 10.1016/j.febslet.2009.11.051] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 11/09/2009] [Accepted: 11/15/2009] [Indexed: 12/25/2022]
|
20
|
Li X, Sapp E, Chase K, Comer-Tierney LA, Masso N, Alexander J, Reeves P, Kegel KB, Valencia A, Esteves M, Aronin N, Difiglia M. Disruption of Rab11 activity in a knock-in mouse model of Huntington's disease. Neurobiol Dis 2009; 36:374-83. [PMID: 19699304 DOI: 10.1016/j.nbd.2009.08.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/30/2009] [Accepted: 08/10/2009] [Indexed: 12/22/2022] Open
Abstract
The Huntington's disease (HD) mutation causes polyglutamine expansion in huntingtin (Htt) and neurodegeneration. Htt interacts with a complex containing Rab11GDP and is involved in activation of Rab11, which functions in endosomal recycling and neurite growth and long-term potentiation. Like other Rab proteins, Rab11GDP undergoes nucleotide exchange to Rab11GTP for its activation. Here we show that striatal membranes of HD(140Q/140Q) knock-in mice are impaired in supporting conversion of Rab11GDP to Rab11GTP. Dominant negative Rab11 expressed in the striatum and cortex of normal mice caused neuropathology and motor dysfunction, suggesting that a deficiency in Rab11 activity is pathogenic in vivo. Primary cortical neurons from HD(140Q/140Q) mice were delayed in recycling transferrin receptors back to the plasma membrane. Partial rescue from glutamate-induced cell death occurred in HD neurons expressing dominant active Rab11. We propose a novel mechanism of HD pathogenesis arising from diminished Rab11 activity at recycling endosomes.
Collapse
Affiliation(s)
- Xueyi Li
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sann S, Wang Z, Brown H, Jin Y. Roles of endosomal trafficking in neurite outgrowth and guidance. Trends Cell Biol 2009; 19:317-24. [PMID: 19540123 DOI: 10.1016/j.tcb.2009.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/04/2009] [Accepted: 05/07/2009] [Indexed: 02/06/2023]
Abstract
Membrane trafficking and cargo delivery are essential for axonal and dendritic growth and guidance. Neurons have numerous diverse post-Golgi vesicles and recent advances have clarified their identity and regulation. Combinatorial approaches using in vivo imaging of 'intracellular cargo address labels' and functional perturbation have provided insight into these processes. In particular, the UNC-51 kinase regulates the trafficking of early endosomes and their axon guidance molecular cargos in several types of neurons in multiple organisms. Vesicular compartments bearing features of recycling endosomes, late endosomes or lysosomes also contribute to membrane addition and protein trafficking during neurite outgrowth and extension. New work shows that ubiquitylation of cargos and Rab effectors further specifies the trafficking routes of post-Golgi vesicles. These findings have begun to provide a more detailed view of the molecular mechanisms involved in neurite outgrowth and guidance. Additionally, high-resolution light microscopy imaging promises greater temporal and spatial understanding of vesicular exchange and maturation in neurons in the near future.
Collapse
Affiliation(s)
- Sharon Sann
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA.
| | | | | | | |
Collapse
|
22
|
Bhuin T, Roy JK. Rab11 is required for myoblast fusion in Drosophila. Cell Tissue Res 2009; 336:489-99. [PMID: 19370361 DOI: 10.1007/s00441-009-0782-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 02/11/2009] [Indexed: 01/06/2023]
Abstract
Rab11, an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In order to gain an insight into the role of this gene in myogenesis during embryonic development, we have studied the expression pattern of Rab11 in mesoderm during muscle differentiation in Drosophila embryo. When dominant-negative or constitutively active Drosophila Rab11 proteins are expressed or Rab11 is reduced via double-stranded RNA in muscle precursors, they cause partial failure of myoblast fusion and show anomalies in the shape of the muscle fibres. Our results suggest that Rab11 plays no role in cell fate specification in muscle precursors but is required late in the process of myoblast fusion.
Collapse
Affiliation(s)
- Tanmay Bhuin
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221 005, India
| | | |
Collapse
|