1
|
Effects of early feeding and dietary interventions on development of lymphoid organs and immune competence in neonatal chickens: A review. Vet Immunol Immunopathol 2018; 201:1-11. [DOI: 10.1016/j.vetimm.2018.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 12/14/2022]
|
2
|
Den Hartog G, De Vries-Reilingh G, Wehrmaker AM, Savelkoul HFJ, Parmentier HK, Lammers A. Intestinal immune maturation is accompanied by temporal changes in the composition of the microbiota. Benef Microbes 2016; 7:677-685. [PMID: 27633172 DOI: 10.3920/bm2016.0047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In animals establishment of the intestinal microbial ecosystem is influenced by mucosal immune functions. As mucosal immune functions dynamically change during development of juvenile layer chicken, this study focused on dynamics in the ileal microbiota composition in relation to intestinal immune development. In addition, the levels of immunoglobulin (Ig) in serum and amount of bacteria coated with IgA, a hallmark of intestinal immune maturation, were analysed. The composition of the intestinal microbiota transiently changed at the age of 14-42 days compared to the microbiota composition before and after this period. This temporal deviation in microbiota composition was associated to a temporal increase in transcriptional activity of pro-inflammatory cytokine genes. Furthermore, before week two limited amounts of faecal bacteria were bound by IgM and from week two increasing amounts of bacteria were bound by IgA, reaching a maximal level of 70% of IgA-coated bacteria at 6 weeks of age. These data could indicate that prior to achievement of intestinal homeostasis at 6-10 weeks post hatch, activation of inflammatory pathways cause a temporal disturbance of the microbiota composition. This period of imbalance may be essential for adequate immune development and establishment of intestinal homeostasis.
Collapse
Affiliation(s)
- G Den Hartog
- 1 Cell Biology and Immunology Group, Wageningen University, De Elst 1, 6708 WD, Wageningen, the Netherlands.,2 Adaptation Physiology Group, Wageningen University, De Elst 1, 6708 WD, Wageningen, the Netherlands
| | - G De Vries-Reilingh
- 2 Adaptation Physiology Group, Wageningen University, De Elst 1, 6708 WD, Wageningen, the Netherlands
| | - A M Wehrmaker
- 2 Adaptation Physiology Group, Wageningen University, De Elst 1, 6708 WD, Wageningen, the Netherlands
| | - H F J Savelkoul
- 1 Cell Biology and Immunology Group, Wageningen University, De Elst 1, 6708 WD, Wageningen, the Netherlands
| | - H K Parmentier
- 2 Adaptation Physiology Group, Wageningen University, De Elst 1, 6708 WD, Wageningen, the Netherlands
| | - A Lammers
- 2 Adaptation Physiology Group, Wageningen University, De Elst 1, 6708 WD, Wageningen, the Netherlands
| |
Collapse
|
3
|
Ekino S, Sonoda K, Inui S. Origin of IgM+IgG+ lymphocytes in the bursa of Fabricius. Cell Tissue Res 2015; 362:153-62. [DOI: 10.1007/s00441-015-2196-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/08/2015] [Indexed: 11/28/2022]
|
4
|
Takeda A, Tsubaki T, Sagae N, Onda Y, Inada Y, Mochizuki T, Okumura K, Kikuyama S, Kobayashi T, Iwamuro S. Bacterial toxin-inducible gene expression of cathelicidin-B1 in the chicken bursal lymphoma-derived cell line DT40: functional characterization of cathelicidin-B1. Peptides 2014; 59:94-102. [PMID: 24984089 DOI: 10.1016/j.peptides.2014.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 12/16/2022]
Abstract
Chicken cathelicidin-B1 (chCATH-B1) is a major host defense peptide of the chicken bursa of Fabricius (BF). To investigate the mechanisms of chCATH-B1 gene expression in the BF, we focused on the DT40 cell line derived from chicken bursal lymphoma as a model for analysis. A cDNA encoding chCATH-B1 precursor was cloned from DT40 cells. The nucleotide sequence of the cDNA was identical with that of the BF chCATH-B1. A broth dilution analysis showed that the synthetic chCATH-B1 exhibited a significant defensive activity against both Escherichia coli and Staphylococcus aureus. A scanning microscopic analysis demonstrated that chCATH-B1 inhibited bacterial growth through membrane destruction with formation of blebs and spheroplasts. Limulus amoebocyte lysate assay and electromobility shift assay results revealed that chCATH-B1 bound to lipopolysaccharide (LPS) and lipoteichoic acid (LTA), which are the surface substances of the E. coli and S. aureus cell, respectively. A chemotactic assay results revealed that chCATH-B1 showed mouse-derived P-815 mastocytoma migrating activity dose-dependently but with a higher concentration, resulting in a loss of the activity. A semi-quantitative real-time RT-PCR analysis revealed that LPS stimulated chCATH-B1 gene expression in a dose-dependent manner and that the LPS-inducible chCATH-B1 gene expression was inhibited by the administration of dexamethasone. The chCATH-B1 mRNA levels in DT40 cells were also increased by the administration of bacterial LTA. The results indicate that bacterial toxins induce chCATH-B1 gene expression in the chicken BF and the peptide expressed in the organ would act against pathogenic microorganisms not only directly but also indirectly by attracting mast cells.
Collapse
Affiliation(s)
- Asuna Takeda
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Takashi Tsubaki
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Nozomi Sagae
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Yumiko Onda
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Yuri Inada
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Takuya Mochizuki
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Kazuo Okumura
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Sakae Kikuyama
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan; Department of Biology, Faculty of Education and Integrated Arts and Sciences, Center for Advanced Biomedical Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjyuku-ku, Tokyo 162-8480, Japan
| | - Tetsuya Kobayashi
- Department of Regulatory Biology, Faculty of Sciences, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Shawichi Iwamuro
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|
5
|
Ekino S, Sonoda K. New insight into the origin of IgG-bearing cells in the bursa of Fabricius. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:101-37. [PMID: 25262240 DOI: 10.1016/b978-0-12-800178-3.00004-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bursa of Fabricius is a primary lymphoid organ for B-cell development and gut-associated lymphoid tissue. After hatching, IgG-containing cells with reticular branches are found in the medulla of bursal follicles on frozen sections stained with anti-Cγ antibody, and IgM(+)IgG(+) B cells are detected in single-cell suspension of the bursa. IgG-containing cells in the medulla do not biosynthesize IgG and are composed of aggregated maternal IgG and environmental antigens. Then, those cells in the medulla are acknowledged as follicular dendritic cells retaining immune complexes. Also, it is presumed that IgM(+)IgG(+) B cells are generated by the attachment of immune complexes to IgM(+) bursal B cells because IgM(+)IgG(+) B cells are induced by antigen-dependent attachment of maternal IgG. Therefore, it is reasonable to suppose that immune complexes exert further B-cell differentiation in the medulla.
Collapse
Affiliation(s)
- Shigeo Ekino
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan.
| | - Kayoko Sonoda
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| |
Collapse
|