1
|
Bette M, Reinhardt L, Gansukh U, Xiang-Tischhauser L, Meskeh H, Di Fazio P, Buchholz M, Stuck BA, Mandic R. The Role of TGF-β1 and Mutant SMAD4 on Epithelial-Mesenchymal Transition Features in Head and Neck Squamous Cell Carcinoma Cell Lines. Cancers (Basel) 2024; 16:3172. [PMID: 39335144 PMCID: PMC11429651 DOI: 10.3390/cancers16183172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of the present study was to investigate possible differences in the sensitivity of HNSCC cells to known EMT regulators. Three HNSCC cell lines (UM-SCC-1, -3, -22B) and the HaCaT control keratinocyte cell line were exposed to transforming growth factor beta 1 (TGF-β1), a known EMT master regulator, and the cellular response was evaluated by real-time cell analysis (RTCA), Western blot, quantitative PCR, flow cytometry, immunocytochemistry, and the wound closure (scratch) assay. Targeted sequencing on 50 cancer-related genes was performed using the Cancer Hotspot Panel v2. Mutant, and wild type SMAD4 cDNA was used to generate recombinant SMAD4 constructs for expression in mammalian cell lines. The most extensive response to TGF-β1, such as cell growth and migration, β-actin expression, or E-cadherin (CDH1) downregulation, was seen in cells with a more epithelial phenotype. Lower response correlated with higher basal p-TGFβ RII (Tyr424) levels, pointing to a possible autocrine pre-activation of these cell lines. Targeted sequencing revealed a homozygous SMAD4 mutation in the UM-SCC-22B cell line. Furthermore, PCR cloning of SMAD4 cDNA from the same cell line revealed an additional SMAD4 transcript with a 14 bp insertion mutation, which gives rise to a truncated SMAD4 protein. Overexpression of this mutant SMAD4 protein in the highly epithelial control cell line HaCaT resulted in upregulation of TGF-β1 and vimentin. Consistent with previous reports, the invasive and metastatic potential of HNSCC tumor cells appears associated with the level of autocrine secretion of EMT regulators such as TGF-β1, and it could be influenced by exogenous EMT cytokines such as those derived from immune cells of the tumor microenvironment. Furthermore, mutant SMAD4 appears to be a significant contributor to the mesenchymal transformation of HNSCC cells.
Collapse
Affiliation(s)
- Michael Bette
- Institute of Anatomy and Cell Biology, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Laura Reinhardt
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Uyanga Gansukh
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Li Xiang-Tischhauser
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Haifa Meskeh
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Pietro Di Fazio
- Department of Nuclear Medicine, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Malte Buchholz
- Clinic for Gastroenterology, Endocrinology and Metabolism, University Hospital, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Boris A Stuck
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Robert Mandic
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
2
|
Strohmayer C, Klang A, Kummer S, Walter I, Jindra C, Weissenbacher-Lang C, Redmer T, Kneissl S, Brandt S. Tumor Cell Plasticity in Equine Papillomavirus-Positive Versus-Negative Squamous Cell Carcinoma of the Head and Neck. Pathogens 2022; 11:pathogens11020266. [PMID: 35215208 PMCID: PMC8875230 DOI: 10.3390/pathogens11020266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) is a common malignant tumor in humans and animals. In humans, papillomavirus (PV)-induced HNSCCs have a better prognosis than papillomavirus-unrelated HNSCCs. The ability of tumor cells to switch from epithelial to mesenchymal, endothelial, or therapy-resistant stem-cell-like phenotypes promotes disease progression and metastasis. In equine HNSCC, PV-association and tumor cell phenotype switching are poorly understood. We screened 49 equine HNSCCs for equine PV (EcPV) type 2, 3 and 5 infection. Subsequently, PV-positive versus -negative lesions were analyzed for expression of selected epithelial (keratins, β-catenin), mesenchymal (vimentin), endothelial (COX-2), and stem-cell markers (CD271, CD44) by immunohistochemistry (IHC) and immunofluorescence (IF; keratins/vimentin, CD44/CD271 double-staining) to address tumor cell plasticity in relation to PV infection. Only EcPV2 PCR scored positive for 11/49 equine HNSCCs. IHC and IF from 11 EcPV2-positive and 11 EcPV2-negative tumors revealed epithelial-to-mesenchymal transition events, with vimentin-positive cells ranging between <10 and >50%. CD44- and CD271-staining disclosed the intralesional presence of infiltrative tumor cell fronts and double-positive tumor cell subsets independently of the PV infection status. Our findings are indicative of (partial) epithelial–mesenchymal transition events giving rise to hybrid epithelial/mesenchymal and stem-cell-like tumor cell phenotypes in equine HNSCCs and suggest CD44 and CD271 as potential malignancy markers that merit to be further explored in the horse.
Collapse
Affiliation(s)
- Carina Strohmayer
- Clinical Unit of Diagnostic Imaging, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (C.S.); (S.K.)
| | - Andrea Klang
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (A.K.); (C.W.-L.)
| | - Stefan Kummer
- VetCore Facility for Research, University of Veterinary Medicine, 1210 Vienna, Austria; (S.K.); (I.W.)
| | - Ingrid Walter
- VetCore Facility for Research, University of Veterinary Medicine, 1210 Vienna, Austria; (S.K.); (I.W.)
- Institute of Morphology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Christoph Jindra
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Christiane Weissenbacher-Lang
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (A.K.); (C.W.-L.)
| | - Torben Redmer
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Sibylle Kneissl
- Clinical Unit of Diagnostic Imaging, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (C.S.); (S.K.)
| | - Sabine Brandt
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria;
- Correspondence: ; Tel.: +43-12-5077-5308
| |
Collapse
|
3
|
Gül D, Habtemichael N, Dietrich D, Dietrich J, Gößwein D, Khamis A, Deuss E, Künzel J, Schneider G, Strieth S, Stauber RH. Identification of cytokeratin24 as a tumor suppressor for the management of head and neck cancer. Biol Chem 2021; 403:869-890. [PMID: 34450690 DOI: 10.1515/hsz-2021-0287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
To improve management of head and neck squamous cell carcinoma patients, we need to increase our understanding of carcinogenesis, to identify biomarkers, and drug targets. This study aimed to identify novel biomarkers by providing transcriptomics profiles of matched primary tumors, lymph node metastasis, and non-malignant tissue of 20 HNSCC patients as well as by bioinformatic analyses of a TCGA HNSCC cohort, comprising 554 patients. We provide cancer cell signaling networks differentially expressed in tumors versus metastases, such as mesenchymal-epithelial transition, and structural integrity networks. As a proof of principle study, we exploited the data sets and performed functional analyses of a novel cytokeratin, cytokeratin24 (cKRT24), which had not been described as biomarker for tumors before. Survival analysis revealed that low cKRT24 expression correlated with poor overall survival in HNSCC. Experimentally, downregulation of cKRT24 in primary tumors, metastases, and HNSCC cell lines was verified on mRNA and protein level. Cloning and ectopic overexpression of cKRT24 not only affected viability and growth of HNSSC cell lines, but also inhibited tumor growth in murine xenograft studies. We conclude that cKRT24 functions as a tumor suppressor in HNSCC, and may serve as an additional prognostic biomarker and novel target to support current HNSCC treatments.
Collapse
Affiliation(s)
- Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Negusse Habtemichael
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology,University Medical Center Bonn, D-53127Bonn, Germany
| | - Jörn Dietrich
- Department of Otorhinolaryngology,University Medical Center Bonn, D-53127Bonn, Germany
| | - Dorothee Gößwein
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Aya Khamis
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Eric Deuss
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany.,Department of Otorhinolaryngology Head and Neck Surgery, University Hospital, D-45147Essen, Germany
| | - Julian Künzel
- Ear, Nose and Throat Department, University Hospital, D-93053Regensburg, Germany
| | - Günter Schneider
- Ear, Nose and Throat Department, University Hospital, D-93053Regensburg, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology,University Medical Center Bonn, D-53127Bonn, Germany
| | - Roland H Stauber
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| |
Collapse
|
4
|
Mao Y, Ma J, Xia Y, Xie X. The Overexpression of Epidermal Growth Factor (EGF) in HaCaT Cells Promotes the Proliferation, Migration, Invasion and Transdifferentiation to Epidermal Stem Cell Immunophenotyping of Adipose-Derived Stem Cells (ADSCs). Int J Stem Cells 2020; 13:93-103. [PMID: 32114740 PMCID: PMC7119215 DOI: 10.15283/ijsc18146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives The application of adipose derived stem cells (ADSCs) in skin repair has attracted much attention nowadays. Epidermal growth factor (EGF) participates in the progress of skin proliferation, differentiation and so forth. We aimed to explore the role of EGF in the proliferation, invasion, migration and transdifferentiation into epidermal cell phenotypes of ADSCs. Methods and Results ADSCs were extracted from adipose tissues from patient. Immunophenotyping was determined by flow cytometry. Overexpressed EGF or siEGF was transfected by lentiviruses. EGF was determined by enzyme linked immunosorbent assay (ELISA) or western blot. ADSCs and HaCaT cells were co-cultured by Transwell chambers. Conditioned medium (CM) was obtained from cultured HaCaT cells and used for the culturing of ADSCs. Cell viability was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Invasion rate was measured by Transwell invasion assay and migration rate by wound healing test. mRNA and protein levels were measured by qPCR and western blot respectively. The extracted cells from adipose tissues were identified as ADSCs by morphology and immunophenotyping. The expression of EGF was up or down regulated constantly in HaCaT cell line after transfection. EGF overexpression upregulated the proliferation, migration and invasion rates of ADSCs, and EGF expression regulated the expression of cytokeratin-19 (CK19) and integrin-β as well. Conclusions EGF could be served as a stimulus to promote the proliferation, migration, and invasion as well as the transdifferentiation into epidermal stem cell immunophenotyping of ADSCs. The results showed that EGF had a promising effect on the repair of skin wound.
Collapse
Affiliation(s)
- Yueping Mao
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianchi Ma
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yue Xia
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyuan Xie
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Nguyen TMX, Vegrichtova M, Tlapakova T, Krulova M, Krylov V. The interconnection between cytokeratin and cell membrane-bound β-catenin in Sertoli cells derived from juvenile Xenopus tropicalis testes. Biol Open 2019; 8:bio.043950. [PMID: 31822471 PMCID: PMC6955214 DOI: 10.1242/bio.043950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sertoli cells (SCs) play a central role in the determination of male sex during embryogenesis and spermatogenesis in adulthood. Failure in SC development is responsible for male sterility and testicular cancer. Before the onset of puberty, SCs are immature and differ considerably from mature cells in post-pubertal individuals regarding their morphology and biochemical activity. The major intermediate filament (IF) in mature SCs is vimentin, anchoring germ cells to the seminiferous epithelium. The collapse of vimentin has resulted in the disintegration of seminiferous epithelium and subsequent germ cell apoptosis. However, another IF, cytokeratin (CK) is observed only transiently in immature SCs in many species. Nevertheless, its function in SC differentiation is poorly understood. We examined the interconnection between CK and cell junctions using membrane β-catenin as a marker during testicular development in the Xenopus tropicalis model. Immunohistochemistry on juvenile (5 months old) testes revealed co-expression of CK, membrane β-catenin and E-cadherin. Adult (3-year-old males) samples confirmed only E-cadherin expression; CK and β-catenin were lost. To study the interconnection between CK and β-catenin-based cell junctions, the culture of immature SCs (here called XtiSCs) was employed. Suppression of CK by acrylamide in XtiSCs led to breakdown of membrane-bound β-catenin but not F-actin and β-tubulin or cell-adhesion proteins (focal adhesion kinase and integrin β1). In contrast to the obvious dependence of membrane β-catenin on CK stability, the detachment of β-catenin from the plasma membrane via uncoupling of cadherins by Ca2+ chelator EGTA had no effect on CK integrity. Interestingly, CHIR99021, a GSK3 inhibitor, also suppressed the CK network, resulting in the inhibition of XtiSCs cell-to-cell contacts and testicular development in juvenile frogs. This study suggests a novel role of CK in the retention of β-catenin-based junctions in immature SCs, and thus provides structural support for seminiferous tubule formation and germ cell development. Summary: Cytokeratin (CK) and β-catenin are expressed in juvenile testicles and cultivated Xenopus tropicalis immature Sertoli cells (SC). Acrylamide and CHIR99021 disrupted the CK network, immature SC connections and testes development.
Collapse
Affiliation(s)
- Thi Minh Xuan Nguyen
- Charles University, Faculty of Science, Vinicna 7, 128 44, Prague 2, Czech Republic.,Department of Biotechnology, The University of Da-Nang, University of Science and Technology, 54 Nguyen Luong Bang, Da-Nang, 550000, Vietnam
| | - Marketa Vegrichtova
- Charles University, Faculty of Science, Vinicna 7, 128 44, Prague 2, Czech Republic
| | - Tereza Tlapakova
- Charles University, Faculty of Science, Vinicna 7, 128 44, Prague 2, Czech Republic
| | - Magdalena Krulova
- Charles University, Faculty of Science, Vinicna 7, 128 44, Prague 2, Czech Republic
| | - Vladimir Krylov
- Charles University, Faculty of Science, Vinicna 7, 128 44, Prague 2, Czech Republic
| |
Collapse
|
6
|
Carbon Ion-Irradiated Hepatoma Cells Exhibit Coupling Interplay between Apoptotic Signaling and Morphological and Mechanical Remodeling. Sci Rep 2016; 6:35131. [PMID: 27731354 PMCID: PMC5059721 DOI: 10.1038/srep35131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/22/2016] [Indexed: 12/27/2022] Open
Abstract
A apoptotic model was established based on the results of five hepatocellular carcinoma cell (HCC) lines irradiated with carbon ions to investigate the coupling interplay between apoptotic signaling and morphological and mechanical cellular remodeling. The expression levels of key apoptotic proteins and the changes in morphological characteristics and mechanical properties were systematically examined in the irradiated HCC lines. We observed that caspase-3 was activated and that the Bax/Bcl-2 ratio was significantly increased over time. Cellular morphology and mechanics analyses indicated monotonic decreases in spatial sizes, an increase in surface roughness, a considerable reduction in stiffness, and disassembly of the cytoskeletal architecture. A theoretical model of apoptosis revealed that mechanical changes in cells induce the characteristic cellular budding of apoptotic bodies. Statistical analysis indicated that the projected area, stiffness, and cytoskeletal density of the irradiated cells were positively correlated, whereas stiffness and caspase-3 expression were negatively correlated, suggesting a tight coupling interplay between the cellular structures, mechanical properties, and apoptotic protein levels. These results help to clarify a novel arbitration mechanism of cellular demise induced by carbon ions. This biomechanics strategy for evaluating apoptosis contributes to our understanding of cancer-killing mechanisms in the context of carbon ion radiotherapy.
Collapse
|
7
|
Cho A, Hur J, Moon YW, Hong SR, Suh YJ, Kim YJ, Im DJ, Hong YJ, Lee HJ, Kim YJ, Shim HS, Lee JS, Kim JH, Choi BW. Correlation between EGFR gene mutation, cytologic tumor markers, 18F-FDG uptake in non-small cell lung cancer. BMC Cancer 2016; 16:224. [PMID: 26979333 PMCID: PMC4793740 DOI: 10.1186/s12885-016-2251-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/07/2016] [Indexed: 11/10/2022] Open
Abstract
Background EGFR mutation-induced cell proliferation causes changes in tumor biology and tumor metabolism, which may reflect tumor marker concentration and 18F-FDG uptake on PET/CT. Direct aspirates of primary lung tumors contain different concentrations of tumor markers than serum tumor markers, and may correlate better with EGFR mutation than serum tumor markers. The purpose of this study is to investigate an association between cytologic tumor markers and FDG uptake with EGFR mutation status in non-small cell lung cancer (NSCLC). Methods We prospectively collected tumor aspirates of 61 patients who underwent EGFR mutation analysis. Serum and cytologic CYFRA 21-1, CEA, and SCCA levels were measured and correlated with EGFR gene mutations. FDG PET/CT was performed on 58 patients for NSCLC staging, and SUV was correlated with EGFR mutation status. Results Thirty (50 %) patients had EGFR mutation and 57 patients had adenocarcinoma subtype. Univariate analysis showed that female gender, never smoker, high levels of cytologic CYFRA 21-1 (c-CYFRA) and lower maximum standard uptake value (SUVmax) were correlated with EGFR mutations. ROC generated cut-off values of 20.8 ng/ml for c-CYFRA and SUVmax of 9.6 showed highest sensitivity for EGFR mutation detection. Multivariate analysis revealed that female gender [hazard ratio (HR): 18.15, p = 0.025], higher levels of c-CYFRA (HR: 7.58, and lower SUVmax (HR: 0.08, p = 0.005) were predictive of harboring EGFR mutation. Conclusions The cytologic tumor marker c-CYFRA was positively associated with EGFR mutations in NSCLC. EGFR mutation-positive NSCLCs have relatively lower glycolysis compared with NSCLCs without EGFR mutation.
Collapse
Affiliation(s)
- Arthur Cho
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Jin Hur
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Yong Wha Moon
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Sae Rom Hong
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Joo Suh
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Jung Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Jin Im
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yoo Jin Hong
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hye-Jeong Lee
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Jin Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Sup Shim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Seok Lee
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Pathology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Joo-Hang Kim
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.,Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Byoung Wook Choi
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Ramineni SK, Fowler CB, Fisher PD, Cunningham LL, Puleo DA. Effects of epidermal growth factor-loaded mucoadhesive films on wounded oral tissue rafts. ACTA ACUST UNITED AC 2015; 10:015026. [PMID: 25729882 DOI: 10.1088/1748-6041/10/1/015026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Current treatments for traumatic oral mucosal wounds include the gold standard of autologous tissue and alternative tissue-engineered grafts. While use of autografts has disadvantages of minimal availability of oral keratinized tissue, second surgery, and donor site discomfort, tissue-engineered grafts are limited by their unavailability as off-the-shelf products owing to their fabrication time of 4-8 weeks. Hence, the current work aimed to develop a potentially cost-effective, readily available device capable of enhancing native mucosal regeneration. Considering the key role of epidermal growth factor (EGF) in promoting mucosal wound regeneration and the advantages of mucoadhesive delivery systems, mucoadhesive films composed of polyvinylpyrrolidone and carboxymethylcellulose were developed to provide sustained release of EGF for a minimum of 6 h. Bioactivity of released EGF supernatants was then confirmed by its ability to promote proliferation of BALB/3T3 fibroblasts. Efficacy of the developed system was then investigated in vitro using buccal tissues (ORL 300-FT) as a potential replacement for small animal studies. Although the mucoadhesive films achieved their desired role of delivering bioactive EGF in a sustained manner, treatment with EGF, irrespective of its release from the films or solubilized in medium, caused a hyperparakeratotic response from in vitro tissues with distinguishable histological features including thickening of the spinous layer, intra- and intercellular edema, and pyknotic nuclei. These significant morphological changes were associated with no improvements in wound closure. These observations raise questions about the potential of using in vitro tissues as a wound healing model and substitute for small animal studies. The mucoadhesive delivery system developed, however, with its potential for sustained release of bioactive growth factors and small molecules, may be loaded with other desired compounds, with or without EGF, to accelerate the process of wound healing.
Collapse
Affiliation(s)
- Sandeep K Ramineni
- Department of Biomedical Engineering, 522 Robotics and Manufacturing Building, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | |
Collapse
|
9
|
Neuber S, Jäger S, Meyer M, Wischmann V, Koch PJ, Moll R, Schmidt A. c-Src mediated tyrosine phosphorylation of plakophilin 3 as a new mechanism to control desmosome composition in cells exposed to oxidative stress. Cell Tissue Res 2014; 359:799-816. [PMID: 25501895 DOI: 10.1007/s00441-014-2063-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 11/10/2014] [Indexed: 12/12/2022]
Abstract
Plakophilins (PKP1 to PKP3) are essential for the structure and function of desmosomal junctions as demonstrated by the severe skin defects observed as a result of loss-of-function mutations in mice and men. PKPs play additional roles in cell signaling processes, such as those controlling the cellular stress response and cell proliferation. A key post-translational process controlling PKP function is phosphorylation. We have discovered that reactive oxygen species (ROS) trigger the c-Src kinase-mediated tyrosine (Tyr)-195 phosphorylation of PKP3. This modification is associated with a change in the subcellular distribution of the protein. Specifically, PKP3 bearing phospho-Tyr-195 is released from the desmosomes, suggesting that phospho-Tyr-195 is relevant for the control of desmosome disassembly and function, at least in cells exposed to ROS. Tyr-195 phosphorylation is transient under normal physiological conditions and seems to be strictly regulated, as the activation of particular growth factor receptors results in a modification at this site only when tyrosine phosphatases are inactivated by pervanadate. We have identified Tyr-195 of PKP3 as a phosphorylation target of epidermal growth factor receptor signaling. Interestingly, this PKP3 phosphorylation also occurs in certain poorly differentiated adenocarcinomas of the prostate, suggesting a possible role in tumor progression. Our study thus identifies a new mechanism controlling PKP3 and hence desmosome function in epithelial cells.
Collapse
Affiliation(s)
- Steffen Neuber
- Institute of Pathology, Philipps University of Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
The EGF signaling pathway influences cell migration and the secretion of metalloproteinases by myoepithelial cells in pleomorphic adenoma. Tumour Biol 2014; 36:205-11. [PMID: 25230789 DOI: 10.1007/s13277-014-2624-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/10/2014] [Indexed: 12/17/2022] Open
Abstract
During tumor development, benign neoplastic cells are influenced by the expression of cytokines, growth factors, and proteases present in the tumor microenvironment. Epidermal growth factor (EGF) is the most studied growth factor and is considered important for cell proliferation and migration. Metalloproteinases (MMPs) are also involved in tumor progression. The present study aimed to analyze the proliferation, viability and migration index of pleomorphic adenoma myoepithelial cells, in addition to the secretion of MMPs with EGF supplementation. Benign myoepithelial cells were cultured with two different EGF doses (5 and 10 ng/ml), and the influence of EGF on cell proliferation and viability, using trypan blue and MTT assays, respectively, after 24, 48, and 72 h, was evaluated. To analyze cellular morphology, hematoxylin-eosin staining and indirect immunofluorescence using the anti-vimentin antibody, was performed. In vitro migration assays were performed in Transwell chambers with an 8-μm pore covered with Matrigel and supplemented with 5 or 10 ng/ml of EGF, after 96 h. After 4 days of cell culture, ELISA was performed to determine the MMP-2 and MMP-13 levels. One-way analysis of variance (ANOVA) with post hoc Tukey test was applied, with a significance level of 0.05. The results revealed that EGF influences myoepithelial cell morphology, without alteration of proliferation and viability. The migration assay showed that EGF increased the mean index from 16 % in the control group to 40 and 76 % for 5 and 10 ng/ml of EGF, respectively. ELISA revealed that when the cells were supplemented with either of the EGF doses, an increase in MMP-2 levels was observed when compared with the control group (C). This study concludes that EGF aids in the production of MMP-2, which favors the dissolution of the basement membrane, contributing to cell migration and tumor progression, hence permitting contact between the myoepithelial cells and stroma.
Collapse
|
11
|
Tonigold M, Rossmann A, Meinold M, Bette M, Märken M, Henkenius K, Bretz AC, Giel G, Cai C, Rodepeter FR, Beneš V, Grénman R, Carey TE, Lage H, Stiewe T, Neubauer A, Werner JA, Brendel C, Mandic R. A cisplatin-resistant head and neck cancer cell line with cytoplasmic p53(mut) exhibits ATP-binding cassette transporter upregulation and high glutathione levels. J Cancer Res Clin Oncol 2014; 140:1689-704. [PMID: 24913304 DOI: 10.1007/s00432-014-1727-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 05/28/2014] [Indexed: 01/29/2023]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) cell lines with cytoplasmically sequestered mutant p53 (p53(mut_c)) are frequently more resistant to cisplatin (CDDP) than cells with mutant but nuclear p53 (p53(mut_n)). The aim of the study was to identify underlying mechanisms implicated in CDDP resistance of HNSCC cells carrying cytoplasmic p53(mut). METHODS Microarray analysis, quantitative reverse transcription polymerase chain reaction, Western blot analysis and immunocytochemistry were used to identify and evaluate candidate genes involved in CDDP resistance of p53(mut_c) cells. RNAi knockdown or treatment with inhibitors together with flow cytometry-based methods was used for functional assessment of the identified candidate genes. Cellular metabolic activity was assessed with the XTT assay, and the redox capacity of cells was evaluated by measuring cellular glutathione (GSH) levels. RESULTS Upregulation of ABCC2 and ABCG2 transporters was observed in CDDP-resistant p53(mut_c) HNSCC cells. Furthermore, p53(mut_c) cells exhibited a pronounced side population that could be suppressed by RNAi knockdown of ABCG2 as well as treatment with the ATP-binding-cassette transporter inhibitors imatinib, MK571 and tariquidar. Metabolic activity and cellular GSH levels were higher in CDDP-resistant p53(mut_c) cells, consistent with a higher capacity to fend off cytotoxic oxidative effects such as those caused by CDDP treatment. Finally, ABCC2/G2 inhibition of HNSCC cells with MK571 markedly enhanced CDDP sensitivity of HNSCC cells. CONCLUSIONS The observations in this study point to a major role of p53(mut_c) in conferring a stem cell like phenotype to HNSCC cells that is associated with ABCC2/G2 overexpression, high GSH and metabolic activity levels as well as CDDP resistance.
Collapse
Affiliation(s)
- Manuel Tonigold
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, 35033, Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|