1
|
Kyo C, Kobayashi T, Iwama S, Kosugi R, Sawabe F, Hayafusa R, Sakai Y, Ogawa T, Kotani M, Inoue T, Arima H, Ariyasu H. A case of hypophysitis after COVID-19 vaccination with a detection of anti-pituitary antibody, with review of literature. Endocr J 2024; 71:799-807. [PMID: 38710620 DOI: 10.1507/endocrj.ej24-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
COVID-19 vaccines have resulted in a remarkable reduction in both the morbidity and mortality associated with COVID-19. However, there are reports of endocrine rare clinical conditions linked to COVID-19 vaccination. In this report, we present a case of hypophysitis following COVID-19 vaccination and review the literature on this condition. This case involved a 72-year-old male with type 1 diabetes who experienced symptoms such as vomiting, appetite loss, and headaches following his fifth COVID-19 vaccine dose. He was diagnosed with secondary adrenal insufficiency; subsequent assessment revealed an enlarged pituitary gland. Unlike previous cases, our patient has partial recovery from pituitary insufficiency, and his pituitary function gradually improved over time. Anti-pituitary antibodies (APAs) against corticotrophs, thyrotrophs, gonadotrophs, and folliculo stellate cells (FSCs) were detected in serum samples taken 3 months after onset. Hypophysitis after COVID-19 vaccination is a rare clinical condition, with only eight cases reported by the end of 2023, most occurring after the initial or second vaccination. Symptoms of hypophysitis after COVID-19 vaccination are similar to those of classic pituitary dysfunction. Pituitary insufficiency is persistent, with five of the above eight patients presenting posterior pituitary dysfunction and three patients presenting only anterior pituitary dysfunction. Two of those eight patients had autoimmune diseases. Our case suggests a potential link between acquired immunity, APA production, and pituitary damage. To elucidate the etiology of hypophysitis associated with COVID-19 vaccination, detailed investigation of patients with nonspecific symptoms after vaccination against COVID-19 is necessary.
Collapse
Affiliation(s)
- Chika Kyo
- Center for Diabetes, Endocrinology and Metabolism, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Rieko Kosugi
- Center for Diabetes, Endocrinology and Metabolism, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Fumikazu Sawabe
- Center for Diabetes, Endocrinology and Metabolism, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Ryo Hayafusa
- Center for Diabetes, Endocrinology and Metabolism, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Yuki Sakai
- Center for Diabetes, Endocrinology and Metabolism, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Tatsuo Ogawa
- Center for Diabetes, Endocrinology and Metabolism, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Masato Kotani
- Center for Diabetes, Endocrinology and Metabolism, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Tatsuhide Inoue
- Center for Diabetes, Endocrinology and Metabolism, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroyuki Ariyasu
- Center for Diabetes, Endocrinology and Metabolism, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| |
Collapse
|
2
|
Fujita Y, Bando H, Iguchi G, Iida K, Nishizawa H, Kanie K, Yoshida K, Matsumoto R, Suda K, Fukuoka H, Ogawa W, Takahashi Y. Clinical Heterogeneity of Acquired Idiopathic Isolated Adrenocorticotropic Hormone Deficiency. Front Endocrinol (Lausanne) 2021; 12:578802. [PMID: 33679614 PMCID: PMC7933588 DOI: 10.3389/fendo.2021.578802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Heterogeneous clinical characteristics are observed in acquired isolated adrenocorticotropic hormone (ACTH) deficiency (IAD); however, its classification remains to be established because of its largely unknown pathophysiology. In IAD, anti-pituitary antibodies have been detected in some patients, although their significance remains unclear. Therefore, this study aimed to classify patients with IAD and to clarify the significance of anti-pituitary antibodies. DESIGN AND METHODS We analyzed 46 consecutive patients with IAD. Serum anti-pituitary antibodies were analyzed via immunofluorescence staining using a mouse pituitary tissue. Principal component and cluster analyses were performed to classify IAD patients based on clinical characteristics and autoantibodies. RESULTS Immunofluorescence analysis using the sera revealed that 58% of patients showed anti-corticotroph antibodies and 6% of patients showed anti-follicular stellate cell (FSC) antibodies. Principal component analysis demonstrated that three parameters could explain 70% of the patients. Hierarchical cluster analysis showed three clusters: Groups A and B comprised patients who were positive for anti-corticotroph antibodies, and plasma ACTH levels were extremely low. Groups A and B comprised middle-aged or elderly men and middle-aged women, respectively. Group C comprised patients who were positive for the anti-FSC antibody and elderly men; plasma ACTH levels were relatively high. CONCLUSIONS Patients with IAD were classified into three groups based on clinical characteristics and autoantibodies. The presence of anti-corticotroph antibody suggested severe injury to corticotrophs. This new classification clearly demonstrated the heterogeneity in the pathogenesis of IAD.
Collapse
Affiliation(s)
- Yasunori Fujita
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hironori Bando
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Genzo Iguchi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Medical Center for Student Health, Kobe University, Kobe, Japan
- Division of Biosignal Pathophysiology, Kobe University, Kobe, Japan
| | - Keiji Iida
- Division of Diabetes and Endocrinology, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Japan
| | - Hitoshi Nishizawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keitaro Kanie
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichi Yoshida
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryusaku Matsumoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kentaro Suda
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Takahashi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Diabetes and Endocrinology, Nara Medical University, Kashihara, Japan
- *Correspondence: Yutaka Takahashi,
| |
Collapse
|
3
|
Marques P, Grossman AB, Korbonits M. The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol 2020; 58:100852. [PMID: 32553750 DOI: 10.1016/j.yfrne.2020.100852] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
The tumour microenvironment (TME) includes a variety of non-neoplastic cells and non-cellular elements such as cytokines, growth factors and enzymes surrounding tumour cells. The TME emerged as a key modulator of tumour initiation, progression and invasion, with extensive data available in many cancers, but little is known in pituitary tumours. However, the understanding of the TME of pituitary tumours has advanced thanks to active research in this field over the last decade. Different immune and stromal cell subpopulations, and several cytokines, growth factors and matrix remodelling enzymes, have been characterised in pituitary tumours. Studying the TME in pituitary tumours may lead to a better understanding of tumourigenic mechanisms, identification of biomarkers useful to predict aggressive disease, and development of novel therapies. This review summarises the current knowledge on the different TME cellular/non-cellular elements in pituitary tumours and provides an overview of their role in tumourigenesis, biological behaviour and clinical outcomes.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
4
|
CX3CL1/CX3CR1-signalling in the CD9/S100β/SOX2-positive adult pituitary stem/progenitor cells modulates differentiation into endothelial cells. Histochem Cell Biol 2020; 153:385-396. [DOI: 10.1007/s00418-020-01862-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 12/26/2022]
|
5
|
Pijanowski L, Verburg-van Kemenade BML, Chadzinska M. A role for CXC chemokines and their receptors in stress axis regulation of common carp. Gen Comp Endocrinol 2019; 280:194-199. [PMID: 31075272 DOI: 10.1016/j.ygcen.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
Although chemokines mainly function to activate leukocytes and to direct their migration, novel evidence indicates non-immune functions for chemokines within the nervous and endocrine systems. These include development of the nervous system, neuromodulation, neuroendocrine regulation and direct neurotransmitter-like actions. In order to clarify a potential role for chemokines and their receptors in the stress response of fish, we studied changes in the expression patterns of CXC ligands and their receptors in the stress axis organs of carp, during a restraint stress procedure. We showed that stress down-regulated the gene expression of CXCL9-11 (CXCb1 and CXCb2) in stress axis organs and up-regulated expression of CXCR4 chemokine receptor in NPO and pituitary. Moreover, upon stress, reduced gene expression of CXCL12a and CXCL14 was observed in the head kidney. Our results imply that in teleost fish, CXC chemokines and their receptors are involved in neuroendocrine regulation. The active regulation of their expression in stress axis organs during periods of restraint indicates a significant role in the stress response.
Collapse
Affiliation(s)
- Lukasz Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | | | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland.
| |
Collapse
|
6
|
Tang S, Huang W, Zhang K, Chen W, Xie T. Comparison of effects of propofol versus sevoflurane for patients undergoing cardiopulmonary bypass cardiac surgery. Pak J Med Sci 2019; 35:1072-1075. [PMID: 31372145 PMCID: PMC6659056 DOI: 10.12669/pjms.35.4.1279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective To compare the effects of propofol versus sevoflurane on the outcomes of patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). Methods A total of 110 patients undergoing cardiac surgery with CPB in our hospital from January 2015 to June 2017 were randomly divided into 2 groups (n=55): Group A, in which anesthesia was maintained with sevoflurane, and Group B, in which anesthesia was maintained with propofol. The MMSE score before and after operation, perioperative laboratory index, incidence of postoperative cognitive dysfunction (POCD) and incidence of adverse events between the two groups were compared. Results The MMSE score was significantly higher in Group B than in Group A after anesthesia (p<0.05). Serum levels of the brain injury markers neuron-specific enolase, S100β and matrix metalloproteinase 9 were significantly lower in Group B than in Group A (p<0.05). POCD incidence at 12 hour and 24 hour after operation was significantly lower in Group B than in Group A (p<0.05). There were no significant differences in the incidence of low cardiac output and thoracotomy bleeding between two groups. Conclusion Compared with sevoflurane, the use of propofol during cardiac surgery with CPB can efficiently improve postoperative cognitive function without increasing the risk of adverse reactions.
Collapse
Affiliation(s)
- Shaoqun Tang
- Shaoqun Tang, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wei Huang
- Wei Huang, Department of Neurology, Taihe Hospital Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Kun Zhang
- Kun Zhang, Department of Anesthesiology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, 434020, P.R. China
| | - Wei Chen
- Wei Chen, Department of Anesthesiology, The first people's hospital of Jingzhou, The first Clinical Medical College, Yangtze University, Jingzhou, Hubei, 434020, P.R. China
| | - Tao Xie
- Tao Xie, Department of Anesthesiology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, 434020, P.R. China
| |
Collapse
|
7
|
Isolation and characterisation of CD9-positive pituitary adult stem/progenitor cells in rats. Sci Rep 2018; 8:5533. [PMID: 29615783 PMCID: PMC5882946 DOI: 10.1038/s41598-018-23923-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/22/2018] [Indexed: 01/28/2023] Open
Abstract
S100β protein and SOX2-double positive (S100β/SOX2-positive) cells have been suggested to be adult pituitary stem/progenitor cells exhibiting plasticity and multipotency. The aim of the present study was to isolate S100β/SOX2-positive cells from the adult anterior lobes of rats using a specific antibody against a novel membrane marker and to study their characteristics in vitro. We found that cluster of differentiation (CD) 9 is expressed in the majority of adult rat S100β/SOX2-positive cells, and we succeeded in isolating CD9-positive cells using an anti-CD9 antibody with a pluriBead-cascade cell isolation system. Cultivation of these cells showed their capacity to differentiate into endothelial cells via bone morphogenetic protein signalling. By using the anterior lobes of prolactinoma model rats, the localisation of CD9-positive cells was confirmed in the tumour-induced neovascularisation region. Thus, the present study provides novel insights into adult pituitary stem/progenitor cells involved in the vascularisation of the anterior lobe.
Collapse
|
8
|
Yen MC, Huang YC, Kan JY, Kuo PL, Hou MF, Hsu YL. S100B expression in breast cancer as a predictive marker for cancer metastasis. Int J Oncol 2017; 52:433-440. [PMID: 29345293 DOI: 10.3892/ijo.2017.4226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/05/2017] [Indexed: 11/06/2022] Open
Abstract
In the tumor microenvironment, soluble molecules play important role in the establishment of a pre-metastatic niche. The S100 calcium-binding protein family are inflammatory molecules that contribute to the development of a pro-inflammatory tumor microenvironment. S100B belongs to the S100 family and serum S100B (also known as S100beta) serves as a marker for metastasis in lung cancer, ovarian cancer and melanoma. However, the association between S100B and the metastasis of breast cancer is not yet well understood. In the present study, a relatively low S100B expression was observed in the tumor samples compared to normal breast tissue among online microarray datasets. When the estrogen receptor (ER)-negative breast cancer cell lines, MDA-MB-231 and Hs578T, were treated with recombinant human S100B, cell migration was significantly inhibited and epithelial cadherin expression was increased. Our results revealed that a high S100B expression predicted a good overall survival in patients with ER-negative breast cancer, and good distant metastases-free survival in all patients with breast cancer via the analysis of the KM plotter and SurvExpress databases. Although previous studies have indicated that the interaction of S100B with wild-type p53 inhibits p53 function, a high S100B expression is associated with a good prognosis in patients with p53 mutant and p53 wild-type breast cancers. On the whole, our findings demonstrate that S100B treatment suppresses the migratory capacity of ER-negative breast cancer and that S100B expression may serve a predictive marker for metastasis in breast cancer.
Collapse
Affiliation(s)
- Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Jung-Yu Kan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ming-Feng Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ya-Ling Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
9
|
S100β-Positive Cells of Mesenchymal Origin Reside in the Anterior Lobe of the Embryonic Pituitary Gland. PLoS One 2016; 11:e0163981. [PMID: 27695124 PMCID: PMC5047643 DOI: 10.1371/journal.pone.0163981] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/16/2016] [Indexed: 01/15/2023] Open
Abstract
The anterior and intermediate lobes of the pituitary gland develop through invagination of the oral ectoderm and as they are endocrine tissues, they participate in the maintenance of vital functions via the synthesis and secretion of numerous hormones. We recently observed that several extrapituitary cells invade the anterior lobe of the developing pituitary gland. This raised the question of the origin(s) of these S100β-positive cells, which are not classic endocrine cells but instead comprise a heterogeneous cell population with plural roles, especially as stem/progenitor cells. To better understand the roles of these S100β-positive cells, we performed immunohistochemical analysis using several markers in S100β/GFP-TG rats, which express GFP in S100β-expressing cells under control of the S100β promoter. GFP-positive cells were present as mesenchymal cells surrounding the developing pituitary gland and at Atwell's recess but were not present in the anterior lobe on embryonic day 15.5. These cells were negative for SOX2, a pituitary stem/progenitor marker, and PRRX1, a mesenchyme and pituitary stem/progenitor marker. However, three days later, GFP-positive and PRRX1-positive (but SOX2-negative) cells were observed in the parenchyma of the anterior lobe. Furthermore, some GFP-positive cells were positive for vimentin, p75, isolectin B4, DESMIN, and Ki67. These data suggest that S100β-positive cells of extrapituitary origin invade the anterior lobe, undergoing proliferation and diverse transformation during pituitary organogenesis.
Collapse
|
10
|
CXCL10/CXCR3 signaling mediates inhibitory action by interferon-gamma on CRF-stimulated adrenocorticotropic hormone (ACTH) release. Cell Tissue Res 2015; 364:395-404. [PMID: 26572542 DOI: 10.1007/s00441-015-2317-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Secretion of hormones by the anterior pituitary gland can be stimulated or inhibited by paracrine factors that are produced during inflammatory reactions. The inflammation cytokine interferon-gamma (IFN-γ) is known to inhibit corticotropin-releasing factor (CRF)-stimulated adrenocorticotropin (ACTH) release but its signaling mechanism is not yet known. Using rat anterior pituitary, we previously demonstrated that the CXC chemokine ligand 10 (CXCL10), known as interferon-γ (IFN-γ) inducible protein 10 kDa, is expressed in dendritic cell-like S100β protein-positive (DC-like S100β-positive) cells and that its receptor CXCR3 is expressed in ACTH-producing cells. DC-like S100β-positive cells are a subpopulation of folliculo-stellate cells in the anterior pituitary. In the present study, we examine whether CXCL10/CXCR3 signaling between DC-like S100β-positive cells and ACTH-producing cells mediates inhibition of CRF-activated ACTH-release by IFN-γ, using a CXCR3 antagonist in the primary pituitary cell culture. We found that IFN-γ up-regulated Cxcl10 expression via JAK/STAT signaling and proopiomelanocortin (Pomc) expression, while we reconfirmed that IFN-γ inhibits CRF-stimulated ACTH-release. Next, we used a CXCR3 agonist in primary culture to analyze whether CXCL10 induces Pomc-expression and ACTH-release using a CXCR3 agonist in the primary culture. The CXCR3 agonist significantly stimulated Pomc-expression and inhibited CRF-induced ACTH-release, while ACTH-release in the absence of CRF did not change. Thus, the present study leads us to an assumption that CXCL10/CXCR3 signaling mediates inhibition of the CRF-stimulated ACTH-release by IFN-γ. Our findings bring us to an assumption that CXCL10 from DC-like S100β-positive cells acts as a local modulator of ACTH-release during inflammation.
Collapse
|
11
|
Grizzi F, Borroni EM, Vacchini A, Qehajaj D, Liguori M, Stifter S, Chiriva-Internati M, Di Ieva A. Pituitary Adenoma and the Chemokine Network: A Systemic View. Front Endocrinol (Lausanne) 2015; 6:141. [PMID: 26441831 PMCID: PMC4566033 DOI: 10.3389/fendo.2015.00141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/28/2015] [Indexed: 12/19/2022] Open
Affiliation(s)
- Fabio Grizzi
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Milan, Italy
- *Correspondence: Fabio Grizzi,
| | - Elena Monica Borroni
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Vacchini
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Dorina Qehajaj
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Manuela Liguori
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Sanja Stifter
- Department of Pathology, University of Rijeka, Rijeka, Croatia
| | | | - Antonio Di Ieva
- Department of Neurosurgery, Australian School of Advanced Medicine, Macquarie University Hospital, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| |
Collapse
|
12
|
Barbieri F, Thellung S, Würth R, Gatto F, Corsaro A, Villa V, Nizzari M, Albertelli M, Ferone D, Florio T. Emerging Targets in Pituitary Adenomas: Role of the CXCL12/CXCR4-R7 System. Int J Endocrinol 2014; 2014:753524. [PMID: 25484899 PMCID: PMC4248486 DOI: 10.1155/2014/753524] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/21/2014] [Indexed: 12/15/2022] Open
Abstract
Chemokines are chemotactic regulators of immune surveillance in physiological and pathological conditions such as inflammation, infection, and cancer. Several chemokines and cognate receptors are constitutively expressed in the central nervous system, not only in glial and endothelial cells but also in neurons, controlling neurogenesis, neurite outgrowth, and axonal guidance during development. In particular, the chemokine CXCL12 and its receptors, CXCR4 and CXCR7, form a functional network that controls plasticity in different brain areas, influencing neurotransmission, neuromodulation, and cell migration, and the dysregulation of this chemokinergic axis is involved in several neurodegenerative, neuroinflammatory, and malignant diseases. CXCR4 primarily mediates the transduction of proliferative signals, while CXCR7 seems to be mainly responsible for scavenging CXCL12. Importantly, the multiple intracellular signalling generated by CXCL12 interaction with its receptors influences hypothalamic modulation of neuroendocrine functions, although a direct modulation of pituitary functioning via autocrine/paracrine mechanisms was also reported. Both CXCL12 and CXCR4 are constitutively overexpressed in pituitary adenomas and their signalling induces cell survival and proliferation, as well as hormonal hypersecretion. In this review we focus on the physiological and pathological functions of immune-related cyto- and chemokines, mainly focusing on the CXCL12/CXCR4-7 axis, and their role in pituitary tumorigenesis. Accordingly, we discuss the potential targeting of CXCR4 as novel pharmacological approach for pituitary adenomas.
Collapse
Affiliation(s)
- Federica Barbieri
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
- *Federica Barbieri:
| | - Stefano Thellung
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Roberto Würth
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Federico Gatto
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Alessandro Corsaro
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Valentina Villa
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Manuela Albertelli
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Diego Ferone
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| | - Tullio Florio
- Department of Internal Medicine and Medical Specialties and Center of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV, 2-16132 Genova, Italy
| |
Collapse
|