1
|
Kls N, Ramar K. Evaluation of the Genotoxic Effects of Grape Seed Extract and Marine Collagen Peptide on the Fibroblast Cell Line: An In Vitro Study. Cureus 2024; 16:e61605. [PMID: 38962594 PMCID: PMC11221825 DOI: 10.7759/cureus.61605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Collagen plays a vital role in maintaining the structural integrity of dentin, and its modification with bioactive compounds can enhance its mechanical properties and bonding capabilities. Aim This study aimed to evaluate the genotoxic effects of grape seed extract (GSE) and marine collagen peptide (MCP) on dental pulp-derived primary cells. Methodology Human dental pulp stem cells were isolated, cultivated, and then treated with GSE and marine collagen peptides. DNA fragmentation was assessed using DAPI (4',6-diamidino-2-phenylindole) staining. Statistical analysis was performed using SPSS version 20 (IBM Corp., Armonk, NY, USA). Results The results showed that GSE exhibited a minimum level of cell death compared to marine collagen peptides. The viable cell count increased steadily over three days in all groups, with the control group showing the highest number of viable cells. The differences in viable cell count among the groups were statistically significant. Conclusion This study suggests that GSE and marine collagen peptides are highly biocompatible with dental pulp cells and could be considered for further clinical studies.
Collapse
Affiliation(s)
- Neshkumar Kls
- Pediatric and Preventive Dentistry, SRM Kattankulathur Dental College, Chennai, IND
| | - Kavitha Ramar
- Pedodontics and Preventive Dentistry, SRM Kattankulathur Dental College, Chennai, IND
| |
Collapse
|
2
|
Pazzaglia UE, Reguzzoni M, Milanese C, Manconi R, Lanteri L, Cubeddu T, Zarattini G, Zecca PA, Raspanti M. Skeletal calcification patterns of batoid, teleost, and mammalian models: Calcified cartilage versus bone matrix. Microsc Res Tech 2023; 86:1568-1582. [PMID: 37493098 DOI: 10.1002/jemt.24388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/24/2023] [Indexed: 07/27/2023]
Abstract
This study compares the skeletal calcification pattern of batoid Raja asterias with the endochondral ossification model of mammalians Homo sapiens and teleost Xiphias gladius. Skeletal mineralization serves to stiffen the mobile elements for locomotion. Histology, histochemistry, heat deproteination, scanning electron microscopy (SEM)/EDAX analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectrometry (FTIR) have been applied in the study. H. sapiens and X. gladius bone specimens showed similar profiles, R. asterias calcified cartilage diverges for higher water release and more amorphous bioapatite. In endochondral ossification, fetal calcified cartilage is progressively replaced by bone matrix, while R. asterias calcified cartilage remains un-remodeled throughout the life span. Ca2+ and PO4 3- concentration in extracellular matrix is suggested to reach the critical salts precipitation point through H2 O recall from extracellular matrix into both chondroblasts or osteoblasts. Cartilage organic phase layout and incomplete mineralization allow interstitial fluids diffusion, chondrocytes survival, and growth in a calcified tissue lacking of a vascular and canalicular system. HIGHLIGHTS: Comparative physico-chemical characterization (TGA, DTG and DSC) testifies the mass loss due to water release, collagen and carbonate decomposition of the three tested matrices. R. asterias calcified cartilage water content is higher than that of H. sapiens and X. gladius, as shown by the respectively highest dehydration enthalpy values. Lower crystallinity degree of R. asterias calcified cartilage can be related to the higher amount of collagen in amorphous form than in bone matrix. These data can be discussed in terms of the mechanostat theory (Frost, 1966) or by organic/inorganic phase transformation in the course evolution from fin to limbs. Mineral analysis documented different charactersof R. asterias vs H. sapiens and X. gladius calcified matrix.
Collapse
Affiliation(s)
- Ugo E Pazzaglia
- DSMC, University of Brescia, Brescia, Italy
- DMC, University of Insubria, Varese, Italy
| | | | - Chiara Milanese
- CSGI, Physical Chemistry Division, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
3
|
Díaz-Arca A, Ros-Tárraga P, Tomé MJM, De Aza AH, Meseguer-Olmo L, Mazón P, De Aza PN. Micro-/Nano-Structured Ceramic Scaffolds That Mimic Natural Cancellous Bone. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1439. [PMID: 33809533 PMCID: PMC7998178 DOI: 10.3390/ma14061439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022]
Abstract
Micro-/nano-structured scaffolds with a weight composition of 46.6% α-tricalcium phosphate (α-TCP)-53.4% silicocarnotite (SC) were synthesized by the polymer replica method. The scanning electron microscopy (SEM) analysis of the scaffolds and natural cancellous bone was performed for comparison purposes. Scaffolds were obtained at three cooling rates via the eutectoid temperature (50 °C/h, 16.5 °C/h, 5.5 °C/h), which allowed the surface nanostructure and mechanical strength to be controlled. Surface nanostructures were characterized by transmission electron microscopy (TEM) and Raman analysis. Both phases α-TCP and SC present in the scaffolds were well-identified, looked compact and dense, and had neither porosities nor cracks. The non-cytotoxic effect was evaluated in vitro by the proliferation ability of adult human mesenchymal stem cells (ah-MSCs) seeded on scaffold surfaces. There was no evidence for cytotoxicity and the number of cells increased with culture time. A dense cell-hydroxyapatite layer formed until 28 days. The SEM analysis suggested cell-mediated extracellular matrix formation. Finally, scaffolds were functionalized with the alkaline phosphatase enzyme (ALP) to achieve biological functionalization. The ALP was successfully grafted onto scaffolds, whose enzymatic activity was maintained. Scaffolds mimicked the micro-/nano-structure and chemical composition of natural cancellous bone by considering cell biology and biomolecule functionalization.
Collapse
Affiliation(s)
- Anabel Díaz-Arca
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (A.D.-A.); (P.R.-T.); (P.M.)
| | - Patricia Ros-Tárraga
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (A.D.-A.); (P.R.-T.); (P.M.)
| | - María J. Martínez Tomé
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, 03202 Elche, Spain;
| | | | - Luis Meseguer-Olmo
- Grupo de Investigación en Regeneración y Reparación de Tejidos, Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - Patricia Mazón
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (A.D.-A.); (P.R.-T.); (P.M.)
| | - Piedad N. De Aza
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (A.D.-A.); (P.R.-T.); (P.M.)
| |
Collapse
|
4
|
Taylor-King JP, Buenzli PR, Chapman SJ, Lynch CC, Basanta D. Modeling Osteocyte Network Formation: Healthy and Cancerous Environments. Front Bioeng Biotechnol 2020; 8:757. [PMID: 32793566 PMCID: PMC7387425 DOI: 10.3389/fbioe.2020.00757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 06/12/2020] [Indexed: 11/22/2022] Open
Abstract
Advanced cancers, such as prostate and breast cancers, commonly metastasize to bone. In the bone matrix, dendritic osteocytes form a spatial network allowing communication between osteocytes and the osteoblasts located on the bone surface. This communication network facilitates coordinated bone remodeling. In the presence of a cancerous microenvironment, the topology of this network changes. In those situations, osteocytes often appear to be either overdifferentiated (i.e., there are more dendrites than healthy bone) or underdeveloped (i.e., dendrites do not fully form). In addition to structural changes, histological sections from metastatic breast cancer xenografted mice show that number of osteocytes per unit area is different between healthy bone and cancerous bone. We present a stochastic agent-based model for bone formation incorporating osteoblasts and osteocytes that allows us to probe both network structure and density of osteocytes in bone. Our model both allows for the simulation of our spatial network model and analysis of mean-field equations in the form of integro-partial differential equations. We considered variations of our model to study specific physiological hypotheses related to osteoblast differentiation; for example predicting how changing biological parameters, such as rates of bone secretion, rates of cancer formation, and rates of osteoblast differentiation can allow for qualitatively different network topologies. We then used our model to explore how commonly applied therapies such as bisphosphonates (e.g., zoledronic acid) impact osteocyte network formation.
Collapse
Affiliation(s)
- Jake P Taylor-King
- Department of Biology, Institute of Molecular Systems Biology, ETHZ, Zurich, Switzerland.,Mathematical Institute, University of Oxford, Oxford, United Kingdom.,Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Pascal R Buenzli
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - S Jon Chapman
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Conor C Lynch
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - David Basanta
- Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
5
|
Shah FA, Ruscsák K, Palmquist A. Transformation of bone mineral morphology: From discrete marquise-shaped motifs to a continuous interwoven mesh. Bone Rep 2020; 13:100283. [PMID: 32577436 PMCID: PMC7305389 DOI: 10.1016/j.bonr.2020.100283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/17/2020] [Indexed: 12/24/2022] Open
Abstract
Continual bone apposition at the cranial sutures provides the unique opportunity to understand how bone is built. Bone harvested from 16-week-old Sprague Dawley rat calvaria was either (i) deproteinised to isolate the inorganic phase (i.e., bone mineral) for secondary electron scanning electron microscopy or (ii) resin embedded for X-ray micro-computed tomography, backscattered electron scanning electron microscopy, and micro-Raman spectroscopy. Interdigitated finger-like projections form the interface between frontal and parietal bones. Viewed from the surface, bone mineral at the mineralisation front is comprised of nanoscale mineral platelets arranged into discrete, ~0.6–3.5 μm high and ~0.2–1.5 μm wide, marquise-shaped motifs that gradually evolve into a continuous interwoven mesh of mineralised bundles. Marquise-shaped motifs also contribute to the burial of osteoblastic–osteocytes by contributing to the roof over the lacunae. In cross-section, apices of the finger-like projections resemble islands of mineralised tissue, where new bone apposition at the surface is evident as low mineral density areas, while the marquise-shaped motifs appear as near-equiaxed assemblies of mineral platelets. Carbonated apatite content is higher towards the internal surface of the cranial vault. Up to 4 μm from the bone surface, strong Amide III, Pro, Hyp, and Phe signals, distinct PO43− bands, but negligible CO32– signal indicate recent bone formation and/or delayed maturation of the mineral. We show, for the first time, that the extracellular matrix of bone is assembled into micrometre-sized units, revealing a superstructure above the mineralised collagen fibril level, which has significant implications for function and mechanical competence of bone. The mineralisation front at cranial sutures of 16-week-old rats was investigated Interdigitated finger-like projections extend between frontal and parietal bones Micrometre-sized, marquise-shaped motifs of bone apatite at the mineralisation front Distinct motifs evolve into interwoven mesh of mineralised bundles Cranial bones are more mineralised at the internal surface (towards the dura mater)
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Krisztina Ruscsák
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Ascenzi MG. Theoretical mathematics, polarized light microscopy and computational models in healthy and pathological bone. Bone 2020; 134:115295. [PMID: 32088399 DOI: 10.1016/j.bone.2020.115295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
Abstract
The needs of everyday life, such as counting and measuring, are roots of theoretical mathematics. I believe these roots are why mathematical ideas ground research so amazingly well within many scientific fields. Initially trained as a theoretical mathematician and having collaborated with non-mathematicians in the field of bone research, I address the advantages and challenges of collaborations across fields of research among investigators trained in different disciplines. I report on the mathematical ideas that have guided my research on the mechanics of bone tissue. I explain how the mathematical ideas of local vs. global properties influence my research. Polarized light microscopy (PLM) is a tool that I use consistently, in association with other microscopy techniques, to investigate bone in its healthy state and in the presence of bone disease, in humans and in animal models. I review the results that I and investigators around the world have obtained with PLM. Applied to thin bone sections, PLM yields extinct (black) and bright (white) signals that are interpreted in terms of the orientation of collagen type I, by means of other microscopy techniques. Collagen type I is an elementary component of bone tissue. Its orientation is important for the mechanical function of bone. Images obtained by PLM at a specific bone site yield big data sets regarding collagen orientation. Multiple data sets in respect of multiple sites are often needed for research because the bone tissue differs by location in response to the distinct forces acting on it. Mathematics, defined by philosophers as the theory of patterns, offers the backdrop for pattern identification in the big data sets regarding collagen orientation. I also discuss the computational aspect of the research, pursuant to which the patterns identified are incorporated in simulations of mechanical behaviors of bone. These mathematical ideas serve to understand the role of collagen orientation in bone fracture risk.
Collapse
Affiliation(s)
- Maria-Grazia Ascenzi
- Department of Orthopaedic Surgery, University of California, Los Angeles, United States of America.
| |
Collapse
|
7
|
Shah FA, Ruscsák K, Palmquist A. 50 years of scanning electron microscopy of bone-a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone Res 2019; 7:15. [PMID: 31123620 PMCID: PMC6531483 DOI: 10.1038/s41413-019-0053-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair. The scanning electron microscope (SEM) is among the most frequently used instruments for examining bone. It offers the key advantage of very high spatial resolution coupled with a large depth of field and wide field of view. Interactions between incident electrons and atoms on the sample surface generate backscattered electrons, secondary electrons, and various other signals including X-rays that relay compositional and topographical information. Through selective removal or preservation of specific tissue components (organic, inorganic, cellular, vascular), their individual contribution(s) to the overall functional competence can be elucidated. With few restrictions on sample geometry and a variety of applicable sample-processing routes, a given sample may be conveniently adapted for multiple analytical methods. While a conventional SEM operates at high vacuum conditions that demand clean, dry, and electrically conductive samples, non-conductive materials (e.g., bone) can be imaged without significant modification from the natural state using an environmental scanning electron microscope. This review highlights important insights gained into bone microstructure and pathophysiology, bone response to implanted biomaterials, elemental analysis, SEM in paleoarchaeology, 3D imaging using focused ion beam techniques, correlative microscopy and in situ experiments. The capacity to image seamlessly across multiple length scales within the meso-micro-nano-continuum, the SEM lends itself to many unique and diverse applications, which attest to the versatility and user-friendly nature of this instrument for studying bone. Significant technological developments are anticipated for analysing bone using the SEM.
Collapse
Affiliation(s)
- Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Krisztina Ruscsák
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Shah FA, Thomsen P, Palmquist A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater 2019; 84:1-15. [PMID: 30445157 DOI: 10.1016/j.actbio.2018.11.018] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/28/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
Complex physical and chemical interactions take place in the interface between the implant surface and bone. Various descriptions of the ultrastructural arrangement to various implant design features, ranging from solid and macroporous geometries to surface modifications on the micron-, submicron-, and nano- levels, have been put forward. Here, the current knowledge regarding structural organisation of the bone-implant interface is reviewed with a focus on solid devices, mainly metal (or alloy) intended for permanent anchorage in bone. Certain biomaterials that undergo surface and bulk degradation are also considered. The bone-implant interface is a heterogeneous zone consisting of mineralised, partially mineralised, and unmineralised areas. Within the meso-micro-nano-continuum, mineralised collagen fibrils form the structural basis of the bone-implant interface, in addition to accumulation of non-collagenous macromolecules such as osteopontin, bone sialoprotein, and osteocalcin. In the published literature, as many as eight distinct arrangements of the bone-implant interface ultrastructure have been described. The interpretation is influenced by the in vivo model and species-specific characteristics, healing time point(s), physico-chemical properties of the implant surface, implant geometry, sample preparation route(s) and associated artefacts, analytical technique(s) and their limitations, and non-compromised vs compromised local tissue conditions. The understanding of the ultrastructure of the interface under experimental conditions is rapidly evolving due to the introduction of novel techniques for sample preparation and analysis. Nevertheless, the current understanding of the interface zone in humans in relation to clinical implant performance is still hampered by the shortcomings of clinical methods for resolving the finer details of the bone-implant interface. STATEMENT OF SIGNIFICANCE: Being a hierarchical material by design, the overall strength of bone is governed by composition and structure. Understanding the structure of the bone-implant interface is essential in the development of novel bone repair materials and strategies, and their long-term success. Here, the current knowledge regarding the eventual structural organisation of the bone-implant interface is reviewed, with a focus on solid devices intended for permanent anchorage in bone, and certain biomaterials that undergo surface and bulk degradation. The bone-implant interface is a heterogeneous zone consisting of mineralised, partially mineralised, and unmineralised areas. Within the meso-micro-nano-continuum, mineralised collagen fibrils form the structural basis of the bone-implant interface, in addition to accumulation of non-collagenous macromolecules such as osteopontin, bone sialoprotein, and osteocalcin.
Collapse
|
9
|
Pazzaglia UE, Reguzzoni M, Pagani F, Sibilia V, Congiu T, Salvi AG, Benetti A. Study of Endochondral Ossification in Human Fetalcartilage Anlagen of Metacarpals: Comparative Morphology of Mineral Deposition in Cartilage and in the Periosteal Bone Matrix. Anat Rec (Hoboken) 2018; 301:571-580. [PMID: 29266881 DOI: 10.1002/ar.23756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/22/2017] [Accepted: 10/10/2017] [Indexed: 11/10/2022]
Abstract
The progression of mineral phase deposition in hypertrophic cartilage and periosteal bone matrix was studied in human metacarpals primary ossification centers before vascular invasion began. This study aimed to provide a morphologic/morphometric comparative analysis of the calcification process in cartilage and periosteal osteoid used as models of endochondral ossification. Thin, sequential sections from the same paraffin inclusions of metacarpal anlagen (gestational age between the 20th and 22nd weeks) were examined with light microscopy and scanning electron microscopy, either stained or heat-deproteinated. This process enabled the analysis of corresponding fields using the different methods. From the initial CaPO4 nucleation in cartilage matrix, calcification progressed increasing the size of focal, globular, randomly distributed deposits (size range 0.5-5 µm), followed by aggregation into polycyclic clusters and finally forming a dense, compact mass of calcified cartilage. At the same time, the early osteoid calcification was characterized by a fine granular pattern (size range 0.1-0.5 µm), which was soon compacted in the layer of the first periosteal lamella. Scanning electron microscopy of heat-deproteinated sections revealed a rod-like hydroxyapatite crystallite pattern, with only size differences between the early globular deposits of the two calcifying matrices. The morphology of the early calcium deposits was similar in both cartilage and osteoid, with variations in size and density only. However, integration of the reported data with the actual hypotheses of the mechanisms of Ca concentration suggested that ion transport was linked to the progression of the chondrocyte maturation cycle (with recall of H2 O from the matrix) in cartilage, while ions transport was an active process through the cell membrane in osteoid. Other considered factors were the collagen type specificity and the matrix fibrillar texture. Anat Rec, 301:571-580, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ugo E Pazzaglia
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Marcella Reguzzoni
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Francesca Pagani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Valeria Sibilia
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Terenzio Congiu
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Andrea G Salvi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Anna Benetti
- Department of Clinical and Experimental Sciences, University of Brescia, Italy
| |
Collapse
|
10
|
Burke M, Golaraei A, Atkins A, Akens M, Barzda V, Whyne C. Collagen fibril organization within rat vertebral bone modified with metastatic involvement. J Struct Biol 2017; 199:153-164. [PMID: 28655593 DOI: 10.1016/j.jsb.2017.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/22/2022]
Abstract
Metastatic involvement diminishes the mechanical integrity of vertebral bone, however its specific impact on the structural characteristics of a primary constituent of bone tissue, the collagen-I fibril matrix, has not been adequately characterized. Female athymic rats were inoculated with HeLa or Ace-1 cancer cells lines producing osteolytic or mixed (osteolytic & osteoblastic) metastases respectively. A maximum of 21days was allowed between inoculation and rat sacrifice for vertebrae extraction. Linear polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and transmission electron microscopy (TEM) imaging was utilized to assess the impact of metastatic involvement on collagen fibril organization. Increased observations of deviations in the typical plywood motif or a parallel packing structure and an increased average measured susceptibility ratio (related to relative degree of in-plane vs. out-plane fibrils in the analyzed tissue area) in bone adjacent to metastatic involvement was indicative of change in fibrilar organization compared to healthy controls. In particular, collagen-I fibrils in tumour-induced osteoblastic bone growth showed no adherence to the plywood motif or parallel packing structure seen in healthy lamellar bone, exhibiting a much higher susceptibility ratio and degree of fibril disorder. Negative correlations were established between measured susceptibility ratios and the hardness and modulus of metastatic bone tissue assessed in a previous study. Characterizing modifications in tissue level properties is key in defining bone quality in the presence of metastatic disease and their potential impact on material behaviour.
Collapse
Affiliation(s)
- Mikhail Burke
- Institution of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ahmad Golaraei
- Department of Physics and Institute for Optical Sciences, University of Toronto, Toronto, ON, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ayelet Atkins
- Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Margarete Akens
- Department of Surgery, University of Toronto, Toronto, ON, Canada; Techna, University Health Network, Toronto, ON, Canada
| | - Virginijus Barzda
- Department of Physics and Institute for Optical Sciences, University of Toronto, Toronto, ON, Canada; Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Cari Whyne
- Institution of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Orthopaedics Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Shah FA, Stenlund P, Martinelli A, Thomsen P, Palmquist A. Direct communication between osteocytes and acid-etched titanium implants with a sub-micron topography. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:167. [PMID: 27699573 PMCID: PMC5047930 DOI: 10.1007/s10856-016-5779-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
The osteocyte network, through the numerous dendritic processes of osteocytes, is responsible for sensing mechanical loading and orchestrates adaptive bone remodelling by communicating with both the osteoclasts and the osteoblasts. The osteocyte network in the vicinity of implant surfaces provides insight into the bone healing process around metallic implants. Here, we investigate whether osteocytes are able to make an intimate contact with topologically modified, but micrometre smooth (S a < 0.5 µm) implant surfaces, and if sub-micron topography alters the composition of the interfacial tissue. Screw shaped, commercially pure (cp-Ti) titanium implants with (i) machined (S a = ~0.2 µm), and (ii) two-step acid-etched (HF/HNO3 and H2SO4/HCl; S a = ~0.5 µm) surfaces were inserted in Sprague Dawley rat tibia and followed for 28 days. Both surfaces showed similar bone area, while the bone-implant contact was 73 % higher for the acid-etched surface. By resin cast etching, osteocytes were observed to maintain a direct intimate contact with the acid-etched surface. Although well mineralised, the interfacial tissue showed lower Ca/P and apatite-to-collagen ratios at the acid-etched surface, while mineral crystallinity and the carbonate-to-phosphate ratios were comparable for both implant surfaces. The interfacial tissue composition may therefore vary with changes in implant surface topography, independently of the amount of bone formed. Implant surfaces that influence bone to have higher amounts of organic matrix without affecting the crystallinity or the carbonate content of the mineral phase presumably result in a more resilient interfacial tissue, better able to resist crack development during functional loading than densely mineralised bone.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.
- BIOMATCELL VINN Excellence Centre of Biomaterials and Cell Therapy, Göteborg, Sweden.
| | - Patrik Stenlund
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Centre of Biomaterials and Cell Therapy, Göteborg, Sweden
- Department of Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Borås, Sweden
| | - Anna Martinelli
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Centre of Biomaterials and Cell Therapy, Göteborg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Centre of Biomaterials and Cell Therapy, Göteborg, Sweden
| |
Collapse
|
12
|
Pazzaglia UE, Congiu T, Basso P, Alessandri I, Cucca L, Raspanti M. The application of heat-deproteinization to the morphological study of cortical bone: A contribution to the knowledge of the osteonal structure. Microsc Res Tech 2016; 79:691-9. [DOI: 10.1002/jemt.22686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/28/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Ugo E. Pazzaglia
- Department of Medical and Surgical Specialities; Radiological Sciences and Public Health, University of Brescia; Brescia Italy
| | - Terenzio Congiu
- Department of Surgical and Morphological Sciences; University of Insubria; Varese Italy
| | - Petra Basso
- Department of Surgical and Morphological Sciences; University of Insubria; Varese Italy
| | - Ivano Alessandri
- Department of Mechanical and Industrial Engineering; Chemistry for Technologies Lab, University of Brescia; Brescia Italy
| | - Lucia Cucca
- Department of Chemistry; University of Pavia; Pavia Italy
| | - Mario Raspanti
- Department of Surgical and Morphological Sciences; University of Insubria; Varese Italy
| |
Collapse
|
13
|
Ascenzi MG, Chin J, Lappe J, Recker R. Non-osteoporotic women with low-trauma fracture present altered birefringence in cortical bone. Bone 2016; 84:104-112. [PMID: 26514952 DOI: 10.1016/j.bone.2015.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/22/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
Areal bone mineral density (BMD) by DXA, although an important index, does not accurately assess risk of fragility fracture. Another bone structural parameter, the orientation of type I collagen, is known to add to risk determination, independently of BMD. Accordingly, we investigated the Haversian systems of transiliac crest biopsies from non-osteoporotic women with low-trauma fractures, matched to healthy women without fracture by age and BMD. We employed circularly polarized light (CPL) microscopy because 1) each of the extinct and bright birefringent signals of CPL corresponds to a specific collagen arrangement; and 2) CPL can employ magnification suitable to provide data, of manageable size, from the whole cortical component of a section of biopsy. Under CPL, the coaxial layers of osteons, called lamellae, appear either birefringent extinct or bright. On a section transverse to the Haversian system, the extinct lamella comprises mainly collagen forming small angles, and the bright lamella comprises mainly collagen forming large angles, relative to the general orientation of the Haversian system. We performed semi-automatic morphometry for birefringent and structural parameters for which we computed intra- and inter-observer errors. The statistical analysis used a linear mixed model to compare fracturing and non-fracturing groups while addressing pairing of fracturing and non-fracturing subjects, and linear regression to assess differences between matched subjects. We found significant reduction in 1) lamellar width and area for extinct lamella and bright lamella; 2) percentage of extinct birefringence in osteons, and 3) single osteon area; in the fracturing group; and in lamellar width in the fracturing subject of all pairs. Our results evidence the need to investigate, in a larger sample of subjects, the distribution of collagen orientation as a parameter diagnostic of increased fracture risk.
Collapse
Affiliation(s)
| | - Jesse Chin
- Department of Orthopaedic Surgery, University of California, Los Angeles, USA.
| | - Joan Lappe
- Department of Medicine, Creighton University, Omaha, USA.
| | - Robert Recker
- Department of Endocrinology, Creighton University, Omaha, USA.
| |
Collapse
|
14
|
Shah FA, Zanghellini E, Matic A, Thomsen P, Palmquist A. The Orientation of Nanoscale Apatite Platelets in Relation to Osteoblastic-Osteocyte Lacunae on Trabecular Bone Surface. Calcif Tissue Int 2016; 98:193-205. [PMID: 26472430 DOI: 10.1007/s00223-015-0072-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
The orientation of nanoscale mineral platelets was quantitatively evaluated in relation to the shape of lacunae associated with partially embedded osteocytes (osteoblastic-osteocytes) on the surface of deproteinised trabecular bone of adult sheep. By scanning electron microscopy and image analysis, the mean orientation of mineral platelets at the osteoblastic-osteocyte lacuna (Ot.Lc) floor was found to be 19° ± 14° in the tibia and 20° ± 14° in the femur. Further, the mineral platelets showed a high degree of directional coherency: 37 ± 7% in the tibia and 38 ± 9% in the femur. The majority of Ot.Lc in the tibia (69.37%) and the femur (74.77%) exhibited a mean orientation of mineral platelets between 0° and 25°, with the largest fraction within a 15°-20° range, 17.12 and 19.8% in the tibia and femur, respectively. Energy dispersive X-ray spectroscopy and Raman spectroscopy were used to characterise the features observed on the anorganic bone surface. The Ca/P (atomic %) ratio was 1.69 ± 0.1 within the Ot.Lc and 1.68 ± 0.1 externally. Raman spectra of NaOCl-treated bone showed peaks associated with carbonated apatite: ν1, ν2 and ν4 PO4(3-), and ν1 CO3(2-), while the collagen amide bands were greatly reduced in intensity compared to untreated bone. The apatite-to-collagen ratio increased considerably after deproteinisation; however, the mineral crystallinity and the carbonate-to-phosphate ratios were unaffected. The ~19°-20° orientation of mineral platelets in at the Ot.Lc floor may be attributable to a gradual rotation of osteoblasts in successive layers relative to the underlying surface, giving rise to the twisted plywood-like pattern of lamellar bone.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden.
| | - Ezio Zanghellini
- Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden
| | - Aleksandar Matic
- Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
- BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, Göteborg, Sweden
| |
Collapse
|
15
|
Pazzaglia UE, Sibilia V, Congiu T, Pagani F, Ravanelli M, Zarattini G. Setup of a bone aging experimental model in the rabbit comparing changes in cortical and trabecular bone: Morphological and morphometric study in the femur. J Morphol 2015; 276:733-47. [DOI: 10.1002/jmor.20374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/16/2014] [Accepted: 01/21/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Ugo E. Pazzaglia
- Department of Medical and Surgical SpecialtiesRadiological Sciences and Public Health, University of BresciaBrescia Italy
| | - Valeria Sibilia
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilano Italy
| | - Terenzio Congiu
- Department of Surgical and Morphological SciencesUniversity of InsubriaVarese Italy
| | - Francesca Pagani
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilano Italy
| | - Marco Ravanelli
- Department of Medical and Surgical SpecialtiesRadiological Sciences and Public Health, University of BresciaBrescia Italy
| | - Guido Zarattini
- Department of Medical and Surgical SpecialtiesRadiological Sciences and Public Health, University of BresciaBrescia Italy
| |
Collapse
|
16
|
Osteocytes as a record of bone formation dynamics: A mathematical model of osteocyte generation in bone matrix. J Theor Biol 2015; 364:418-27. [DOI: 10.1016/j.jtbi.2014.09.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/17/2014] [Indexed: 11/23/2022]
|
17
|
Prondvai E, Stein KHW, de Ricqlès A, Cubo J. Development-based revision of bone tissue classification: the importance of semantics for science. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12323] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Edina Prondvai
- MTA-ELTE Lendület Dinosaur Research Group; Eötvös Loránd University; Pázmány Péter s. 1/c, 1117 Budapest Hungary
| | - Koen H. W. Stein
- Museum für Naturkunde Berlin; Leibniz Institute for Evolution and Biodiversity Science; Invalidenstrasse 43 10115 Berlin Germany
| | - Armand de Ricqlès
- UPMC; UMR 7193, ISTeP; Sorbonne Universités; Univ Paris 06 4 Place Jussieu BC 19 F-75005 Paris France
- CNRS; UMR 7193, ISTeP; 4 place Jussieu BC 19 F-75005 Paris France
| | - Jorge Cubo
- UPMC; UMR 7193, ISTeP; Sorbonne Universités; Univ Paris 06 4 Place Jussieu BC 19 F-75005 Paris France
- CNRS; UMR 7193, ISTeP; 4 place Jussieu BC 19 F-75005 Paris France
| |
Collapse
|
18
|
Pazzaglia UE, Congiu T, Sibilia V, Quacci D. Osteoblast-osteocyte transformation. A SEM densitometric analysis of endosteal apposition in rabbit femur. J Anat 2014; 224:132-41. [PMID: 24251983 PMCID: PMC3969057 DOI: 10.1111/joa.12138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2013] [Indexed: 11/28/2022] Open
Abstract
Transformation of osteoblasts into osteocytes is marked by changes in volume and cell shape. The reduction of volume and the entrapment process are correlated with the synthesis activity of the cell which decreases consequently. This transformation process has been extensively investigated by transmission electron microscopy (TEM) but no data have yet been published regarding osteoblast-osteocyte dynamic histomorphometry. Scanning electron microscope (SEM) densitometric analysis was carried out to determine the osteoblast and open osteocyte lacunae density in corresponding areas of a rabbit femur endosteal surface. The lining cell density was 4900.1 ± 30.03 n mm(-2), the one of open osteocyte lacunae 72.89 ± 22.55 n mm(-2). This corresponds to an index of entrapment of one cell every 67.23 osteoblasts (approximated by defect). The entrapment sequence begins with flattening of the osteoblast and spreading of equatorial processes. At first these are covered by the new apposed matrix and then also the whole cellular body of the osteocyte undergoing entrapment. The dorsal aspect of the cell membrane suggests that closure of the osteocyte lacuna may be partially carried out by the same osteoblast-osteocyte which developed a dorsal secretory territory. A significant proportion of the endosteal surface was analysed by SEM, without observing any evidence of osteoblast mitotic figures. This indicates that recruitment of the pool of osteogenic cells in cortical bone lamellar systems occurs prior to the entrapment process. No further additions occurred once osteoblasts were positioned on the bone surface and began lamellar apposition. The number of active osteoblasts on the endosteal surface exceeded that of the cells which become incorporated as osteocytes (whose number was indicated by the number of osteocyte lacunae). Therefore such a balance must be equilibrated by the osteoblasts' transformation in resting lining cells or by apoptosis. The current work characterised osteoblast shape changes throughout the entrapment process, allowing approximate calculation of an osteoblast entrapment index in the rabbit endosteal cortex.
Collapse
Affiliation(s)
- Ugo E Pazzaglia
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of BresciaBrescia, Italy
| | - Terenzio Congiu
- Department of Surgical and Morphological Sciences, University of InsubriaVarese, Italy
| | - Valeria Sibilia
- Department of Medical Biotechnology and Translational Medicine, University of MilanMilan, Italy
| | - Daniela Quacci
- Department of Surgical and Morphological Sciences, University of InsubriaVarese, Italy
| |
Collapse
|
19
|
Pazzaglia UE, Congiu T, Pienazza A, Zakaria M, Gnecchi M, Dell'orbo C. Morphometric analysis of osteonal architecture in bones from healthy young human male subjects using scanning electron microscopy. J Anat 2013; 223:242-54. [PMID: 23834434 DOI: 10.1111/joa.12079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2013] [Indexed: 11/28/2022] Open
Abstract
The shape and structure of bones is a topic that has been studied for a long time by morphologists and biologists with the goal of explaining the laws governing their development, aging and pathology. The osteonal architecture of tibial and femoral mid-diaphyses was examined morphometrically with scanning electron microscopy in four healthy young male subjects. In transverse sections of the mid-diaphysis, the total area of the anterior, posterior, lateral and medial cortex sectors was measured and analysed for osteonal parameters including osteon number and density, osteon total and bone area and vascular space area. Osteons were grouped into four classes including cutting heads (A), transversely cut osteons (B), longitudinally cut osteons (C) and sealed osteons (D). The morphometric parameters were compared between the inner (endosteal) and outer (periosteal) half of the cortex. Of 5927 examined osteons, 24.4% cutting heads, 71.1% transversely cut osteons, 2.3% longitudinally cut osteons and 2.2% sealed osteons were found. The interosteonic bone (measured as the area in a lamellar system that has lost contact with its own central canal) corresponded to 51.2% of the endosteal and 52.4% of the periosteal half-cortex. The mean number of class A cutting heads and class B osteons was significantly higher in the periosteal than in the endosteal half-cortex (P < 0.001 and P < 0.05, respectively), whereas there was no significant difference in density. The mean osteon total area, osteon bone area and vascular space area of both classes A and B were significantly higher (P < 0.001 for all three parameters) in the endosteal than in the periosteal half-cortex. The significant differences between the two layers of the cortex suggest that the osteoclast activity is distributed throughout the whole cortical thickness, with more numerous excavations in the external layer, but larger resorption lacunae closer to the marrow canal. A randomly selected population of 109 intact class B osteons was examined at higher magnification (350×) to count osteocyte lacuna and to analyse their relationship with osteon size parameters. The distribution frequency of the mean number of osteocyte lacunae increased with the increment in the sub-classes of osteon bone area, whereas the density did not show significant differences. The number of osteocyte lacunae had a direct correlation with the osteon bone area and the mean osteon wall thickness, as well as the mean number of lamellae. The osteocyte lacunae density showed an inverse relationship. These data suggest a biological regulation of osteoblast activity with a limit to the volume of matrix produced by each cell and proportionality with the number of available cells in the space of the cutting cone (total osteon area). The collected data can be useful as a set of control parameters in healthy human bone for studies on bone aging and metabolic bone diseases.
Collapse
Affiliation(s)
- Ugo E Pazzaglia
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Stein K, Prondvai E. Rethinking the nature of fibrolamellar bone: an integrative biological revision of sauropod plexiform bone formation. Biol Rev Camb Philos Soc 2013; 89:24-47. [DOI: 10.1111/brv.12041] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 03/20/2013] [Accepted: 04/03/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Koen Stein
- Steinmann Institut für Geologie, Mineralogie und Paläontologie; University of Bonn; Bonn Germany
| | - Edina Prondvai
- Hungarian Academy of Sciences-Eötvös Loránd University “Lendület” Dinosaur Research Group; Eötvös Loránd University; Budapest Hungary
| |
Collapse
|
21
|
Bone refilling in cortical basic multicellular units: insights into tetracycline double labelling from a computational model. Biomech Model Mechanobiol 2013; 13:185-203. [DOI: 10.1007/s10237-013-0495-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
|
22
|
Pazzaglia UE, Congiu T. The cast imaging of the osteon lacunar-canalicular system and the implications with functional models of intracanalicular flow. J Anat 2012; 222:193-202. [PMID: 23082756 DOI: 10.1111/joa.12004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2012] [Indexed: 11/30/2022] Open
Abstract
A casting technique with methyl-methacrylate (MMA) was applied to the study of the osteon lacunar-canalicular network of human and rabbit cortical bone. The MMA monomer infiltration inside the vascular canals and from these into the lacunar-canalicular system was driven by capillarity, helped by evaporation and the resulting negative pressure in a system of small pipes. There was uniform, centrifugal penetration of the resin inside some osteons, but this was limited to a depth of four to five layers of lacunae. Moreover, not all of the osteon population was infiltrated. This failure can be the result of one of two factors: the incomplete removal of organic debris from the canal and canalicular systems, and lack of drainage at the osteon external border. These data suggest that each secondary osteon is a closed system with a peripheral barrier (represented by the reversal line). As the resin advances into the osteon, the air contained inside the canalicula is compressed and its pressure increases until infiltration is stopped. The casts gave a reliable visualization of the lacunar shape, position and connections between the lacunae without the need for manipulations such as cutting or sawing. Two systems of canalicula could be distinguished, the equatorial, which connected the lacunae (therefore the osteocytes) lying on the same concentric level, and the radial, which established connections between different levels. The equatorial canalicula radiated from the lacunar border forming ramifications on a planar surface around the lacuna, whereas the radial canalicula had a predominantly straight direction perpendicular to the equatorial plane. The mean length of the radial canalicula was 40.12 ± 10.26 μm in rabbits and 38.4 ± 7.35 μm in human osteons; their mean diameter was 174.4 ± 71.12 nm and 195.7 ± 79.58 nm, respectively. The mean equatorial canalicula diameter was 237 ± 66.04 nm in rabbit and 249.7 ± 73.78 nm in human bones, both significantly larger (P < 0.001) than the radial. There were no significant differences between the two species. The lacunar surface measured on the equatorial plane was higher in rabbit than in man, but the difference was not statistically significant. The cast of the lacunar-canalicular network obtained with the reported technique allows a direct, 3-D representation of the system architecture and illustrates how the connections between osteocytes are organized. The comparison with models derived by the assumption of the role of hydraulic conductance and other mechanistic functions provides descriptive, morphological data to the ongoing discussion on the Haversian system biology.
Collapse
Affiliation(s)
- Ugo E Pazzaglia
- Department of Specialità Chirurgiche, Scienze Radiologiche, Mediche e Sanità Pubblica, Orthopaedic Clinic of the University of Brescia, Italy.
| | | |
Collapse
|
23
|
Pazzaglia UE, Congiu T, Marchese M, Spagnuolo F, Quacci D. Morphometry and patterns of lamellar bone in human Haversian systems. Anat Rec (Hoboken) 2012; 295:1421-9. [PMID: 22807326 DOI: 10.1002/ar.22535] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/21/2012] [Indexed: 11/09/2022]
Abstract
The lamellar architecture of secondary osteons (Haversian systems) has been studied with scanning electron microscopy (SEM) in transverse sections of human cortical bone. Na(3) PO(4) etching was used to improve the resolution of the interface between neighboring lamellae and the precision of measurements. These technical improvements permitted testing of earlier morphometry assumptions concerning lamellar thickness while revealing the existence of different lamellar patterns. The mean lamellar thickness was 9.0 ± 2.13 μm, thicker and with a wider range of variation with respect to earlier measurements. The number of lamellae showed a direct correlation with the lamellar bone area, and their thickness had a random distribution for osteonal size classes. The circular, concentrical pattern was the more frequently observed, but spiral and crescent-moon-shaped lamellae were also documented. Selected osteons were examined by either SEM or SEM combined with polarized light microscopy allowing comparisons of corresponding sectors of the osteon. The bright bands observed with polarized light corresponded to the grooves observed in etched sections by SEM. The dark bands corresponded to the lamellar surface with the cut fibrils oriented approximately longitudinally along the central canal axis. However, lamellae with large and blurred bright bands could be observed, which did not correspond to a groove observed by SEM. These findings are in contrast with the assumption that all the fibril layers within a lamella are oriented along a constant and unchangeable angle. The different lamellar patterns may be explained by the synchronous or staggered recruitment and activation of osteoblasts committed to the osteon's completion.
Collapse
Affiliation(s)
- Ugo E Pazzaglia
- Clinica Ortopedica dell'Università degli Studi di Brescia, II Divisione di Ortopedia e Traumatologia, Spedali Civili di Brescia, Brescia, Italy.
| | | | | | | | | |
Collapse
|
24
|
Pazzaglia UE, Congiu T, Marchese M, Zarattini G, Dell'Orbo C. The canalicular system and the osteoblast domain in human secondary osteons. Anat Histol Embryol 2012; 41:410-8. [PMID: 22469429 DOI: 10.1111/j.1439-0264.2012.01150.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/01/2012] [Indexed: 11/30/2022]
Abstract
The lacunar-canalicular system in human secondary osteons was examined by two complementary techniques: light microscopy analysis of undecalcified thick sections and the SEM cortex-fractured surface technique. Unlike the earlier definitions of 'osteoblastic domain' presented as the matrix volume produced by osteoblasts in the process of osteon infilling, this study measured the domain by the length of osteoblast dendritic processes. The domain extension was defined along radial vectors advancing from the reversal line towards the central canal. According to their lengths, domains were divided into three classes: peripheral, intermediate and internal. The mean length of peripheral domains was significantly shorter than those of the intermediate and internal domains. This suggests that the infilling process is modulated by an initial preparatory phase characterised by osteoblast adhesion to the wall of the cutting cone, and a limited matrix synthesis, followed by a regular matrix volume apposition organised in concentric layers. In addition to the radial canaliculae arranged along converging vectors in planes perpendicular to the central canal, we distinguished a further class of canaliculae, the equatorial canaliculae originating from the major perimeter of the lacuna and spreading out radially in the plane of the same lacuna (therefore, perpendicularly to the radial canaliculae). The whole lacunar-canalicular network was structured as a closed system around the vascular axis of the central canal with very few canaliculae crossing the reversal line and connecting the neighbouring osteons. These anatomical observations contribute to our knowledge of lacunar-canalicular system development.
Collapse
Affiliation(s)
- U E Pazzaglia
- Clinica Ortopedica dell'Università di Brescia, Spedali Civili di Brescia, Italy.
| | | | | | | | | |
Collapse
|
25
|
Pazzaglia UE, Congiu T, Franzetti E, Marchese M, Spagnuolo F, Di Mascio L, Zarattini G. A model of osteoblast-osteocyte kinetics in the development of secondary osteons in rabbits. J Anat 2012; 220:372-83. [PMID: 22324883 DOI: 10.1111/j.1469-7580.2012.01477.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The kinetics of osteogenic cells within secondary osteons have been examined within a 2-D model. The linear osteoblast density of the osteons and the osteocyte lacunae density were compared with other endosteal lamellar systems of different geometries. The cell density was significantly greater in the endosteal appositional zone and was always flatter than the central osteonal canals. Fully structured osteons compared with early structuring (cutting cones) did not show any significant differences in density. The osteoblast density may remain constant because some of them leave the row and become embedded within matrix. The overall shape of the Haversian system represented a geometrical restraint and it was thought to be related to osteoblast-osteocyte transformation. To test this hypothesis of an early differentiation and recruitment of the osteoblast pool which completes the lamellar structure of the osteon, the number and density of osteoblasts and osteocyte lacunae were evaluated. In the central canal area, the mean osteoblast linear density and the osteocyte lacunae planar density were not significantly different among sub-classes (with the exclusion of the osteocyte lacunae of the 300-1000 μm(2) sub-class). The mean number of osteoblasts compared with osteocyte lacunae resulted in significantly higher numbers in the two sub-classes, no significant difference was seen in the two middle sub-classes with the larger canals, and there were significantly lower levels in the smallest central canal sub-class. The TUNEL technique was used to identify the morphological features of apoptosis within osteoblasts. It was found that apoptosis occurred during the late phase of osteon formation but not in osteocytes. This suggests a regulatory role of apoptosis in balancing the osteoblast-osteocyte equilibrium within secondary osteon development. The position of the osteocytic lacunae did not correlate with the lamellar pattern and the lacunae density in osteonal radial sectors was not significantly different. These findings support the hypothesis of an early differentiation of the osteoblast pool and the independence of the fibrillar lamellation from osteoblast-osteocyte transformation.
Collapse
|
26
|
Cenni E, Scioscia L, Baldini N. Orthopaedic research in italy: state of the art. Int J Immunopathol Pharmacol 2011; 24:157-78. [PMID: 21669157 DOI: 10.1177/03946320110241s230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The most significant results in experimental and clinical orthopaedic research in Italy within the last three years have been primarily in major congenital diseases, bone tumors, regenerative medicine, joint replacements, spine, tendons and ligaments. The data presented in the following discussion is comparable with leading international results, highlighting Italian orthopaedic research excellemce as well as its shortcomings.
Collapse
Affiliation(s)
- E Cenni
- Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | |
Collapse
|
27
|
Pazzaglia UE, Congiu T, Zarattini G, Marchese M, Quacci D. The fibrillar organisation of the osteon and cellular aspects of its development : a morphological study using the SEM fractured cortex technique. Anat Sci Int 2011; 86:128-34. [PMID: 21213094 DOI: 10.1007/s12565-010-0099-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/14/2010] [Indexed: 10/18/2022]
Abstract
The collagen architecture of secondary osteons was studied with scanning electron microscopy (SEM) employing the fractured cortex technique and osmic maceration. Fibrillar orientation and the change in their direction in sequential lamellae was documented where lamellar formation was ongoing, as well as in resorption pits where osteoclasts had exposed the collagen organisation of the underlying layers. Applying an adaptive stereo matching technique, the mean thickness of matrix layers removed by osteoclasts was 1.36 ± 0.45 μm. It was also documented that osteoclasts do not attack the cellular membrane of the exposed osteocytes. The mean linear osteoblast density in fractured hemicanals was assessed with SEM and no significant differences were observed comparing larger with smaller central canal osteons. These findings suggested a balance between the differentiated osteoblasts that have aligned on the surface of the cutting cone and those that are transformed into osteocytes, because the canal surface is progressively reduced as the lamellar apposition advances.
Collapse
Affiliation(s)
- Ugo E Pazzaglia
- Clinica Ortopedica dell'Università di Brescia, Spedali Civili di Brescia, Italy.
| | | | | | | | | |
Collapse
|