1
|
Chen R, Fu Y, Li D, Wang S, Ruan Y, Ren L, Wang S, Shen X, Shi Y, Shao Y, Liu Y. Proteomic analysis of plasma in healthy adults receiving recombinant vaccinia virus provides novel insights into HIV-1 neutralizing antibodies. J Med Virol 2024; 96:e29749. [PMID: 38888113 DOI: 10.1002/jmv.29749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/02/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024]
Abstract
Human immunodeficiency virus (HIV) infection is still a global public health issue, and the development of an effective prophylactic vaccine inducing potent neutralizing antibodies remains a significant challenge. This study aims to explore the inflammation-related proteins associated with the neutralizing antibodies induced by the DNA/rTV vaccine. In this study, we employed the Olink chip to analyze the inflammation-related proteins in plasma in healthy individuals receiving HIV candidate vaccine (DNA priming and recombinant vaccinia virus rTV boosting) and compared the differences between neutralizing antibody-positive (nab + ) and -negative(nab-) groups. We identified 25 differentially expressed factors and conducted enrichment and correlation analysis on them. Our results revealed that significant expression differences in artemin (ARTN) and C-C motif chemokine ligand 23 (CCL23) between nab+ and -nab- groups. Notably, the expression of CCL23 was negatively corelated to the ID50 of neutralizing antibodies and the intensity of the CD4+ T cell responses. This study enriches our understanding of the immune picture induced by the DNA/rTV vaccine, and provides insights for future HIV vaccine development.
Collapse
Affiliation(s)
- Ran Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuyu Fu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuhui Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuhua Ruan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuo Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiuli Shen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yutao Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiming Shao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Changping Laboratory, Beijing, China
| | - Ying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Yu Z, Qiu B, Zhou H, Li L, Niu T. Characterization and application of a lactate and branched chain amino acid metabolism related gene signature in a prognosis risk model for multiple myeloma. Cancer Cell Int 2023; 23:169. [PMID: 37580667 PMCID: PMC10426219 DOI: 10.1186/s12935-023-03007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND About 10% of hematologic malignancies are multiple myeloma (MM), an untreatable cancer. Although lactate and branched-chain amino acids (BCAA) are involved in supporting various tumor growth, it is unknown whether they have any bearing on MM prognosis. METHODS MM-related datasets (GSE4581, GSE136337, and TCGA-MM) were acquired from the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database. Lactate and BCAA metabolism-related subtypes were acquired separately via the R package "ConsensusClusterPlus" in the GSE4281 dataset. The R package "limma" and Venn diagram were both employed to identify lactate-BCAA metabolism-related genes. Subsequently, a lactate-BCAA metabolism-related prognostic risk model for MM patients was constructed by univariate Cox, Least Absolute Shrinkage and Selection Operator (LASSO), and multivariate Cox regression analyses. The gene set enrichment analysis (GSEA) and R package "clusterProfiler"were applied to explore the biological variations between two groups. Moreover, single-sample gene set enrichment analysis (ssGSEA), Microenvironment Cell Populations-counter (MCPcounte), and xCell techniques were applied to assess tumor microenvironment (TME) scores in MM. Finally, the drug's IC50 for treating MM was calculated using the "oncoPredict" package, and further drug identification was performed by molecular docking. RESULTS Cluster 1 demonstrated a worse prognosis than cluster 2 in both lactate metabolism-related subtypes and BCAA metabolism-related subtypes. 244 genes were determined to be involved in lactate-BCAA metabolism in MM. The prognostic risk model was constructed by CKS2 and LYZ selected from this group of genes for MM, then the prognostic risk model was also stable in external datasets. For the high-risk group, a total of 13 entries were enriched. 16 entries were enriched to the low-risk group. Immune scores, stromal scores, immune infiltrating cells (except Type 17 T helper cells in ssGSEA algorithm), and 168 drugs'IC50 were statistically different between two groups. Alkylating potentially serves as a new agent for MM treatment. CONCLUSIONS CKS2 and LYZ were identified as lactate-BCAA metabolism-related genes in MM, then a novel prognostic risk model was built by using them. In summary, this research may uncover novel characteristic genes signature for the treatment and prognostic of MM.
Collapse
Affiliation(s)
- Zhengyu Yu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bingquan Qiu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Linfeng Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
He Z, Xin Z, Yang Q, Wang C, Li M, Rao W, Du Z, Bai J, Guo Z, Ruan X, Zhang Z, Fang X, Zhao H. Mapping the single-cell landscape of acral melanoma and analysis of the molecular regulatory network of the tumor microenvironments. eLife 2022; 11:78616. [PMID: 35894206 PMCID: PMC9398445 DOI: 10.7554/elife.78616] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Acral melanoma (AM) exhibits a high incidence in Asian patients with melanoma, and it is not well treated with immunotherapy. However, little attention has been paid to the characteristics of the immune microenvironment in AM. Therefore, in this study, we collected clinical samples from Chinese patients with AM and conducted single-cell RNA sequencing to analyze the heterogeneity of its tumor microenvironments (TMEs) and the molecular regulatory network. Our analysis revealed that genes, such as TWIST1, EREG, TNFRSF9, and CTGF could drive the deregulation of various TME components. The molecular interaction relationships between TME cells, such as MIF-CD44 and TNFSF9-TNFRSF9, might be an attractive target for developing novel immunotherapeutic agents. Acral melanoma is a type of cancer that affects the hands and feet. It tends to form on the palms, soles, and under the nails. It is rare in people of European descent, but in Asian populations it makes up more than half of all melanoma cases. Unlike other types of skin cancer, it does not respond well to immunotherapy, but scientists did not understand why. Historically, cancer research has focused on the genetics of whole tumors. But cancer is complicated. Malignant cells recruit other cells to help them survive and grow, and to protect them from attacks by the immune system. Together, they create their own ecosystem, called the tumor microenvironment. The exact makeup of the tumor microenvironment differs depending on the type of cancer and on the genetics of the individual. Investigating the cells that ‘support’ the tumor could help to explain how acral melanoma develops and why it does not respond to treatment. To address these questions, He et al. collected samples from six patients with acral melanoma and examined the genes used by more than 60,000 individual cells. This revealed nine different types of cells in the tumor microenvironment. Most were cancer cells, but there were also immune cells, blood vessel cells, skin cells, and a type of cell that makes connective tissue. He et al. also identified four genes that most likely shape the tumor microenvironment, and two gene pairs that may control some of the interactions between the cells. Investigating these early findings in more detail could open new treatment avenues for acral melanoma. The number of samples in this study was small, but it provides a starting point for future investigation. With more data, researchers could start to develop treatments that target the unique tumor microenvironment of this type of cancer.
Collapse
Affiliation(s)
- Zan He
- Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
| | - Zijuan Xin
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qiong Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Chen Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Wei Rao
- Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
| | - Zhimin Du
- Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
| | - Jia Bai
- Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
| | - Zixuan Guo
- Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
| | - Xiuyan Ruan
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhaojun Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xiangdong Fang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hua Zhao
- Department of Dermatology, General Hospital of People's Liberation Army, Beijing, China
| |
Collapse
|
4
|
Hadas R, Gershon E, Cohen A, Atrakchi O, Lazar S, Golani O, Dassa B, Elbaz M, Cohen G, Eilam R, Dekel N, Neeman M. Hyaluronan control of the primary vascular barrier during early mouse pregnancy is mediated by uterine NK cells. JCI Insight 2020; 5:135775. [PMID: 33208556 PMCID: PMC7710306 DOI: 10.1172/jci.insight.135775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Successful implantation is associated with a unique spatial pattern of vascular remodeling, characterized by profound peripheral neovascularization surrounding a periembryo avascular niche. We hypothesized that hyaluronan controls the formation of this distinctive vascular pattern encompassing the embryo. This hypothesis was evaluated by genetic modification of hyaluronan metabolism, specifically targeted to embryonic trophoblast cells. The outcome of altered hyaluronan deposition on uterine vascular remodeling and postimplantation development were analyzed by MRI, detailed histological examinations, and RNA sequencing of uterine NK cells. Our experiments revealed that disruption of hyaluronan synthesis, as well as its increased cleavage at the embryonic niche, impaired implantation by induction of decidual vascular permeability, defective vascular sinus folds formation, breach of the maternal-embryo barrier, elevated MMP-9 expression, and interrupted uterine NK cell recruitment and function. Conversely, enhanced deposition of hyaluronan resulted in the expansion of the maternal-embryo barrier and increased diffusion distance, leading to compromised implantation. The deposition of hyaluronan at the embryonic niche is regulated by progesterone-progesterone receptor signaling. These results demonstrate a pivotal role for hyaluronan in successful pregnancy by fine-tuning the periembryo avascular niche and maternal vascular morphogenesis. Hyaluronan fine-tunes the periembryo avascular niche and maternal vascular morphogenesis during implantation.
Collapse
Affiliation(s)
- Ron Hadas
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Eran Gershon
- Agricultural Research Organization, Volcani Center, Israel
| | - Aviad Cohen
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel.,Department of Gynecology, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler School of Medicine, Tel Aviv University, Israel
| | - Ofir Atrakchi
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Shlomi Lazar
- Department of Pharmacology, The Israel Institute for Biological Research, Nes Ziona, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities and
| | | | - Michal Elbaz
- Agricultural Research Organization, Volcani Center, Israel
| | - Gadi Cohen
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute, Rehovot, Israel
| | - Nava Dekel
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Michal Neeman
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| |
Collapse
|
5
|
Tkac J, Bertok T, Nahalka J, Gemeiner P. Perspectives in glycomics and lectin engineering. Methods Mol Biol 2015; 1200:421-45. [PMID: 25117256 DOI: 10.1007/978-1-4939-1292-6_37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This chapter would like to provide a short survey of the most promising concepts applied recently in analysis of glycoproteins based on lectins. The first part describes the most exciting analytical approaches used in the field of glycoprofiling based on integration of nanoparticles, nanowires, nanotubes, or nanochannels or using novel transducing platforms allowing to detect very low levels of glycoproteins in a label-free mode of operation. The second part describes application of recombinant lectins containing several tags applied for oriented and ordered immobilization of lectins. Besides already established concepts of glycoprofiling several novel aspects, which we think will be taken into account for future, more robust glycan analysis, are described including modified lectins, peptide lectin aptamers, and DNA aptamers with lectin-like specificity introduced by modified nucleotides. The last part of the chapter describes a novel concept of a glycocodon, which can lead to a better understanding of glycan-lectin interaction and for design of novel lectins with unknown specificities and/or better affinities toward glycan target or for rational design of peptide lectin aptamers or DNA aptamers.
Collapse
Affiliation(s)
- Jan Tkac
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38, Bratislava, Slovakia
| | | | | | | |
Collapse
|
6
|
Elmes M, Szyszka A, Pauliat C, Clifford B, Daniel Z, Cheng Z, Wathes C, McMullen S. Maternal age effects on myometrial expression of contractile proteins, uterine gene expression, and contractile activity during labor in the rat. Physiol Rep 2015; 3:e12305. [PMID: 25876907 PMCID: PMC4425948 DOI: 10.14814/phy2.12305] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 01/09/2023] Open
Abstract
Advanced maternal age of first time pregnant mothers is associated with prolonged and dysfunctional labor and significant risk of emergency cesarean section. We investigated the influence of maternal age on myometrial contractility, expression of contractile associated proteins (CAPs), and global gene expression in the parturient uterus. Female Wistar rats either 8 (YOUNG n = 10) or 24 (OLDER n = 10) weeks old were fed laboratory chow, mated, and killed during parturition. Myometrial strips were dissected to determine contractile activity, cholesterol (CHOL) and triglycerides (TAG) content, protein expression of connexin-43 (GJA1), prostaglandin-endoperoxide synthase 2 (PTGS2), and caveolin 1 (CAV-1). Maternal plasma concentrations of prostaglandins PGE2, PGF2α, and progesterone were determined by RIA. Global gene expression in uterine samples was compared using Affymetrix Genechip Gene 2.0 ST arrays and Ingenuity Pathway analysis (IPA). Spontaneous contractility in myometrium exhibited by YOUNG rats was threefold greater than OLDER animals (P < 0.027) but maternal age had no significant effect on myometrial CAP expression, lipid profiles, or pregnancy-related hormones. OLDER myometrium increased contractile activity in response to PGF2α, phenylephrine, and carbachol, a response absent in YOUNG rats (all P < 0.002). Microarray analysis identified that maternal age affected expression of genes related to immune and inflammatory responses, lipid transport and metabolism, steroid metabolism, tissue remodeling, and smooth muscle contraction. In conclusion YOUNG laboring rat myometrium seems primed to contract maximally, whereas activity is blunted in OLDER animals and requires stimulation to meet contractile potential. Further work investigating maternal age effects on myometrial function is required with focus on lipid metabolism and inflammatory pathways.
Collapse
Affiliation(s)
- Matthew Elmes
- Division of Nutritional Sciences, University of Nottingham, Loughborough, UK
| | - Alexandra Szyszka
- Division of Nutritional Sciences, University of Nottingham, Loughborough, UK
| | - Caroline Pauliat
- Division of Nutritional Sciences, University of Nottingham, Loughborough, UK
| | - Bethan Clifford
- Division of Nutritional Sciences, University of Nottingham, Loughborough, UK
| | - Zoe Daniel
- Division of Nutritional Sciences, University of Nottingham, Loughborough, UK
| | - Zhangrui Cheng
- Royal Veterinary College, Reproduction and Development Group, Hatfield, UK
| | - Claire Wathes
- Royal Veterinary College, Reproduction and Development Group, Hatfield, UK
| | - Sarah McMullen
- Division of Nutritional Sciences, University of Nottingham, Loughborough, UK
| |
Collapse
|
7
|
Mahata B, Zhang X, Kolodziejczyk AA, Proserpio V, Haim-Vilmovsky L, Taylor AE, Hebenstreit D, Dingler FA, Moignard V, Göttgens B, Arlt W, McKenzie ANJ, Teichmann SA. Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep 2014; 7:1130-42. [PMID: 24813893 PMCID: PMC4039991 DOI: 10.1016/j.celrep.2014.04.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 03/23/2014] [Accepted: 04/03/2014] [Indexed: 12/24/2022] Open
Abstract
T helper 2 (Th2) cells regulate helminth infections, allergic disorders, tumor immunity, and pregnancy by secreting various cytokines. It is likely that there are undiscovered Th2 signaling molecules. Although steroids are known to be immunoregulators, de novo steroid production from immune cells has not been previously characterized. Here, we demonstrate production of the steroid pregnenolone by Th2 cells in vitro and in vivo in a helminth infection model. Single-cell RNA sequencing and quantitative PCR analysis suggest that pregnenolone synthesis in Th2 cells is related to immunosuppression. In support of this, we show that pregnenolone inhibits Th cell proliferation and B cell immunoglobulin class switching. We also show that steroidogenic Th2 cells inhibit Th cell proliferation in a Cyp11a1 enzyme-dependent manner. We propose pregnenolone as a “lymphosteroid,” a steroid produced by lymphocytes. We speculate that this de novo steroid production may be an intrinsic phenomenon of Th2-mediated immune responses to actively restore immune homeostasis. Differential upregulation of the steroid biosynthetic pathway during Th2 differentiation T helper cells produce the steroid pregnenolone in vitro and in vivo Steroidogenic Th2 cells suppress Th cell proliferation in a Cyp11a1-dependent manner Pregnenolone inhibits B cell immunoglobulin class switching in vitro
Collapse
Affiliation(s)
- Bidesh Mahata
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | - Xiuwei Zhang
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Valentina Proserpio
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Liora Haim-Vilmovsky
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Angela E Taylor
- Centre for Endocrinology, Diabetes, and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Daniel Hebenstreit
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK; School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK
| | - Felix A Dingler
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK
| | - Victoria Moignard
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew N J McKenzie
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 OQH, UK
| | - Sarah A Teichmann
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
8
|
Zhang L, Zhou X, Michal JJ, Ding B, Li R, Jiang Z. Genome wide screening of candidate genes for improving piglet birth weight using high and low estimated breeding value populations. Int J Biol Sci 2014; 10:236-44. [PMID: 24644423 PMCID: PMC3957079 DOI: 10.7150/ijbs.7744] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/16/2014] [Indexed: 12/23/2022] Open
Abstract
Birth weight is an economically important trait in pig production because it directly impacts piglet growth and survival rate. In the present study, we performed a genome wide survey of candidate genes and pathways associated with individual birth weight (IBW) using the Illumina PorcineSNP60 BeadChip on 24 high (HEBV) and 24 low estimated breeding value (LEBV) animals. These animals were selected from a reference population of 522 individuals produced by three sires and six dam lines, which were crossbreds with multiple breeds. After quality-control, 43,257 SNPs (single nucleotide polymorphisms), including 42,243 autosomal SNPs and 1,014 SNPs on chromosome X, were used in the data analysis. A total of 27 differentially selected regions (DSRs), including 1 on Sus scrofa chromosome 1 (SSC1), 1 on SSC4, 2 on SSC5, 4 on SSC6, 2 on SSC7, 5 on SSC8, 3 on SSC9, 1 on SSC14, 3 on SSC18, and 5 on SSCX, were identified to show the genome wide separations between the HEBV and LEBV groups for IBW in piglets. A DSR with the most number of significant SNPs (including 7 top 0.1% and 31 top 5% SNPs) was located on SSC6, while another DSR with the largest genetic differences in FST was found on SSC18. These regions harbor known functionally important genes involved in growth and development, such as TNFRSF9 (tumor necrosis factor receptor superfamily member 9), CA6 (carbonic anhydrase VI) and MDFIC (MyoD family inhibitor domain containing). A DSR rich in imprinting genes appeared on SSC9, which included PEG10 (paternally expressed 10), SGCE (sarcoglycan, epsilon), PPP1R9A (protein phosphatase 1, regulatory subunit 9A) and ASB4 (ankyrin repeat and SOCS box containing 4). More importantly, our present study provided evidence to support six quantitative trait loci (QTL) regions for pig birth weight, six QTL regions for average birth weight (ABW) and three QTL regions for litter birth weight (LBW) reported previously by other groups. Furthermore, gene ontology analysis with 183 genes harbored in these 27 DSRs suggested that protein, metal, ion and ATP binding, viral process and innate immune response present important pathways for deciphering their roles in fetal growth or development. Overall, our study provides useful information on candidate genes and pathways for regulating birth weight in piglets, thus improving our understanding of the genetic mechanisms involved in porcine embryonic or fetal development.
Collapse
Affiliation(s)
- Lifan Zhang
- 1. Department of Animal Sciences, Washington State University, Pullman, WA, 99164-6351, USA. ; 2. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiang Zhou
- 1. Department of Animal Sciences, Washington State University, Pullman, WA, 99164-6351, USA
| | - Jennifer J Michal
- 1. Department of Animal Sciences, Washington State University, Pullman, WA, 99164-6351, USA
| | - Bo Ding
- 1. Department of Animal Sciences, Washington State University, Pullman, WA, 99164-6351, USA
| | - Rui Li
- 1. Department of Animal Sciences, Washington State University, Pullman, WA, 99164-6351, USA. ; 2. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Jiang
- 1. Department of Animal Sciences, Washington State University, Pullman, WA, 99164-6351, USA
| |
Collapse
|
9
|
Kim KH, Choi BK, Kim JD, Kim YH, Lee SK, Suh JH, Lee SC, Kang SW, Kwon BS. 4-1BB signaling breaks the tolerance of maternal CD8+ T cells that are reactive with alloantigens. PLoS One 2012; 7:e45481. [PMID: 23029041 PMCID: PMC3448654 DOI: 10.1371/journal.pone.0045481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/20/2012] [Indexed: 11/18/2022] Open
Abstract
4-1BB (CD137, TNFRSF9), a member of the activation-induced tumor necrosis factor receptor family, is a powerful T-cell costimulatory molecule. It generally enhances CD8(+) T responses and even breaks the tolerance of CD8(+) T cells in an antigen-specific manner. In the present study we found that it was expressed in the placentas of pregnant mice and that its expression coincided with that of the immunesuppressive enzyme indoleamine 2,3-dioxygenase (IDO). Therefore, we investigated whether 4-1BB signaling is involved in fetal rejection using agonistic anti-4-1BB mAb and 4-1BB-deficient mice. Treatment with agonistic anti-4-1BB mAb markedly increased the rate of rejection of allogeneic but not syngeneic fetuses, and this was primarily dependent on CD8(+) T cells. Complement component 3 (C3) seemed to be the effector molecule because 4-1BB triggering resulting in accumulation of C3 in the placenta, and this accumulation was also reversed by anti-CD8 mAb treatment. These findings demonstrate that 4-1BB triggering breaks the tolerance of CD8(+) T cells to alloantigens in the placenta. Moreover, triggering 4-1BB protected the pregnant mice from Listeria monocytogenes (LM) infection, but led to rejection of semi-allogeneic fetuses. Therefore, given the cross-recognition of alloantigen by pathogen-reactive CD8(+) T cells, the true function of 4-1BB may be to reverse the hypo-responsiveness of pathogen-reactive CD8(+) T cells in the placenta in cases of infection, even if that risks losing the fetus.
Collapse
Affiliation(s)
- Kwang H. Kim
- Division of Cancer Biology, National Cancer Center, Goyang, Kyeonggi-do, Korea
| | - Beom K. Choi
- Division of Cancer Biology, National Cancer Center, Goyang, Kyeonggi-do, Korea
| | - Jung D. Kim
- Departments of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Young H. Kim
- Program for Immunotherapeutic Research, National Cancer Center, Goyang, Kyeonggi-do, Korea
| | - Sun K. Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Jae H. Suh
- Department of Pathology, Ulsan University Hospital, Ulsan, Korea
| | - Sang C. Lee
- Division of Cancer Biology, National Cancer Center, Goyang, Kyeonggi-do, Korea
| | - Sang W. Kang
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Byoung S. Kwon
- Division of Cancer Biology, National Cancer Center, Goyang, Kyeonggi-do, Korea
- Program for Immunotherapeutic Research, National Cancer Center, Goyang, Kyeonggi-do, Korea
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisianna, United States of America
- * E-mail:
| |
Collapse
|
10
|
Angiopoietin-like gene expression in the mouse uterus during implantation and in response to steroids. Cell Tissue Res 2012; 348:199-211. [PMID: 22350948 DOI: 10.1007/s00441-012-1337-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/19/2012] [Indexed: 10/28/2022]
Abstract
The purpose of this work was to determine if and where Angiopoietin-like genes are expressed in the mouse uterus during the implantation period of pregnancy and to determine if uterine expression of such genes is controlled by estrogen or progesterone. We found that all six known murine angiopoietin-like genes were expressed in the mouse uterus during implantation. The expression of four genes was controlled by either estrogen or progesterone. Only the levels of angiopoietin-like 4 (Angptl4) mRNA dramatically increased in implantation segments of the uterus during decidualization and was conceptus-independent. Due to this increased expression and the fact that angiopoietin-like 4 protein plays a role in lipid metabolism and angiogenesis in other tissues, only the expression of Angptl4 was further examined in the uterus and developing placenta. Angptl4 mRNA was localized to subpopulations of the endometrial stromal fibroblast and endothelial cell populations during decidualization. It was also localized to the ectoplacental cone, trophoblast giant cells and parietal endoderm of the conceptus at this time. By mid-pregnancy, Angptl4 mRNA was localized mainly to the mesometrial lymphoid aggregate region plus mesometrial endothelial cells of the uterus, as well as in various cell types of the conceptus. Additional work showed that Angptl4 expression increases in mouse endometrial stromal cells as they undergo decidualization in vitro. As in other cell types, the expression of Angptl4 in endometrial stromal cells was increased in response to an agonist of the peroxisome proliferator activated receptors. Taken together, the results of this work support the hypothesis that locally expressed Angptl4 might play a role in local uterine/placental lipid metabolism and vascular changes during implantation and thus provide a basis for future research.
Collapse
|
11
|
Bany BM, Scott CA, Eckstrum KS. Analysis of uterine gene expression in interleukin-15 knockout mice reveals uterine natural killer cells do not play a major role in decidualization and associated angiogenesis. Reproduction 2011; 143:359-75. [PMID: 22187674 DOI: 10.1530/rep-11-0325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During decidualization, uterine natural killer (uNK) cells are the most abundant immune cell types found in the uterus. Although it is well known that they play key roles in spiral arteriole modification and the maintenance of decidual integrity seen after mid-pregnancy, their roles in the differentiation of decidual cells and accompanying angiogenesis during the process of decidualization is less well characterized. To address this, we used whole-genome Illumina BeadChip analysis to compare the gene expression profiles in implantation segments of the uterus during decidualization on day 7.5 of pregnancy between wild-type and uNK cell-deficient (interleukin-15-knockout) mice. We found almost 300 differentially expressed genes and verified the differential expression of ~60 using quantitative RT-PCR. Notably, there was a lack of differential expression of genes involved in decidualization and angiogenesis and this was also verified by quantitative RT-PCR. Similar endothelial cell densities and proliferation indices were also found in the endometrium between the implantation site tissues of wild-type and knockout mice undergoing decidualization. Overall, the results of this study reveal that uNK cells likely do not play a major role in decidualization and accompanying angiogenesis during implantation. In addition, the study identifies a large number of genes whose expression in implantation-site uterine tissue during decidualization depends on interleukin-15 expression in mice.
Collapse
Affiliation(s)
- Brent M Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, USA.
| | | | | |
Collapse
|