1
|
Psilopatis I, Theocharis S, Beckmann MW. The role of peroxisome proliferator-activated receptors in endometriosis. Front Med (Lausanne) 2024; 11:1329406. [PMID: 38690174 PMCID: PMC11058831 DOI: 10.3389/fmed.2024.1329406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Endometriosis constitutes the most common cause of chronic pelvic pain in female patients and is associated with infertility. Although there is no known cause for the disease, it is a heritable condition that is determined by numerous genetic, epigenetic, and environmental aspects. Peroxisome proliferator-activated receptors (PPARs) represent nuclear receptor proteins that control gene expression. By using the MEDLINE and LIVIVO databases we conducted a literature review in order to look into the role of PPARs in the endometriosis pathophysiology and succeeded in revealing 36 pertinent publications between 2001 and 2022. In regards to PPAR expression in endometriosis, PPARγ seems to represent the most studied PPAR isoform in endometriosis and to influence various pathways involved in the disease onset and progression. It's interesting to note that diverse treatment agents targeting the PPAR system have been identified as innovative, effective therapeutic alternatives in the context of endometriosis treatment. In conclusion, PPARs appear to contribute an important role in both endometriosis pathophysiology and therapy.
Collapse
Affiliation(s)
- Iason Psilopatis
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
2
|
Psilopatis I, Vrettou K, Troungos C, Theocharis S. The Role of Peroxisome Proliferator-Activated Receptors in Endometrial Cancer. Int J Mol Sci 2023; 24:ijms24119190. [PMID: 37298140 DOI: 10.3390/ijms24119190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Endometrial carcinoma is the most common malignant tumor of the female genital tract in the United States. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptor proteins which regulate gene expression. In order to investigate the role of PPARs in endometrial cancer, we conducted a literature review using the MEDLINE and LIVIVO databases and were able to identify 27 relevant studies published between 2000 and 2023. The PPARα and PPARβ/δ isoforms seemed to be upregulated, whereas PPARγ levels were reported to be significantly lower in endometrial cancer cells. Interestingly, PPAR agonists were found to represent potent anti-cancer therapeutic alternatives. In conclusion, PPARs seem to play a significant role in endometrial cancer.
Collapse
Affiliation(s)
- Iason Psilopatis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Kleio Vrettou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Constantinos Troungos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 16, Goudi, 11527 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| |
Collapse
|
3
|
Ferreira SR, Vélez LM, F Heber M, Abruzzese GA, Motta AB. Prenatal androgen excess alters the uterine peroxisome proliferator-activated receptor (PPAR) system. Reprod Fertil Dev 2019; 31:1401-1409. [PMID: 31039921 DOI: 10.1071/rd18432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/18/2019] [Indexed: 02/03/2023] Open
Abstract
It is known that androgen excess induces changes in fetal programming that affect several physiological pathways. Peroxisome proliferator-activated receptors (PPARs) α, δ and γ are key mediators of female reproductive functions, in particular in uterine tissues. Thus, we aimed to study the effect of prenatal hyperandrogenisation on the uterine PPAR system. Rats were treated with 2mg testosterone from Day 16 to 19 of pregnancy. Female offspring (PH group) were followed until 90 days of life, when they were killed. The PH group exhibited an anovulatory phenotype. We quantified uterine mRNA levels of PPARα (Ppara ), PPARδ (Ppard ), PPARγ (Pparg ), their regulators peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Ppargc1a ) and nuclear receptor co-repressor 1 (Ncor1 ) and cyclo-oxygenase (COX)-2 (Ptgs2 ), and assessed the lipid peroxidation (LP) index and levels of glutathione (GSH) and prostaglandin (PG) E2 . The PH group showed decreased levels of all uterine PPAR isoforms compared with the control group. In addition, PGE2 and Ptgs2 levels were increased in the PH group, which led to a uterine proinflammatory environment, as was LP, which led to a pro-oxidant status that GSH was not able to compensate for. These results suggest that prenatal exposure to androgen excess has a fetal programming effect that affects the gene expression of PPAR isoforms, and creates a misbalanced oxidant-antioxidant state and a proinflammatory status.
Collapse
Affiliation(s)
- Silvana R Ferreira
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina
| | - Leandro M Vélez
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina
| | - Maria F Heber
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina
| | - Giselle A Abruzzese
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina
| | - Alicia B Motta
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina; and Corresponding author
| |
Collapse
|
4
|
He JP, Zhao M, Zhang WQ, Huang MY, Zhu C, Cheng HZ, Liu JL. Identification of Gene Expression Changes Associated With Uterine Receptivity in Mice. Front Physiol 2019; 10:125. [PMID: 30890945 PMCID: PMC6413723 DOI: 10.3389/fphys.2019.00125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/31/2019] [Indexed: 01/22/2023] Open
Abstract
The mouse is a widely used animal model for studying human reproduction. Although global gene expression changes associated with human uterine receptivity have been determined by independent groups, the same studies in the mouse are scarce. The extent of similarities/differences between mice and humans on uterine receptivity at the molecular level remains to be determined. In the present study, we analyzed global gene expression changes in receptive uterus on day 4 of pregnancy compared to non-receptive uterus on day 3 of pregnancy in mice. A total of 541 differentially expressed genes were identified, of which 316 genes were up-regulated and 225 genes were down-regulated in receptive uterus compared to non-receptive uterus. Gene ontology and gene network analysis highlighted the activation of inflammatory response in the receptive uterus. By analyzing the promoter sequences of differentially expressed genes, we identified 12 causal transcription factors. Through connectivity map (CMap) analysis, we revealed several compounds with potential anti-receptivity activity. Finally, we performed a cross-species comparison against human uterine receptivity from a published dataset. Our study provides a valuable resource for understanding the molecular mechanism underlying uterine receptivity in mice.
Collapse
Affiliation(s)
- Jia-Peng He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Miao Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen-Qian Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming-Yu Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Can Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hao-Zhuang Cheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ji-Long Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Szczepańska AA, Łupicka M, Socha BM, Korzekwa AJ. The influence of arachidonic acid metabolites on PPAR and RXR expression in bovine uterine cells. Gen Comp Endocrinol 2018; 262:27-35. [PMID: 29510153 DOI: 10.1016/j.ygcen.2018.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 02/05/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the superfamily of nuclear receptors. Three isoforms have been described: alpha (PPARα), delta (PPARδ), and gamma (PPARγ). PPARs heterodimerize with retinoid X receptors (RXRs: RXRα, RXRβ and RXRγ). PPAR activity can be modulated by several ligands, including arachidonic acid (AA) metabolites. The aims of the study were to determine the effect of AA metabolites (prostaglandin [PG]E2, PGF2α, leukotriene [LT]B4, and LTC4) on mRNA (real-time PCR) and protein expression (Western blotting) of PPARα, PPARδ, and PPARγ, and on mRNA expression of RXRα, RXRβ, and RXRγ, in bovine epithelial, stromal, and myometrial primary uterine cells and in bovine stromal cells with silenced PPAR genes (N = 10). All PPAR and RXR isoforms were expressed. Prostaglandins affected expression of PPARs only in stromal cells, whereas LTs modulated PPARγ mRNA expression in epithelial and myometrial primary cells. Blockade of signal transduction through PPARs prevented interactions between AA metabolites and PPARs and changed RXR expression comparing with primary stromal cells. In primary stromal uterine cells, mRNA expression of RXRs was higher than that of PPARs. In uterine stromal cells in which intracellular signaling through PPARs was blocked, RXRs seem to take over the role of PPARs and are pivotal for cell functions. This study revealed the reaction of PPARs and RXRs to agonists which naturally occur in the bovine uterus.
Collapse
Affiliation(s)
- A A Szczepańska
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Tuwima St. 10, 10-747 Olsztyn, Poland
| | - M Łupicka
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Tuwima St. 10, 10-747 Olsztyn, Poland
| | - B M Socha
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Tuwima St. 10, 10-747 Olsztyn, Poland
| | - A J Korzekwa
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Tuwima St. 10, 10-747 Olsztyn, Poland. http://tbr.pan.olsztyn.pl/images/KSIAZKA_KONFERENCYJNA_TBR_30_08_17.pdf
| |
Collapse
|
6
|
Socha B, Łupicka M, Szczepańska A, Korzekwa A. PPAR expression throughout the oestrous cycle in the bovine endometrium. Theriogenology 2017; 100:88-94. [DOI: 10.1016/j.theriogenology.2017.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022]
|
7
|
Bogacka I, Bogacki M, Wasielak M. The effect of embryo presence on the expression of peroxisome proliferator activated receptor (PPAR) genes in the porcine reproductive system during periimplantation. Acta Vet Hung 2013; 61:405-15. [PMID: 23921352 DOI: 10.1556/avet.2013.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study was undertaken to determine the effect of the presence of embryos in the uterine horn on peroxisome proliferator activated receptors (PPARs; A, D, G) gene expression in the reproductive tissues of gilts subjected to a surgical procedure. The uterus consisted of one intact horn connected to the uterine corpus and the second horn detached from the uterine corpus but connected with the contiguous ovary. The gilts were hormonally stimulated and divided into two groups: the first group, inseminated (pregnant) and the second group (cyclic), with surgical procedure but not inseminated. The animals of both groups were slaughtered on day 14 of pregnancy or on day 14 of the oestrous cycle, respectively. PPARs mRNA abundance in the endometrium and the corpus luteum (CL) was analysed by quantitative real-time PCR. During pregnancy, PPARA and PPARD μmRNA abundance in the porcine endometrium was significantly higher in the horn containing embryos than in the contralateral horn, where embryos were absent. The endometrial PPARG1 mRNA abundance did not differ between the two horns during pregnancy and the oestrous cycle, but a higher level of the transcript was observed during pregnancy when compared to the oestrous cycle. In the CL, there were no significant differences in PPARA and PPARDμ mRNA abundance between horns in pregnant or cyclic sows. However, there was a significant increase of PPARA and PPARD transcript level in the CL from cyclic compared with pregnant sows. The results of our study suggest that PPARA and PPARD have regulatory functions in early pregnancy, and they indicate that increased levels of endometrial gene expression are correlated with the presence of embryos in the uterine horn. Higher levels of PPARA and PPARD expression in the porcine CL on day 14 of the oestrous cycle than on day 14 of pregnancy suggest that both forms are involved in the regulation of CL functions.
Collapse
Affiliation(s)
- Iwona Bogacka
- 1 University of Warmia and Mazury in Olsztyn Department of Animal Physiology 10-719 Olsztyn Oczapowskiego 2 Poland
| | - Marek Bogacki
- 2 Institute of Animal Reproduction and Food Research of Polish Academy of Sciences Olsztyn Poland
| | - Marta Wasielak
- 2 Institute of Animal Reproduction and Food Research of Polish Academy of Sciences Olsztyn Poland
| |
Collapse
|
8
|
Vasquez YM, DeMayo FJ. Role of nuclear receptors in blastocyst implantation. Semin Cell Dev Biol 2013; 24:724-35. [PMID: 23994285 DOI: 10.1016/j.semcdb.2013.08.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/14/2022]
Abstract
The regulation of blastocyst implantation in the uterus is orchestrated by the ovarian hormones estrogen and progesterone. These hormones act via their nuclear receptors to direct the transcriptional activity of the endometrial compartments and create a defined period in which the uterus is permissive to embryo implantation termed the "window of receptivity". Additional members of the nuclear receptor family have also been described to have a potential role in endometrial function. Much of what we know about the function of these nuclear receptors during implantation we have learned from the use of mouse models. Transgenic murine models with targeted gene ablation have allowed us to identify a complex network of paracrine signaling between the endometrial epithelium and stroma. While some of the critical molecules have been identified, the mechanism underlying the intricate communication between endometrial compartments during the implantation window has not been fully elucidated. Defining this mechanism will help identify markers of a receptive uterine environment, ultimately providing a useful tool to help improve the fertility outlook for reproductively challenged couples. The aim of this review is to outline our current understanding of how nuclear receptors and their effector molecules regulate blastocyst implantation in the endometrium.
Collapse
Affiliation(s)
- Y M Vasquez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
9
|
Nishimura K, Nakano N, Chowdhury VS, Kaneto M, Torii M, Hattori MA, Yamauchi N, Kawai M. Effect of PPARβ/δ Agonist on the Placentation and Embryo-Fetal Development in Rats. ACTA ACUST UNITED AC 2013; 98:164-9. [DOI: 10.1002/bdrb.21052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/08/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Kyohei Nishimura
- Drug Safely Evaluation; Drug Developmental Research Laboratories; Toyonaka; Osaka; Japan
| | - Nao Nakano
- Drug Safely Evaluation; Drug Developmental Research Laboratories; Toyonaka; Osaka; Japan
| | - Vishwajit Sur Chowdhury
- Department of Animal and Marine Bioresource Sciences; Graduate School Kyushu University; Hakozaki; Higashi-ku, Fukuoka; Japan
| | - Masako Kaneto
- Drug Safely Evaluation; Drug Developmental Research Laboratories; Toyonaka; Osaka; Japan
| | - Mikinori Torii
- Drug Safely Evaluation; Drug Developmental Research Laboratories; Toyonaka; Osaka; Japan
| | - Masa-aki Hattori
- Department of Animal and Marine Bioresource Sciences; Graduate School Kyushu University; Hakozaki; Higashi-ku, Fukuoka; Japan
| | - Nobuhiko Yamauchi
- Department of Animal and Marine Bioresource Sciences; Graduate School Kyushu University; Hakozaki; Higashi-ku, Fukuoka; Japan
| | - Motoyuki Kawai
- Drug Safely Evaluation; Drug Developmental Research Laboratories; Toyonaka; Osaka; Japan
| |
Collapse
|
10
|
Angiopoietin-like gene expression in the mouse uterus during implantation and in response to steroids. Cell Tissue Res 2012; 348:199-211. [PMID: 22350948 DOI: 10.1007/s00441-012-1337-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/19/2012] [Indexed: 10/28/2022]
Abstract
The purpose of this work was to determine if and where Angiopoietin-like genes are expressed in the mouse uterus during the implantation period of pregnancy and to determine if uterine expression of such genes is controlled by estrogen or progesterone. We found that all six known murine angiopoietin-like genes were expressed in the mouse uterus during implantation. The expression of four genes was controlled by either estrogen or progesterone. Only the levels of angiopoietin-like 4 (Angptl4) mRNA dramatically increased in implantation segments of the uterus during decidualization and was conceptus-independent. Due to this increased expression and the fact that angiopoietin-like 4 protein plays a role in lipid metabolism and angiogenesis in other tissues, only the expression of Angptl4 was further examined in the uterus and developing placenta. Angptl4 mRNA was localized to subpopulations of the endometrial stromal fibroblast and endothelial cell populations during decidualization. It was also localized to the ectoplacental cone, trophoblast giant cells and parietal endoderm of the conceptus at this time. By mid-pregnancy, Angptl4 mRNA was localized mainly to the mesometrial lymphoid aggregate region plus mesometrial endothelial cells of the uterus, as well as in various cell types of the conceptus. Additional work showed that Angptl4 expression increases in mouse endometrial stromal cells as they undergo decidualization in vitro. As in other cell types, the expression of Angptl4 in endometrial stromal cells was increased in response to an agonist of the peroxisome proliferator activated receptors. Taken together, the results of this work support the hypothesis that locally expressed Angptl4 might play a role in local uterine/placental lipid metabolism and vascular changes during implantation and thus provide a basis for future research.
Collapse
|