1
|
Xing N, Gao L, Xie W, Deng H, Yang F, Liu D, Li A, Pang Q. Mining of potentially stem cell-related miRNAs in planarians. Mol Biol Rep 2024; 51:1045. [PMID: 39377855 DOI: 10.1007/s11033-024-09977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Stem cells and regenerative medicine have recently become important research topics. However, the complex stem cell regulatory networks involved in various microRNA (miRNA)-mediated mechanisms have not yet been fully elucidated. Planarians are ideal animal models for studying stem cells owing to their rich stem cell populations (neoblasts) and extremely strong regeneration capacity. The roles of planarian miRNAs in stem cells and regeneration have long attracted attention. However, previous studies have generally provided simple datasets lacking integrative analysis. Here, we have summarized the miRNA family reported in planarians and highlighted conservation in both sequence and function. Furthermore, we summarized miRNA data related to planarian stem cells and regeneration and screened potential involved candidates. Nevertheless, the roles of these miRNAs in planarian regeneration and stem cells remain unclear. The identification of potential stem cell-related miRNAs offers more precise suggestions and references for future investigations of miRNAs in planarians. Furthermore, it provides potential research avenues for understanding the mechanisms of stem cell regulatory networks. Finally, we compiled a summary of the experimental methods employed for studying planarian miRNAs, with the aim of highlighting special considerations in certain procedures and providing more convenient technical support for future research endeavors.
Collapse
Affiliation(s)
- Nianhong Xing
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Lili Gao
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China.
| | - Wenshuo Xie
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Hongkuan Deng
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Fengtang Yang
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Dongwu Liu
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Ao Li
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China.
| |
Collapse
|
2
|
Liu P, Li Y, Yao Y, Wang W, Jia H, Bai Y, Yuan Z, Yang Z. Intra-amniotic delivery of tropomodulin 3 rescues cell apoptosis induced by miR-200b-3p upregulation via non-canonical nuclear factor kappa B pathways in ethylene thiourea induced anorectal malformations fetal rat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116918. [PMID: 39191136 DOI: 10.1016/j.ecoenv.2024.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Ethylene thiourea (ETU), a metabolite of the fungicide ethylene bisdithiocarbamate (EBDC), has received great concern because of its harmful effects. ETU-induced anorectal malformations (ARMs) in rat models have been reported and widely used in the study of ARMs embryogenesis. Dysplasia of the lumbosacral spinal cord (LSSC), pelvic floor muscles (PFMs), and hindgut (HG) during intrauterine life affects postoperative defecation in patients with ARMs. However, the underlying toxic effects of ETU and pathological mechanisms in the three defecation-related tissues of fetuses with ARMs have not been reported. Thus, this study aimed to elucidate the molecular mechanisms involved in ARMs, with a focus on the dysregulation of miR-200b-3p and its downstream target tropomodulin 3 (TMOD3). The mRNA and protein levels of miR-200b-3p and TMOD3 in LSSC, PFMs, and HG of fetal rats with ARMs were evaluated by reverse transcription quantitative polymerase chain reaction and Western blotting (WB) on embryonic day 17 (E17). Further, a dual-luciferase reporter assay confirmed their targeting relationship. Gene silencing and overexpression of miR-200b-3p and TMOD3 were performed to verify their functions in HEK-293 T cells. Fetal rats with ARMs also received intra-amniotic microinjection of Ad-TMOD3 on E15, and key molecules in nuclear factor kappa (NF-κB) signaling and apoptosis were evaluated by WB on E21. Abnormally high levels of miR-200b-3p inhibited TMOD3 expression by binding with its 3'-untranslated region, leading to the activation of the non-canonical NF-κB signaling pathway, which is critical in the maldevelopment of LSSC, PFMs, and HG in ARMs rats. Furthermore, miR-200b-3p triggered apoptosis by directly targeting TMOD3. Notably, intra-amniotic Ad-TMOD3 microinjection revealed that the upregulation of TMOD3 expression mitigates the effects of miR-200b-3p on the activation of non-canonical NF-κB signaling and apoptosis in fetal rat model of ARMs. A novel miR-200b-3p/TMOD3/non-canonical NF-κB signaling axis triggered the massive apoptosis in LSSC, PFMs, and HG of ARMs, which was restored by the intra-amniotic injection of Ad-TMOD3 during embryogenesis. Our results indicate the potential of TMOD3 as a treatment target to restore defecation.
Collapse
Affiliation(s)
- Peiqi Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yifan Yao
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Leal-Galvan B, Kumar D, Karim S, Saelao P, Thomas DB, Oliva Chavez A. A glimpse into the world of microRNAs and their putative roles in hard ticks. Front Cell Dev Biol 2024; 12:1460705. [PMID: 39376631 PMCID: PMC11456543 DOI: 10.3389/fcell.2024.1460705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Ticks are important blood feeding ectoparasites that transmit pathogens to wildlife, domestic animals, and humans. Hard ticks can feed for several days to weeks, nevertheless they often go undetected. This phenomenon can be explained by a tick's ability to release analgesics, immunosuppressives, anticoagulants, and vasodilators within their saliva. Several studies have identified extracellular vesicles (EVs) as carriers of some of these effector molecules. Further, EVs, and their contents, enhance pathogen transmission, modulate immune responses, and delay wound healing. EVs are double lipid-membrane vesicles that transport intracellular cargo, including microRNAs (miRNAs) to recipient cells. miRNAs are involved in regulating gene expression post-transcriptionally. Interestingly, tick-derived miRNAs have been shown to enhance pathogen transmission and affect vital biological processes such as oviposition, blood digestion, and molting. miRNAs have been found within tick salivary EVs. This review focuses on current knowledge of miRNA loading into EVs and homologies reported in ticks. We also describe findings in tick miRNA profiles, including miRNAs packed within tick salivary EVs. Although no functional studies have been done to investigate the role of EV-derived miRNAs in tick feeding, we discuss the functional characterization of miRNAs in tick biology and pathogen transmission. Lastly, we propose the possible uses of tick miRNAs to develop management tools for tick control and to prevent pathogen transmission. The identification and functional characterization of conserved and tick-specific salivary miRNAs targeting important molecular and immunological pathways within the host could lead to the discovery of new therapeutics for the treatment of tick-borne and non-tick-borne human diseases.
Collapse
Affiliation(s)
- Brenda Leal-Galvan
- Department of Entomology, Texas A&M University, College Station, TX, United States
- USDA-ARS Cattle Fever Tick Research Laboratory, Edinburg, TX, United States
| | - Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Perot Saelao
- USDA-ARS Veterinary Pest Research Unit, Kerrville, TX, United States
| | - Donald B. Thomas
- USDA-ARS Cattle Fever Tick Research Laboratory, Edinburg, TX, United States
| | - Adela Oliva Chavez
- Department of Entomology, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
4
|
Zou H, Wang P, Zhang J. Role of microRNAs in pituitary gonadotrope cells. Gen Comp Endocrinol 2024; 355:114557. [PMID: 38797341 DOI: 10.1016/j.ygcen.2024.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The gonadotrope cells within the pituitary control vital processes of reproduction by producing follicle stimulating hormone (FSH) and luteinizing hormone (LH). Both external stimuli and internal regulatory factors contribute to the regulation of gonadotrope development and function. In recent years, growing evidences indicate that microRNAs (miRNAs), which regulate gene expression post-transcriptionally, play critical roles in multiple processes of gonadotrope development and function, including the syntheses of α or β subunits of FSH and LH, the secretion of LH, the regulation of GnRH signaling, and the maintenance of gonadotrope cell kinetics. Here, we review recent advances of miRNAs' expression, functions and mechanisms approached by using miRNA knockout mouse models, in silico analysis and the in vitro cultures of primary pituitary cells and gonadotrope-derived cell lines. By summarizing and discussing different roles of miRNAs in gonadotropes, this minireview helps to gain insights into the complex molecular network in gonadotropes and reproduction.
Collapse
Affiliation(s)
- He Zou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Peimin Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jinglin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Spella M, Bochalis E, Athanasopoulou K, Chroni A, Dereki I, Ntaliarda G, Makariti I, Psarias G, Constantinou C, Chondrou V, Sgourou A. "Crosstalk between non-coding RNAs and transcription factor LRF in non-small cell lung cancer". Noncoding RNA Res 2024; 9:759-771. [PMID: 38577020 PMCID: PMC10990748 DOI: 10.1016/j.ncrna.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Epigenetic approaches in direct correlation with assessment of critical genetic mutations in non-small cell lung cancer (NSCLC) are currently very intensive, as the epigenetic components underlying NSCLC development and progression have attained high recognition. In this level of research, established human NSCLC cell lines as well as experimental animals are widely used to detect novel biomarkers and pharmacological targets to treat NSCLC. The epigenetic background holds a great potential for the identification of epi-biomarkers for treatment response however, it is highly complex and requires precise definition as these phenomena are variable between NSCLC subtypes and systems origin. We engaged an in-depth characterization of non-coding (nc)RNAs prevalent in human KRAS-mutant NSCLC cell lines A549 and H460 and mouse KRAS-mutant NSCLC tissue by Next Generation Sequencing (NGS) and quantitative Real Time PCRs (qPCRs). Also, the transcription factor (TF) LRF, a known epigenetic silencer, was examined as a modulator of non-coding RNAs expression. Finally, interacting networks underlying epigenetic variations in NSCLC subtypes were created. Data derived from our study highlights the divergent epigenetic profiles of NSCLC of human and mouse origin, as well as the significant contribution of 12qf1: 109,709,060-109,747,960 mouse chromosomal region to micro-RNA upregulated species. Furthermore, the novel epigenetic miR-148b-3p/lncPVT1/ZBTB7A axis was identified, which differentiates human cell line of lung adenocarcinoma from large cell lung carcinoma, two characteristic NSCLC subtypes. The detailed recording of epigenetic events in NSCLC and combinational studies including networking between ncRNAs and TFs validate the identification of significant epigenetic features, prevailing in NSCLC subtypes and among experimental models. Our results enrich knowledge in the field and empower research on the epigenetic prognostic biomarkers of the disease progression, NSCLC subtypes discrimination and advancement to patient-tailored treatments.
Collapse
Affiliation(s)
- Magda Spella
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
- Department of Physiology, Faculty of Medicine, University of Patras, Rio, 26504, Greece
| | - Eleftherios Bochalis
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Katerina Athanasopoulou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Argyri Chroni
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Irene Dereki
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Giannoula Ntaliarda
- Department of Physiology, Faculty of Medicine, University of Patras, Rio, 26504, Greece
| | - Ifigeneia Makariti
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Georgios Psarias
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Caterina Constantinou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Vasiliki Chondrou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Argyro Sgourou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| |
Collapse
|
6
|
Zhuo H, Zhang Y, Fu S, Lin L, Li J, Zhou X, Wu G, Guo C, Liu J. miR-8-3p regulates the antioxidant response and apoptosis in white shrimp, Litopenaeus vannamei under ammonia-N stress. Int J Biol Macromol 2024; 274:133305. [PMID: 38914409 DOI: 10.1016/j.ijbiomac.2024.133305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
Exposure to excess ammonia-N (NH3/NH4+) in aquaculture can disrupt physiological function in shrimp leading to enhanced oxidative stress and apoptosis, but little is known concerning the post-transcriptional regulation mechanism. In this study, the first miR-200 family member in crustacean was identified and characterized from Litopenaeus vannamei (designed as Lva-miR-8-3p). Lva-miR-8-3p was highly expressed in eyestalks, brainganglion, and gills. The expression of Lva-miR-8-3p in gills significantly decreased after ammonia-N stress, and Lva-miR-8-3p was confirmed to target IKKβ 3'UTR for negatively regulating IKKβ/NF-κB pathway. Overexpression of miR-8-3p promoted the hemolymph ammonia-N accumulation, total hemocyte count (THC) decrease, and gills tissue damage, thus resulting in a decreased survival rate of ammonia-exposed shrimp. Besides, Lva-miR-8-3p silencing could enhance the antioxidant enzymes activities and reduce the oxidative damage, whereas overexpression of Lva-miR-8-3p exerted the opposite effects. Furthermore, Lva-miR-8-3p overexpression was found to aggravate ammonia-N induced apoptosis in gills. In primarily cultured hemocytes, the cell viability decreased, the ROS content and caspase-3 activity increased after agomiR-8-3p transfection, while antagomiR-8-3p transfection caused the opposite change except the cell viability. These findings indicate that Lva-miR-8-3p acts as a post-transcriptional regulator in ammonia-N induced antioxidant response and apoptosis by negatively regulating IKKβ/NF-κB pathway.
Collapse
Affiliation(s)
- Hongbiao Zhuo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yuan Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuo Fu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lanting Lin
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jinyan Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoxun Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangbo Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chaoan Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Jianyong Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.
| |
Collapse
|
7
|
Carter R, Petrik JJ, Moorehead RA. Overexpression of miR-200s inhibits proliferation and invasion while increasing apoptosis in murine ovarian cancer cells. PLoS One 2024; 19:e0307178. [PMID: 39028700 PMCID: PMC11259287 DOI: 10.1371/journal.pone.0307178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/01/2024] [Indexed: 07/21/2024] Open
Abstract
Women diagnosed with ovarian cancer frequently have a poor prognosis as their cancer is often diagnosed at more advanced stages when the cancer has metastasized. At this point surgery cannot remove all the tumor cells and while ovarian cancer cells often initially respond to chemotherapeutic agents like carboplatin and paclitaxel, resistance to these agents frequently occurs. Thus, novel therapies are required for the treatment of advanced stage ovarian cancer. One therapeutic option being explored is the regulation of non-coding RNAs such as microRNAs. An advantage of microRNAs is that they can regulate tens, hundreds and sometimes thousands of mRNAs in cells and thus may be more effective than chemotherapeutic agents or targeted therapies. To investigate the therapeutic potential of miR-200s in ovarian cancer, lentiviral vectors were used to overexpress both miR-200 clusters in two murine ovarian cancer cell lines, ID8 and 28-2. Overexpression of miR-200s reduced the expression of several mesenchymal genes and proteins, significantly inhibited proliferation as assessed by BrdU flow cytometry and significantly reduced invasion through Matrigel coated transwell inserts in both cell lines. Overexpression of miR-200s also increased basal apoptosis approximately 3-fold in both cell lines as determined by annexin V flow cytometry. Pathway analysis of RNA sequencing of control and miR-200 overexpressing ovarian cancer cells revealed that genes regulated by miR-200s were involved in processes like epithelial mesenchymal transition (EMT) and cell migration. Therefore, miR-200s can inhibit proliferation and increase apoptosis while suppressing tumor cell invasion and thus simultaneously target three key cancer pathways.
Collapse
Affiliation(s)
- Resh Carter
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jim J. Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Roger A. Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Alves TC, Queiroz FR, de Melo Neto AB, da Rocha Fernandes G, Pais FSM, de Jesus Jeremias W, Babá EH, de Moraes Mourão M, Morais ER, Cabral FJ, do Amaral LR, Caldeira RL, Zech Coelho PM, de Souza Gomes M. Identification and characterization of microRNAs in Biomphalaria tenagophila and comparative analysis of their expression in Schistosoma mansoni-resistant and -susceptible snail populations. Gene 2023; 884:147742. [PMID: 37634882 DOI: 10.1016/j.gene.2023.147742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Schistosomiasis is a neglected tropical disease caused by Schistosoma and affects over 240 million people worldwide. One of the most prominent causative agents is Schistosoma mansoni, which develops inside the intermediate host. Biomphalaria tenagophila is the second most important vector of schistosomiasis in Brazil and the Taim population is completely resistant to infection by S. mansoni. OBJECTIVE This study aims to identify and characterize B. tenagophila microRNAs (miRNAs) and evaluate their differential expression in S. mansoni-susceptible and -resistant populations of B. tenagophila. METHODS Two populations of B. tenagophila snails, susceptible and resistant to S. mansoni infection, were used to investigate the small RNA response of these snails after being infected with the parasite. Small RNA sequencing and quantitative real-time PCR were employed to identify and validate differentially expressed miRNAs. Bioinformatics analysis were performed to identify miRNA precursors and mature and evaluate their differential expression. FINDINGS The study predicted 173 mature miRNAs and 123 precursors. Among them were six Lophotrochozoa-specific miRNAs, three mollusk-specific miRNAs, and six pre-miRNAs in a cluster. The small RNA sequencing and RT-PCR of B. tenagophila samples allowed assessing the expression patterns of miRNAs. MAIN CONCLUSIONS The results obtained may support future studies in Biomphalaria spp., generating a global impact on disease control.
Collapse
Affiliation(s)
- Tamires Caixeta Alves
- Bioinformatics and Molecular Analysis Laboratory, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | - Fábio Ribeiro Queiroz
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Angelo Borges de Melo Neto
- Bioinformatics and Molecular Analysis Laboratory, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | | | | | | | - Elio Hideo Babá
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | - Enyara Rezende Morais
- Bioinformatics and Molecular Analysis Laboratory, Federal University of Uberlândia, Patos de Minas, MG, Brazil
| | | | | | - Roberta Lima Caldeira
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | - Matheus de Souza Gomes
- Bioinformatics and Molecular Analysis Laboratory, Federal University of Uberlândia, Patos de Minas, MG, Brazil.
| |
Collapse
|
9
|
Rafikova G, Gilyazova I, Enikeeva K, Pavlov V, Kzhyshkowska J. Prostate Cancer: Genetics, Epigenetics and the Need for Immunological Biomarkers. Int J Mol Sci 2023; 24:12797. [PMID: 37628978 PMCID: PMC10454494 DOI: 10.3390/ijms241612797] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Epidemiological data highlight prostate cancer as a significant global health issue, with high incidence and substantial impact on patients' quality of life. The prevalence of this disease is associated with various factors, including age, heredity, and race. Recent research in prostate cancer genetics has identified several genetic variants that may be associated with an increased risk of developing the disease. However, despite the significance of these findings, genetic markers for prostate cancer are not currently utilized in clinical practice as reliable indicators of the disease. In addition to genetics, epigenetic alterations also play a crucial role in prostate cancer development. Aberrant DNA methylation, changes in chromatin structure, and microRNA (miRNA) expression are major epigenetic events that influence oncogenesis. Existing markers for prostate cancer, such as prostate-specific antigen (PSA), have limitations in terms of sensitivity and specificity. The cost of testing, follow-up procedures, and treatment for false-positive results and overdiagnosis contributes to the overall healthcare expenditure. Improving the effectiveness of prostate cancer diagnosis and prognosis requires either narrowing the risk group by identifying new genetic factors or enhancing the sensitivity and specificity of existing markers. Immunological biomarkers (both circulating and intra-tumoral), including markers of immune response and immune dysfunction, represent a potentially useful area of research for enhancing the diagnosis and prognosis of prostate cancer. Our review emphasizes the need for developing novel immunological biomarkers to improve the diagnosis, prognosis, and management of prostate cancer. We highlight the most recent achievements in the identification of biomarkers provided by circulating monocytes and tumor-associated macrophages (TAMs). We highlight that monocyte-derived and TAM-derived biomarkers can enable to establish the missing links between genetic predisposition, hormonal metabolism and immune responses in prostate cancer.
Collapse
Affiliation(s)
- Guzel Rafikova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Irina Gilyazova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Kadriia Enikeeva
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Julia Kzhyshkowska
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050 Tomsk, Russia
- Genetic Technology Laboratory, Siberian State Medical University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
| |
Collapse
|
10
|
Botta S, de Prisco N, Chemiakine A, Brandt V, Cabaj M, Patel P, Doron‐Mandel E, Treadway CJ, Jovanovic M, Brown NG, Soni RK, Gennarino VA. Dosage sensitivity to Pumilio1 variants in the mouse brain reflects distinct molecular mechanisms. EMBO J 2023; 42:e112721. [PMID: 37070548 PMCID: PMC10233381 DOI: 10.15252/embj.2022112721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 04/19/2023] Open
Abstract
Different mutations in the RNA-binding protein Pumilio1 (PUM1) cause divergent phenotypes whose severity tracks with dosage: a mutation that reduces PUM1 levels by 25% causes late-onset ataxia, whereas haploinsufficiency causes developmental delay and seizures. Yet PUM1 targets are derepressed to equal degrees in both cases, and the more severe mutation does not hinder PUM1's RNA-binding ability. We therefore considered the possibility that the severe mutation might disrupt PUM1 interactions, and identified PUM1 interactors in the murine brain. We find that mild PUM1 loss derepresses PUM1-specific targets, but the severe mutation disrupts interactions with several RNA-binding proteins and the regulation of their targets. In patient-derived cell lines, restoring PUM1 levels restores these interactors and their targets to normal levels. Our results demonstrate that dosage sensitivity does not always signify a linear relationship with protein abundance but can involve distinct mechanisms. We propose that to understand the functions of RNA-binding proteins in a physiological context will require studying their interactions as well as their targets.
Collapse
Affiliation(s)
- Salvatore Botta
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
- Department of Translational Medical ScienceUniversity of Campania Luigi VanvitelliCasertaItaly
| | - Nicola de Prisco
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
| | - Alexei Chemiakine
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
| | - Vicky Brandt
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
| | - Maximilian Cabaj
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
| | - Purvi Patel
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | | | - Colton J Treadway
- Department of Pharmacology and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Marko Jovanovic
- Department of Biological SciencesColumbia UniversityNew YorkNYUSA
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Vincenzo A Gennarino
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
- Departments of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
- Columbia Stem Cell InitiativeColumbia University Irving Medical CenterNew YorkNYUSA
- Initiative for Columbia Ataxia and TremorColumbia University Irving Medical CenterNew YorkNYUSA
| |
Collapse
|
11
|
Li Y, Liu P, Wang W, Bai Y, Jia H, Yuan Z, Yang Z. Transcriptome analysis reveals the spinal expression profiles of non-coding RNAs involved in anorectal malformations in rat fetuses. J Pediatr Surg 2022; 57:974-985. [PMID: 35725663 DOI: 10.1016/j.jpedsurg.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Despite improvements in anorectal malformation (ARM) therapy, patients might still experience post-operative problems such as fecal incontinence, constipation, and soiling. In particular, the dysplasia of the lumbosacral spinal cord in ARM patients is a major disorder that affects fecal function post-operation. However, the pathological mechanisms involved are still unclear. METHODS The non-coding RNAs (ncRNAs) in the lumbosacral spinal cord of fetal rats with ethylenethiourea-induced ARM were identified using RNA sequencing (RNA-seq) and examined to determine their potential function. The lumbosacral spinal cord was isolated on embryonic day 17 for subsequent RNA extraction and RNA-seq. The transcriptome data was analyzed using bioinformatics analysis, followed by validation using quantitative reverse transcription PCR. RESULTS Compared to the control group, 26 differentially expressed microRNAs (DEMs; 22 upregulated, 4 downregulated) and 112 differentially expressed long non-coding RNAs (63 upregulated, 49 downregulated) were identified in the ARM group. Several DEMs related to development, namely miR-200a-3p, miR-200b-3p, miR-200c-3p, miR-200a-5p, and miR-429, were selected for further analysis. Notably, compared to the control, the relative expression of miR-200 family members was highly upregulated in ARM fetal rats. Furthermore, GO and KEGG enrichment and miRNA-transcription factor-lncRNA/mRNA network analysis was explored to show molecular mechanism underlying DEMs. CONCLUSIONS Our findings suggest the involvement of ncRNAs, especially the miR-200 family members, in the pathogenesis of lumbosacral spinal cord dysplasia in ARM fetal rats.
Collapse
Affiliation(s)
- Yue Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peiqi Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
12
|
Wang F, Huang L, Liao M, Dong W, Liu C, Liu Y, Liang Q, Wang W. Integrative analysis of the miRNA-mRNA regulation network in hemocytes of Penaeus vannamei following Vibrio alginolyticus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104390. [PMID: 35276318 DOI: 10.1016/j.dci.2022.104390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Penaeus vannamei is an important cultured shrimp that has high commercial value in the worldwide. However, the industry suffers heavy economic losses each year due to disease outbreaks caused by pathogenic bacteria. In the present study, after Vibrio alginolyticus infection, DNA damage in the hemocytes of the shrimp markedly increased, and autophagy and apoptosis increased significantly. Subsequently, hemocytes were sampled from the control and infected shrimp and sequenced for mRNA and microRNA (miRNA) 24 h after V. alginolyticus infection to better understand the response mechanism to bacterial infection in P. vannamei. We identified 1,874 and 263 differentially expressed mRNAs (DEGs) and miRNAs (DEMs) respectively, and predicted that 997 DEGs were targeted by DEMs. These DEGs were involved in the regulation of multiple signalling pathways, such as Toll and IMD signalling, TGF-beta signalling, MAPK signalling, and cell apoptosis, during Vibrio alginolyticus infection of the shrimp. We identified numerous mRNA-miRNA interactions, which provide insight into the defense mechanism that occur during the antimicrobial process of P. vannamei.
Collapse
Affiliation(s)
- Feifei Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Lin Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Meiqiu Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Wenna Dong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Can Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Qingjian Liang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China; School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
| | - Weina Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
13
|
Functional mechanism and clinical implications of miR-141 in human cancers. Cell Signal 2022; 95:110354. [PMID: 35550172 DOI: 10.1016/j.cellsig.2022.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022]
Abstract
Cancer is caused by the abnormal proliferation of local tissue cells under the control of many oncogenic factors. MicroRNAs (miRNAs) are a class of evolutionarily conserved, approximately 22-nucleotide noncoding small RNAs that influence transcriptional regulationby binding to the 3'-untranslated region of target messenger RNA. As a member of the miRNA family, miR-141 acts as a suppressor or an oncomiR in various cancers and regulates cancer cell proliferation, apoptosis, invasion, and metastasis through a variety of signaling pathways, such as phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) and constitutive activation of nuclear factor-κB (NF-κB). Target gene validation and pathway analysis have provided mechanistic insight into the role of this miRNA in different tissues. This review also outlines novel findings that suggest miR-141 may be useful as a noninvasive biomarker and as a therapeutic target in several cancers.
Collapse
|
14
|
Colaianni D, De Pittà C. The Role of microRNAs in the Drosophila Melanogaster Visual System. Front Cell Dev Biol 2022; 10:889677. [PMID: 35493095 PMCID: PMC9053400 DOI: 10.3389/fcell.2022.889677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs (∼22 nucleotides in length) that negatively regulate protein-coding gene expression post-transcriptionally by targeting mRNAs and triggering either translational repression or RNA degradation. MiRNA genes represent approximately 1% of the genome of different species and it has been estimated that every miRNA can interact with an average of 200 mRNA transcripts, with peaks of 1,500 mRNA targets per miRNA molecule. As a result, miRNAs potentially play a fundamental role in several biological processes including development, metabolism, proliferation, and apoptotic cell death, both in physiological and pathological conditions. Since miRNAs were discovered, Drosophila melanogaster has been used as a model organism to shed light on their functions and their molecular mechanisms in the regulation of many biological and behavioral processes. In this review we focus on the roles of miRNAs in the fruit fly brain, at the level of the visual system that is composed by the compound eyes, each containing ∼800 independent unit eyes called ommatidia, and each ommatidium is composed of eight photoreceptor neurons that project into the optic lobes. We describe the roles of a set of miRNAs in the development and in the proper function of the optic lobes (bantam, miR-7, miR-8, miR-210) and of the compound eyes (bantam, miR-7, miR-9a, miR-210, miR-263a/b, miR-279/996), summarizing also the pleiotropic effects that some miRNAs exert on circadian behavior.
Collapse
|
15
|
Elevated Expression of miR-200c/141 in MDA-MB-231 Cells Suppresses MXRA8 Levels and Impairs Breast Cancer Growth and Metastasis In Vivo. Genes (Basel) 2022; 13:genes13040691. [PMID: 35456497 PMCID: PMC9032019 DOI: 10.3390/genes13040691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Breast cancer cells with mesenchymal characteristics, particularly the claudin-low subtype, express extremely low levels of miR-200s. Therefore, this study examined the functional impact of restoring miR-200 expression in a human claudin-low breast cancer cell line MDA-MB-231. MDA-MB-231 cells were stably transfected with a control vector (MDA-231EV) or the miR-200c/141 cluster (MDA-231c141). Injection of MDA-231c141 cells into the 4th mammary gland of NCG mice produced tumors that developed significantly slower than tumors produced by MDA-231EV cells. Spontaneous metastasis to the lungs was also significantly reduced in MDA-231c141 cells compared to MDA-231EV cells. RNA sequencing of MDA-231EV and MDA-231c141 tumors identified genes including MXRA8 as being downregulated in the MDA-231c141 tumors. MXRA8 was further investigated as elevated levels of MXRA8 were associated with reduced distant metastasis free survival in breast cancer patients. Quantitative RT-PCR and Western blotting confirmed that MXRA8 expression was significantly higher in mammary tumors induced by MDA-231EV cells compared to those induced by MDA-231c141 cells. In addition, MXRA8 protein was present at high levels in metastatic tumor cells found in the lungs. This is the first study to implicate MXRA8 in human breast cancer, and our data suggests that miR-200s inhibit growth and metastasis of claudin-low mammary tumor cells in vivo through downregulating MXRA8 expression.
Collapse
|
16
|
Walker SE, Sabin KZ, Gearhart MD, Yamamoto K, Echeverri K. Regulation of stem cell identity by miR-200a during spinal cord regeneration. Development 2022; 149:274347. [PMID: 35156681 PMCID: PMC8918811 DOI: 10.1242/dev.200033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/05/2022] [Indexed: 01/04/2023]
Abstract
Axolotls are an important model organism for multiple types of regeneration, including functional spinal cord regeneration. Remarkably, axolotls can repair their spinal cord after a small lesion injury and can also regenerate their entire tail following amputation. Several classical signaling pathways that are used during development are reactivated during regeneration, but how this is regulated remains a mystery. We have previously identified miR-200a as a key factor that promotes successful spinal cord regeneration. Here, using RNA-seq analysis, we discovered that the inhibition of miR-200a results in an upregulation of the classical mesodermal marker brachyury in spinal cord cells after injury. However, these cells still express the neural stem cell marker sox2. In vivo cell tracking allowed us to determine that these cells can give rise to cells of both the neural and mesoderm lineage. Additionally, we found that miR-200a can directly regulate brachyury via a seed sequence in the 3′UTR of the gene. Our data indicate that miR-200a represses mesodermal cell fate after a small lesion injury in the spinal cord when only glial cells and neurons need to be replaced. Summary: Axolotl spinal cord cells have the potential to form cells of the ectoderm and mesoderm depending on the extent of the injury they are responding to.
Collapse
Affiliation(s)
- Sarah E Walker
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Keith Z Sabin
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | | | - Karen Echeverri
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
17
|
Liu L, Wang H, Chen X, Zhang Y, Li W, Rao X, Liu Y, Zhao L, Pu J, Gui S, Yang D, Fang L, Xie P. Integrative Analysis of Long Non-coding RNAs, Messenger RNAs, and MicroRNAs Indicates the Neurodevelopmental Dysfunction in the Hippocampus of Gut Microbiota-Dysbiosis Mice. Front Mol Neurosci 2022; 14:745437. [PMID: 35087377 PMCID: PMC8787131 DOI: 10.3389/fnmol.2021.745437] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/08/2021] [Indexed: 01/01/2023] Open
Abstract
Major depressive disorder is caused by gene–environment interactions and the gut microbiota plays a pivotal role in the development of depression. However, the underlying mechanisms remain elusive. Herein, the differentially expressed hippocampal long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), and microRNAs (miRNAs) between mice inoculated with gut microbiota from major depressive disorder patients or healthy controls were detected, to identify the effects of gut microbiota-dysbiosis on gene regulation patterns at the transcriptome level, and in further to explore the microbial-regulated pathological mechanisms of depression. As a result, 200 mRNAs, 358 lncRNAs, and 4 miRNAs were differentially expressed between the two groups. Functional analysis of these differential mRNAs indicated dysregulated inflammatory response to be the primary pathological change. Intersecting these differential mRNAs with targets of differentially expressed miRNAs identified 47 intersected mRNAs, which were mainly related to neurodevelopment. Additionally, a microbial-regulated lncRNA–miRNA–mRNA network based on RNA–RNA interactions was constructed. Subsequently, according to the competitive endogenous RNAs (ceRNA) hypothesis and the biological functions of these intersected genes, two neurodevelopmental ceRNA sub-networks implicating in depression were identified, one including two lncRNAs (4930417H01Rik and AI480526), one miRNA (mmu-miR-883b-3p) and two mRNAs (Adcy1 and Nr4a2), and the other including six lncRNAs (5930412G12Rik, 6430628N08Rik, A530013C23Rik, A930007I19Rik, Gm15489, and Gm16251), one miRNA (mmu-miR-377-3p) and three mRNAs (Six4, Stx16, and Ube3a), and these molecules could be recognized as potential genetic and epigenetic biomarkers in microbial-associated depression. This study provides new understanding of the pathogenesis of depression induced by gut microbiota-dysbiosis and may act as a theoretical basis for the development of gut microbiota-based antidepressants.
Collapse
Affiliation(s)
- Lanxiang Liu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxia Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuechen Rao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Libo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Deyu Yang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Fang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Peng Xie,
| |
Collapse
|
18
|
Nuclear factor I-C disrupts cellular homeostasis between autophagy and apoptosis via miR-200b-Ambra1 in neural tube defects. Cell Death Dis 2021; 13:17. [PMID: 34930914 PMCID: PMC8688449 DOI: 10.1038/s41419-021-04473-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Abstract
Impaired autophagy and excessive apoptosis disrupt cellular homeostasis and contribute to neural tube defects (NTDs), which are a group of fatal and disabling birth defects caused by the failure of neural tube closure during early embryonic development. However, the regulatory mechanisms underlying NTDs and outcomes remain elusive. Here, we report the role of the transcription factor nuclear factor I-C (NFIC) in maintaining cellular homeostasis in NTDs. We demonstrated that abnormally elevated levels of NFIC in a mouse model of NTDs can interact with the miR-200b promoter, leading to the activation of the transcription of miR-200b, which plays a critical role in NTD formation, as reported in our previous study. Furthermore, miR-200b represses autophagy and triggers apoptosis by directly targeting the autophagy-related gene Ambra1 (Autophagy/Beclin1 regulator 1). Notably, miR-200b inhibitors mitigate the unexpected effects of NFIC on autophagy and apoptosis. Collectively, these results indicate that the NFIC-miR-200b-Ambra1 axis, which integrates transcription- and epigenome-regulated miRNAs and an autophagy regulator, disrupts cellular homeostasis during the closure of the neural tube, and may provide new insight into NTD pathogenesis.
Collapse
|
19
|
Watson KL, Yi R, Moorehead RA. Transgenic overexpression of the miR-200b/200a/429 cluster inhibits mammary tumor initiation. Transl Oncol 2021; 14:101228. [PMID: 34562686 PMCID: PMC8473771 DOI: 10.1016/j.tranon.2021.101228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
The miR-200 family consists of five members expressed as two clusters: miR-200c/141 cluster and miR-200b/200a/429 cluster. In the mammary gland, miR-200s maintain epithelial identity by decreasing the expression of mesenchymal markers leading to high expression of epithelial markers. While the loss of miR-200s is associated with breast cancer growth and metastasis the impact of miR-200 expression on mammary tumor initiation has not been investigated. Using mammary specific expression of the miR-200b/200a/429 cluster in transgenic mice, we found that elevated expression miR-200s could almost completely prevent mammary tumor development. Only 1 of 16 MTB-IGFIRba429 transgenic mice (expressing both the IGF-IR and miR-200b/200a/429 transgenes) developed a mammary tumor while 100% of MTB-IGFIR transgenic mice (expressing only the IGF-IR transgene) developed mammary tumors. RNA sequencing, qRT-PCR, and immunohistochemistry of mammary tissue from 55-day old mice found Spp1, Saa1, and Saa2 to be elevated in mammary tumors and inhibited by miR-200b/200a/429 overexpression. This study suggests that miR-200s could be used as a preventative strategy to protect women from developing breast cancer. One concern with this approach is the potential negative impact miR-200 overexpression may have on mammary function. However, transgenic overexpression of miR-200s, on their own, did not significantly impact mammary ductal development indicating the miR-200 overexpression should not significantly impact mammary function. Thus, this study provides the initial foundation for using miR-200s for breast cancer prevention and additional studies should be performed to identify strategies for increasing mammary miR-200 expression and determine whether miR-200s can prevent mammary tumor initiation by other genetic alterations.
Collapse
Affiliation(s)
- Katrina L Watson
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Rui Yi
- Department of Pathology, Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Roger A Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
20
|
Roth MJ, Moorehead RA. The miR-200 family in normal mammary gland development. BMC DEVELOPMENTAL BIOLOGY 2021; 21:12. [PMID: 34454436 PMCID: PMC8399786 DOI: 10.1186/s12861-021-00243-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/08/2021] [Indexed: 12/23/2022]
Abstract
The miR-200 family of microRNAs plays a significant role in inhibiting mammary tumor growth and progression, and its members are being investigated as therapeutic targets. Additionally, if future studies can prove that miR-200s prevent mammary tumor initiation, the microRNA family could also offer a preventative strategy. Before utilizing miR-200s in a therapeutic setting, understanding how they regulate normal mammary development is necessary. No studies investigating the role of miR-200s in embryonic ductal development could be found, and only two studies examined the impact of miR-200s on pubertal ductal morphogenesis. These studies showed that miR-200s are expressed at low levels in virgin mammary glands, and elevated expression of miR-200s have the potential to impair ductal morphogenesis. In contrast to virgin mammary glands, miR-200s are expressed at high levels in mammary glands during late pregnancy and lactation. miR-200s are also found in the milk of several mammalian species, including humans. However, the relevance of miR-200s in milk remains unclear. The increase in miR-200 expression in late pregnancy and lactation suggests a role for miR-200s in the development of alveoli and/or regulating milk production. Therefore, studies investigating the consequence of miR-200 overexpression or knockdown are needed to identify the function of miR-200s in alveolar development and lactation.
Collapse
Affiliation(s)
- Majesta J Roth
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Roger A Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
21
|
Evolution and Phylogeny of MicroRNAs - Protocols, Pitfalls, and Problems. Methods Mol Biol 2021. [PMID: 34432281 DOI: 10.1007/978-1-0716-1170-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
MicroRNAs are important regulators in many eukaryotic lineages. Typical miRNAs have a length of about 22nt and are processed from precursors that form a characteristic hairpin structure. Once they appear in a genome, miRNAs are among the best-conserved elements in both animal and plant genomes. Functionally, they play an important role in particular in development. In contrast to protein-coding genes, miRNAs frequently emerge de novo. The genomes of animals and plants harbor hundreds of mutually unrelated families of homologous miRNAs that tend to be persistent throughout evolution. The evolution of their genomic miRNA complement closely correlates with important morphological innovation. In addition, miRNAs have been used as valuable characters in phylogenetic studies. An accurate and comprehensive annotation of miRNAs is required as a basis to understand their impact on phenotypic evolution. Since experimental data on miRNA expression are limited to relatively few species and are subject to unavoidable ascertainment biases, it is inevitable to complement miRNA sequencing by homology based annotation methods. This chapter reviews the state of the art workflows for homology based miRNA annotation, with an emphasis on their limitations and open problems.
Collapse
|
22
|
Liu X, Yao L, Qu J, Liu L, Lu N, Wang J, Zhang J. Cancer-associated fibroblast infiltration in gastric cancer: the discrepancy in subtypes pathways and immunosuppression. J Transl Med 2021; 19:325. [PMID: 34332586 PMCID: PMC8325313 DOI: 10.1186/s12967-021-03012-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Background General role of cancer-associated fibroblast (CAF) and its infiltration characteristics in gastric cancer remains to be unknown. Methods We estimate CAF infiltration in bulk tumor tissue with RNA-seq data and analyzed its relationship with gastric cancer subtype, survival and immune microenvironment. Results We revealed CAF intend to have higher infiltration in diffuse, genomically stable, and advanced gastric cancer. CAF is associated with immunosuppressive microenvironment. Wide transcriptomics alterations occur in high CAF infiltrated gastric cancer, PI3K/AKT, TGFB and Hedgehog pathway are remarkable in this procedure. We utilized receptor tyrosine kinases and TGFB pathway ligands to construct risk score system that can predict survival. Conclusion Thus, CAF is associated with aggressive phenotype of gastric cancer and risk score based on RTK and TGFB pathway ligands expression is a promising tool for assessment of gastric cancer survival. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03012-z.
Collapse
Affiliation(s)
- Xu Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China
| | - Li Yao
- Department of Neurology, Xi'an XD Group Hospital, 97 North Fengdeng Road, Xi'an, Shaanxi, China
| | - Jingkun Qu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 West Fifth Street, Xi'an, Shaanxi, China
| | - Lin Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China
| | - Ning Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, 48 West Fenghao Road, Xi'an, Shaanxi, China
| | - Jiansheng Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China.
| | - Jia Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China.
| |
Collapse
|
23
|
Gollavilli PN, Parma B, Siddiqui A, Yang H, Ramesh V, Napoli F, Schwab A, Natesan R, Mielenz D, Asangani IA, Brabletz T, Pilarsky C, Ceppi P. The role of miR-200b/c in balancing EMT and proliferation revealed by an activity reporter. Oncogene 2021; 40:2309-2322. [PMID: 33654197 PMCID: PMC7994202 DOI: 10.1038/s41388-021-01708-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Since their discovery, microRNAs (miRNAs) have been widely studied in almost every aspect of biology and medicine, leading to the identification of important gene regulation circuits and cellular mechanisms. However, investigations are generally focused on the analysis of their downstream targets and biological functions in overexpression and knockdown approaches, while miRNAs endogenous levels and activity remain poorly understood. Here, we used the cellular plasticity-regulating process of epithelial-to-mesenchymal transition (EMT) as a model to show the efficacy of a fluorescent sensor to separate cells with distinct EMT signatures, based on miR-200b/c activity. The system was further combined with a CRISPR-Cas9 screening platform to unbiasedly identify miR-200b/c upstream regulating genes. The sensor allows to infer miRNAs fundamental biological properties, as profiling of sorted cells indicated miR-200b/c as a molecular switch between EMT differentiation and proliferation, and suggested a role for metabolic enzymes in miR-200/EMT regulation. Analysis of miRNAs endogenous levels and activity for in vitro and in vivo applications could lead to a better understanding of their biological role in physiology and disease.
Collapse
Affiliation(s)
- Paradesi Naidu Gollavilli
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Beatrice Parma
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Aarif Siddiqui
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hai Yang
- Department of Surgery, Friedrich-Alexander University of Erlangen- Nuremberg (FAU) and University Hospital of Erlangen, Erlangen, Germany
| | - Vignesh Ramesh
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Francesca Napoli
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany.,Department of Oncology at San Luigi Hospital, University of Turin, Turin, Italy
| | - Annemarie Schwab
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Ramakrishnan Natesan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Dirk Mielenz
- Department of Molecular Immunology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Irfan Ahmed Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Thomas Brabletz
- Department of Experimental Medicine-I, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, Friedrich-Alexander University of Erlangen- Nuremberg (FAU) and University Hospital of Erlangen, Erlangen, Germany
| | - Paolo Ceppi
- Interdisciplinary Center for Clinical Research (IZKF), Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany. .,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
24
|
Simpson K, Conquer-van Heumen G, Watson KL, Roth M, Martin CJ, Moorehead RA. Re-expression of miR-200s in claudin-low mammary tumor cells alters cell shape and reduces proliferation and invasion potentially through modulating other miRNAs and SUZ12 regulated genes. Cancer Cell Int 2021; 21:89. [PMID: 33541373 PMCID: PMC7863273 DOI: 10.1186/s12935-021-01784-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs are a class of non-coding RNAs that regulate gene expression through binding to mRNAs and preventing their translation. One family of microRNAs known as the miR-200 family is an important regulator of epithelial identity. The miR-200 family consists of five members expressed in two distinct clusters; the miR-200c/141 cluster and the miR-200b/200a/429 cluster. We have found that murine and human mammary tumor cells with claudin-low characteristics are associated with very low levels of all five miR-200s. Methods To determine the impact of miR-200s on claudin-low mammary tumor cells, the miR-200c/141 cluster and the miR-200b/200a/429 cluster were stably re-expressed in murine (RJ423) and human (MDA-MB-231) claudin-low mammary tumor cells. Cell proliferation and migration were assessed using BrdU incorporation and transwell migration across Matrigel coated inserts, respectively. miRNA sequencing and RNA sequencing were performed to explore miRNAs and mRNAs regulated by miR-200 re-expression while Enrichr-based pathway analysis was utilized to identify cellular functions modified by miR-200s. Results Re-expression of the miR-200s in murine and human claudin-low mammary tumor cells partially restored an epithelial cell morphology and significantly inhibited proliferation and cell invasion in vitro. miRNA sequencing and mRNA sequencing revealed that re-expression of miR-200s altered the expression of other microRNAs and genes regulated by SUZ12 providing insight into the complexity of miR-200 function. SUZ12 is a member of the polycomb repressor complex 2 that suppresses gene expression through methylating histone H3 at lysine 27. Flow cytometry confirmed that re-expression of miR-200s increased histone H3 methylation at lysine 27. Conclusions Re-expression of miR-200s in claudin-low mammary tumor cells alters cell morphology and reduces proliferation and invasion, an effect potentially mediated by SUZ12-regulated genes and other microRNAs.
Collapse
Affiliation(s)
- K Simpson
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - G Conquer-van Heumen
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - K L Watson
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - M Roth
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - C J Martin
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - R A Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
25
|
Jevšinek Skok D, Hauptman N, Boštjančič E, Zidar N. The integrative knowledge base for miRNA-mRNA expression in colorectal cancer. Sci Rep 2019; 9:18065. [PMID: 31792281 PMCID: PMC6889159 DOI: 10.1038/s41598-019-54358-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
"miRNA colorectal cancer" (https://mirna-coadread.omics.si/) is a freely available web application for studying microRNA and mRNA expression and their correlation in colorectal cancer. To the best of our knowledge, "miRNA colorectal cancer" has the largest knowledge base of miRNA-target gene expressions and correlations in colorectal cancer, based on the largest available sample size from the same source of data. Data from high-throughput molecular profiling of 295 colon and rectum adenocarcinoma samples from The Cancer Genome Atlas was analyzed and integrated into our knowledge base. The objective of developing this web application was to help researchers to discover the behavior and role of miRNA-target gene interactions in colorectal cancer. For this purpose, results of differential expression and correlation analyses of miRNA and mRNA data collected in our knowledge base are available through web forms. To validate our knowledge base experimentally, we selected genes FN1, TGFB2, RND3, ZEB1 and ZEB2 and miRNAs hsa-miR-200a/b/c-3p, hsa-miR-141-3p and hsa-miR-429. Both approaches revealed a negative correlation between miRNA hsa-miR-200b/c-3p and its target gene FN1 and between hsa-miR-200a-3p and its target TGFB2, thus supporting the usefulness of the developed knowledge base.
Collapse
Affiliation(s)
- Daša Jevšinek Skok
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia. .,Agricultural Institute of Slovenia, Ljubljana, Slovenia.
| | - Nina Hauptman
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
26
|
Regulatory roles of the miR-200 family in neurodegenerative diseases. Biomed Pharmacother 2019; 119:109409. [PMID: 31518873 DOI: 10.1016/j.biopha.2019.109409] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are chronic and progressive disorders which are not effectively treated through adopting conventional therapies. For this unmet medical need, alternative therapeutic methods including gene-based therapies are emphasized. MicroRNAs (miRNAs) are small non-coding RNAs which can regulate gene expression at the post-transcriptional level. In recent years, dysregulated miRNAs have been indicated to be implicated in the occurrence and development of neurodegenerative diseases. They are investigated as candidates for diagnostic and prognostic biomarkers, as well as therapeutic targets. The miR-200 family consists of miR-200a, -200b, -200c, -141, and -429. Numerous studies have found that miR-200 family members are associated with the pathogenesis of neurodegenerative diseases. It is reported that miR-200 family members are aberrantly expressed in several neurodegenerative diseases, participating in various cellular processes including beta-amyloid (Aβ) secretion, alpha-synuclein aggregation and DNA repair, etc. In the present review, we summarize the recent progress in the roles of miR-200 family in neurodegenerative diseases.
Collapse
|
27
|
Sabin KZ, Jiang P, Gearhart MD, Stewart R, Echeverri K. AP-1 cFos/JunB/miR-200a regulate the pro-regenerative glial cell response during axolotl spinal cord regeneration. Commun Biol 2019; 2:91. [PMID: 30854483 PMCID: PMC6403268 DOI: 10.1038/s42003-019-0335-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/04/2019] [Indexed: 12/30/2022] Open
Abstract
Salamanders have the remarkable ability to functionally regenerate after spinal cord transection. In response to injury, GFAP+ glial cells in the axolotl spinal cord proliferate and migrate to replace the missing neural tube and create a permissive environment for axon regeneration. Molecular pathways that regulate the pro-regenerative axolotl glial cell response are poorly understood. Here we show axolotl glial cells up-regulate AP-1cFos/JunB after injury, which promotes a pro-regenerative glial cell response. Injury induced upregulation of miR-200a in glial cells supresses c-Jun expression in these cells. Inhibition of miR-200a during regeneration causes defects in axonal regrowth and transcriptomic analysis revealed that miR-200a inhibition leads to differential regulation of genes involved with reactive gliosis, the glial scar, extracellular matrix remodeling and axon guidance. This work identifies a unique role for miR-200a in inhibiting reactive gliosis in axolotl glial cells during spinal cord regeneration. Keith Sabin et al. showed that upregulation of the AP-1 complex, composed of c-Fos and JunB, in the axolotl spinal cord promotes a pro-regenerative glial cell response. This response is impaired by inhibition of miR-200a; suggesting an important role for this microRNA in axolotl spinal cord regeneration.
Collapse
Affiliation(s)
- Keith Z Sabin
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA.,Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, 02543, MA, USA
| | - Peng Jiang
- Morgridge Institute for Research, Madison, 53715, WI, USA
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, 53715, WI, USA
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA. .,Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, 02543, MA, USA.
| |
Collapse
|
28
|
FOXG1 Regulates PRKAR2B Transcriptionally and Posttranscriptionally via miR200 in the Adult Hippocampus. Mol Neurobiol 2018; 56:5188-5201. [PMID: 30539330 PMCID: PMC6647430 DOI: 10.1007/s12035-018-1444-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/30/2018] [Indexed: 02/04/2023]
Abstract
Rett syndrome is a complex neurodevelopmental disorder that is mainly caused by mutations in MECP2. However, mutations in FOXG1 cause a less frequent form of atypical Rett syndrome, called FOXG1 syndrome. FOXG1 is a key transcription factor crucial for forebrain development, where it maintains the balance between progenitor proliferation and neuronal differentiation. Using genome-wide small RNA sequencing and quantitative proteomics, we identified that FOXG1 affects the biogenesis of miR200b/a/429 and interacts with the ATP-dependent RNA helicase, DDX5/p68. Both FOXG1 and DDX5 associate with the microprocessor complex, whereby DDX5 recruits FOXG1 to DROSHA. RNA-Seq analyses of Foxg1cre/+ hippocampi and N2a cells overexpressing miR200 family members identified cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B) as a target of miR200 in neural cells. PRKAR2B inhibits postsynaptic functions by attenuating protein kinase A (PKA) activity; thus, increased PRKAR2B levels may contribute to neuronal dysfunctions in FOXG1 syndrome. Our data suggest that FOXG1 regulates PRKAR2B expression both on transcriptional and posttranscriptional levels.
Collapse
|
29
|
Tian Y, Fu X, Li Q, Wang Y, Fan D, Zhou Q, Kuang W, Shen L. MicroRNA‑181 serves an oncogenic role in breast cancer via the inhibition of SPRY4. Mol Med Rep 2018; 18:5603-5613. [PMID: 30365052 PMCID: PMC6236310 DOI: 10.3892/mmr.2018.9572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 09/19/2018] [Indexed: 01/27/2023] Open
Abstract
Numerous microRNAs (miRs) have been implicated in breast cancer; however, the molecular mechanism is not fully understood. The present study examined the function and regulatory mechanism of miR‑181 in breast cancer. Reverse transcription‑quantitative polymerase chain reaction and western blot analysis were used to examine the RNA and protein expression. MTT assay, wound healing assay and transwell assay were conducted to study cell proliferation, migration and invasion. Luciferase reporter gene assay was used to confirm targeting relationship. The results suggested that the miR‑181 expression levels were significantly higher in breast cancer cell lines and clinical tissue samples. The increased expression of miR‑181 was markedly associated with higher clinical stage and lymph node metastasis. The patients with high miR‑181 expression demonstrated worse prognosis compared with those with a low expression of miR‑181. Small interfering RNA‑induced miR‑181 downregulation significantly inhibited breast cancer cell proliferation, migration and invasion in vitro, and tumor growth in vivo. Protein sprouty homolog 4 (SPRY4), downregulated in breast cancer tissues and cell lines, was observed to be a novel target gene of miR‑181. Downregulation of SPRY4 was significantly associated with breast cancer progression in addition to poor prognosis. Knockdown of SPRY4 rescued the inhibitory effects of miR‑181 downregulation on the malignant phenotypes of breast cancer cells. Thus, the present study demonstrated that miR‑181 serves a promoting role in breast cancer at least in part through the inhibition of SPRY4 expression. The present results expand the understanding of the miR‑181/SPRY4 axis' function during for the malignant progression of breast cancer.
Collapse
Affiliation(s)
- Yifu Tian
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaodan Fu
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Ying Wang
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Dan Fan
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Qin Zhou
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Weilu Kuang
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
30
|
Zhang C, Chang C, Gao H, Wang Q, Zhang F, Xu C. MiR-429 regulates rat liver regeneration and hepatocyte proliferation by targeting JUN/MYC/BCL2/CCND1 signaling pathway. Cell Signal 2018; 50:80-89. [PMID: 29958992 DOI: 10.1016/j.cellsig.2018.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022]
Abstract
Increasing evidence indicates that miR-429 is involved in tumor suppression in various human cancers. However, its role in liver regeneration remains unexplored. Liver regeneration is a highly orchestrated process that can be regulated by microRNAs (miRNAs), although the mechanisms are largely unclear. In this study, we aimed to identify the role of miR-429 in hepatocyte proliferation during liver regeneration. First, we performed microarray analysis and qRT-PCR. Results indicated that miR-429 level in rat liver markedly decreased 30 h after partial hepatectomy, and miR-429 overexpression disrupted BRL-3A proliferation and the transition of G1 to S phase in rat hepatocyte and promoted hepatocyte apoptosis. By contrast, miR-429 down-regulation had inverse effects. MiR-429 negatively regulated JUN expression in vitro and in vivo. After using JUN siRNA, we found that JUN inhibition mediates the effect of miR-429 in hepatocyte proliferation and growth and miR-429 negatively regulates JUN/MYC/BCL2/CCND1 signaling pathways. Our results also indicated that miR-429 inhibits hepatocyte proliferation and liver regeneration by targeting JUN/MYC/BCL2/CCND1.
Collapse
Affiliation(s)
- Chunyan Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Cuifang Chang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Hang Gao
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Qiwen Wang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
31
|
Balestrieri C, Alfarano G, Milan M, Tosi V, Prosperini E, Nicoli P, Palamidessi A, Scita G, Diaferia GR, Natoli G. Co-optation of Tandem DNA Repeats for the Maintenance of Mesenchymal Identity. Cell 2018; 173:1150-1164.e14. [DOI: 10.1016/j.cell.2018.03.081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/16/2017] [Accepted: 03/29/2018] [Indexed: 01/06/2023]
|
32
|
The miR-200b/200a/429 cluster prevents metastasis and induces dormancy in a murine claudin-low mammary tumor cell line. Exp Cell Res 2018; 369:17-26. [PMID: 29702103 DOI: 10.1016/j.yexcr.2018.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 12/29/2022]
Abstract
The miR-200 family of microRNAs consisting of miR-141, miR-200a, miR-200b, miR-200c and miR-429 are emerging as important regulators of breast cancer progression. This family of microRNAs maintain mammary epithelial identity and downregulation of miR-200 expression has been associated with epithelial-to-mesenchymal transition in mammary tumors. Therefore, re-expression of one or more miR-200 family members in mammary tumor cells with mesenchymal characteristics may restore an epithelial phenotype including growth and metastasis suppression. To test this hypothesis, the miR-200b/200a/429 cluster was re-expressed in a murine claudin-low cell line, RJ423. Re-expression of the miR-200b/200a/429 cluster in RJ423 cells significantly suppressed the expression of Vim, Snai1, Twist1, Twist2 and Zeb1, reverted RJ423 cells to a more epithelial morphology and significantly inhibited proliferation in vitro. Moreover, the miR-200b/200a/429 cluster prevented lung metastasis in an experimental metastasis model and although tumor initiation was not prevented, re-expression of the miR-200b/200a/429 cluster induced a dormancy-like state where mammary tumors failed to grow beyond ~150 mm3 or grew extremely slowly following intra-mammary injection. These dormant tumors contained elevated levels of collagen and were highly vascularized. Therefore, re-expression of the miR-200b/200a/429 cluster in the claudin-low mammary tumor cell line, RJ423, is sufficient to alter cell morphology, impair metastasis and induce tumor dormancy.
Collapse
|
33
|
Effects of miR-200a and FH535 combined with taxol on proliferation and invasion of gastric cancer. Pathol Res Pract 2018; 214:442-449. [DOI: 10.1016/j.prp.2017.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/18/2017] [Accepted: 12/04/2017] [Indexed: 01/03/2023]
|
34
|
Zammit V, Baron B, Ayers D. MiRNA Influences in Neuroblast Modulation: An Introspective Analysis. Genes (Basel) 2018; 9:genes9010026. [PMID: 29315268 PMCID: PMC5793179 DOI: 10.3390/genes9010026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is the most common occurring solid paediatric cancer in children under the age of five years. Whether of familial or sporadic origin, chromosome abnormalities contribute to the development of NB and cause dysregulation of microRNAs (miRNAs). MiRNAs are small non-coding, single stranded RNAs that target messenger RNAs at the post-transcriptional levels by repressing translation within all facets of human physiology. Such gene 'silencing' activities by miRNAs allows the development of regulatory feedback loops affecting multiple functions within the cell, including the possible differentiation of neural stem cell (NSC) lineage selection. Neurogenesis includes stages of self-renewal and fate specification of NSCs, migration and maturation of young neurones, and functional integration of new neurones into the neural circuitry, all of which are regulated by miRNAs. The role of miRNAs and their interaction in cellular processes are recognised aspects of cancer genetics, and miRNAs are currently employed as biomarkers for prognosis and tumour characterisation in multiple cancer models. Consequently, thorough understanding of the mechanisms of how these miRNAs interplay at the transcriptomic level will definitely lead to the development of novel, bespoke and efficient therapeutic measures, with this review focusing on the influences of miRNAs on neuroblast modulations leading to neuroblastoma.
Collapse
Affiliation(s)
- Vanessa Zammit
- National Blood Transfusion Service, St. Luke's Hospital, PTA1010 G'Mangia, Malta.
- School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton WV1 1LY, UK.
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta.
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
35
|
Zhang J, Ma W, He Y, Dawar FU, Xiong S, Mei J. Potential Contributions of miR-200a/-200b and Their Target Gene-Leptin to the Sexual Size Dimorphism in Yellow Catfish. Front Physiol 2017; 8:970. [PMID: 29249979 PMCID: PMC5714929 DOI: 10.3389/fphys.2017.00970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022] Open
Abstract
Sexual size dimorphism is the consequence of differential expression of sex-biased genes related to feeding and growth. Leptin is known to regulate energy balance by regulating food intake. In order to investigate the molecular mechanism of sexual size dimorphism in yellow catfish (Pelteobagrus fulvidraco), the expression of leptin (lep) and its functional receptor (lepr) were detected during larval development. Both lep and lepr have lower expression in males than in females during 1–4 weeks post hatching. 17a-Methyltestosterone (MT) treatment resulted in decreased expression of lep and lepr in both male and female larval fish. Interestingly, the mRNA levels of lep and lepr in juvenile male were significantly decreased compared with juvenile female during short-term fasting periods. Lep was predicted to be a potential target of miR-200a and miR-200b that had an opposite expression pattern to lep in male and female larvas. The results of luciferase reporter assay suggested that lep is a target of miR-200a/-200b. Subsequently, male hormone and fasting treatment have opposite effects on the expression of miR-200a/-200b and lep between males and females. In summary, our results suggest that sexual size dimorphism in fish species is probably caused by the sexually dimorphic expression of leptin, which could be negatively regulated by miR-200a/-200b.
Collapse
Affiliation(s)
- Jin Zhang
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Wenge Ma
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yan He
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Farman U Dawar
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China.,Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Shuting Xiong
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jie Mei
- Key Laboratory of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
36
|
Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. GENES AND NUTRITION 2017; 12:23. [PMID: 28974990 PMCID: PMC5613467 DOI: 10.1186/s12263-017-0577-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022]
Abstract
In recent years, the link between regulatory microRNAs (miRNAs) and diseases has been the object of intensive research. miRNAs have emerged as key mediators of metabolic processes, playing crucial roles in maintaining/altering physiological processes, including energy balance and metabolic homeostasis. Altered miRNAs expression has been reported in association with obesity, both in animal and human studies. Dysregulation of miRNAs may affect the status and functions of different tissues and organs, including the adipose tissue, pancreas, liver, and muscle, possibly contributing to metabolic abnormalities associated with obesity and obesity-related diseases. More recently, the discovery of circulating miRNAs easily detectable in plasma and other body fluids has emphasized their potential as both endocrine signaling molecules and disease indicators. In this review, the status of current research on the role of miRNAs in obesity and related metabolic abnormalities is summarized and discussed.
Collapse
Affiliation(s)
- Giuseppe Iacomino
- Institute of Food Sciences, CNR, Via Roma, 64, 83100 Avellino, Italy
| | - Alfonso Siani
- Institute of Food Sciences, CNR, Via Roma, 64, 83100 Avellino, Italy
| |
Collapse
|
37
|
Balaraman S, Idrus NM, Miranda RC, Thomas JD. Postnatal choline supplementation selectively attenuates hippocampal microRNA alterations associated with developmental alcohol exposure. Alcohol 2017; 60:159-167. [PMID: 28433422 PMCID: PMC5559286 DOI: 10.1016/j.alcohol.2016.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 11/25/2022]
Abstract
Prenatal alcohol exposure can result in a range of physical, neuropathological, and behavioral alterations, collectively termed fetal alcohol spectrum disorders (FASD). We have shown that supplementation with the nutrient choline reduces the severity of developmental alcohol-associated deficits in hippocampal-dependent behaviors and normalizes some aspects of hippocampal cholinergic development and DNA methylation patterns. Alcohol's developmental effects may also be mediated, in part, by altering microRNAs (miRNAs) that serve as negative regulators of gene translation. To determine whether choline supplementation alters ethanol's long-lasting effects on miRNAs, Sprague-Dawley rats were exposed to 5.25 g/kg/day ethanol from postnatal days (PD) 4-9 via intubation; controls received sham intubations. Subjects were treated with choline chloride (100 mg/kg/day) or saline vehicle subcutaneously (s.c.) from PD 4-21. On PD 22, subjects were sacrificed, and RNA was isolated from the hippocampus. MiRNA expression was assessed with TaqMan Human MicroRNA Panel Low-Density Arrays. Ethanol significantly increased miRNA expression variance, an effect that was attenuated with choline supplementation. Cluster analysis of stably expressed miRNAs that exceeded an ANOVA p < 0.05 criterion indicated that for both male and female offspring, control and ethanol-exposed groups were most dissimilar from each other, with choline-supplemented groups in between. MiRNAs that expressed an average 2-fold change due to ethanol exposure were further analyzed to identify which ethanol-sensitive miRNAs were protected by choline supplementation. We found that at a false discovery rate (FDR)-adjusted criterion of p < 0.05, miR-200c was induced by ethanol exposure and that choline prevented this effect. Collectively, our data show that choline supplementation can normalize disturbances in miRNA expression following developmental alcohol exposure and can protect specific miRNAs from induction by ethanol. These findings have important implications for the mechanisms by which choline may serve as a potential treatment for FASD.
Collapse
Affiliation(s)
- Sridevi Balaraman
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Nirelia M Idrus
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Women's Health in Neuroscience Program, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Jennifer D Thomas
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA.
| |
Collapse
|
38
|
Jones R, Watson K, Bruce A, Nersesian S, Kitz J, Moorehead R. Re-expression of miR-200c suppresses proliferation, colony formation and in vivo tumor growth of murine claudin-low mammary tumor cells. Oncotarget 2017; 8:23727-23749. [PMID: 28423599 PMCID: PMC5410340 DOI: 10.18632/oncotarget.15829] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/06/2017] [Indexed: 12/17/2022] Open
Abstract
Claudin-low breast cancer is a relatively rare breast cancer subtype. These cancers are typically ER-/PR-/HER2- and express high levels of mesenchymal genes as well as genes associated with inflammation, angiogenesis and stem cell function. In addition to alterations in gene expression, it was recently demonstrated that claudin-low breast cancers express very low levels of the miR-200 family of miRNAs. Given that each miRNA can regulate tens, hundreds or even thousands of genes, miRNAs are being evaluated as therapeutic targets. In this study we show that mammary tumors from MTB-IGFIR transgenic mice and cell lines derived from these tumors represent a model of human claudin-low breast cancer and murine claudin-low mammary tumors and cell lines express only very low levels of all five members of the miR-200 family. Reduced miR-200 family expression appears to be regulated via methylation as cells and tumors expressing low levels of miR-200 family members had higher levels of CpG methylation in a putative promoter region than tumors and cells expressing high levels of miR-200 family members. Re-expression of miR-200c in murine claudin-low mammary tumor cells inhibited tumor cell proliferation and colony formation in vitro and tumor growth in vivo. With respect to tumor growth in vivo, re-expression of miR-200c was associated with a reduction in tumor vasculature and expression of Flt1 and Vegfc. Therefore, miR-200c is an important regulator of mesenchymal tumor cell growth.
Collapse
Affiliation(s)
- Robert Jones
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Katrina Watson
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anthony Bruce
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Sarah Nersesian
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jenna Kitz
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Roger Moorehead
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
39
|
Yang H, Lin S, Lei X, Yuan C, Tian Z, Yu Y, Zhao Z, Chen J. Identification and profiling of microRNAs from ovary of estrous Kazakh sheep induced by nutritional status in the anestrous season. Anim Reprod Sci 2016; 175:18-26. [PMID: 27773477 DOI: 10.1016/j.anireprosci.2016.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
Abstract
Estrous regulation in sheep has an important role in the sheep industry in improving production of meat and wool. It has been reported that an enhanced nutritional status can induce estrus resulting in an end of the anestrous season earlier than occurs in ewes with a lesser nutritional status. However, the endocrine and physiological mechanisms that induce the increased incidence of estrus remains unclear. In the present study, the differences in amounts and characteristics of miRNAs in ewes at estrus or during the anestrous season were screened by using the Illumina HiSeq sequencing technology. In total, 294 miRNAs, including 174 novel miRNA candidates, were identified in ewes with an enhanced nutritional status (OEN) through assessment of the OEN library for this group and 307 miRNAs including 186 novel miRNA candidates were identified in the ewes with a lesser nutritional status (OAN) through assessing the OAN library, among which there were nine conserved and 104 novel miRNAs in differential amounts between the two libraries. Based on poly (A) q-PCR, six miRNAs were assessed to verify the accuracy of the library database. Furthermore, the family of the known miRNAs, the target genes and related pathways were also analyzed. The results indicated that the nutritional status had important roles in estrous regulation in sheep. The PLA2G4D can directly regulate ovarian follicle development, or indirectly influence leptin secretion involved in the regulation of the reproductive endocrine and physiological systems during the anestrous season. The identification of significantly different miRNAs expanded the repertoire of sheep miRNAs that have been examined and could contribute to further studies on the molecular mechanism of regulation of initiation of estrous cycles in previously anestrous ewes as influenced by different nutritional status.
Collapse
Affiliation(s)
- Heng Yang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Shan Lin
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Xiaoping Lei
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Cong Yuan
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Zhanwei Tian
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yaosheng Yu
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China.
| | - Jingbo Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China; Xinjiang Academy of Animal Sciences, Urumqi 830011, China.
| |
Collapse
|
40
|
Tkatchenko AV, Luo X, Tkatchenko TV, Vaz C, Tanavde VM, Maurer-Stroh S, Zauscher S, Gonzalez P, Young TL. Large-Scale microRNA Expression Profiling Identifies Putative Retinal miRNA-mRNA Signaling Pathways Underlying Form-Deprivation Myopia in Mice. PLoS One 2016; 11:e0162541. [PMID: 27622715 PMCID: PMC5021328 DOI: 10.1371/journal.pone.0162541] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/24/2016] [Indexed: 12/16/2022] Open
Abstract
Development of myopia is associated with large-scale changes in ocular tissue gene expression. Although differential expression of coding genes underlying development of myopia has been a subject of intense investigation, the role of non-coding genes such as microRNAs in the development of myopia is largely unknown. In this study, we explored myopia-associated miRNA expression profiles in the retina and sclera of C57Bl/6J mice with experimentally induced myopia using microarray technology. We found a total of 53 differentially expressed miRNAs in the retina and no differences in miRNA expression in the sclera of C57BL/6J mice after 10 days of visual form deprivation, which induced -6.93 ± 2.44 D (p < 0.000001, n = 12) of myopia. We also identified their putative mRNA targets among mRNAs found to be differentially expressed in myopic retina and potential signaling pathways involved in the development of form-deprivation myopia using miRNA-mRNA interaction network analysis. Analysis of myopia-associated signaling pathways revealed that myopic response to visual form deprivation in the retina is regulated by a small number of highly integrated signaling pathways. Our findings highlighted that changes in microRNA expression are involved in the regulation of refractive eye development and predicted how they may be involved in the development of myopia by regulating retinal gene expression.
Collapse
Affiliation(s)
- Andrei V. Tkatchenko
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- * E-mail: (AVT); (TLY)
| | - Xiaoyan Luo
- Department of Ophthalmology, School of Medicine, Duke University, Durham, North Carolina, United States of America
- Center for Human Genetics, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Tatiana V. Tkatchenko
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Candida Vaz
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, Singapore
| | - Vivek M. Tanavde
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, Singapore
- Institute for Medical Biology, A*STAR, Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore, Singapore
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Pratt School of Engineering, Duke University, Durham, North Carolina, United States of America
| | - Pedro Gonzalez
- Department of Ophthalmology, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Terri L. Young
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail: (AVT); (TLY)
| |
Collapse
|
41
|
Mansouri S, Nejad R, Karabork M, Ekinci C, Solaroglu I, Aldape KD, Zadeh G. Sox2: regulation of expression and contribution to brain tumors. CNS Oncol 2016; 5:159-73. [PMID: 27230973 DOI: 10.2217/cns-2016-0001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tumors of the CNS are composed of a complex mixture of neoplastic cells, in addition to vascular, inflammatory and stromal components. Similar to most other tumors, brain tumors contain a heterogeneous population of cells that are found at different stages of differentiation. The cancer stem cell hypothesis suggests that all tumors are composed of subpopulation of cells with stem-like properties, which are capable of self-renewal, display resistance to therapy and lead to tumor recurrence. One of the most important transcription factors that regulate cancer stem cell properties is SOX2. In this review, we focus on SOX2 and the complex network of signaling molecules and transcription factors that regulate its expression and function in brain tumor initiating cells. We also highlight important findings in the literature about the role of SOX2 in glioblastoma and medulloblastoma, where it has been more extensively studied.
Collapse
Affiliation(s)
- Sheila Mansouri
- McFeeters-Hamilton Center for Neuro-Oncology Research, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Romina Nejad
- McFeeters-Hamilton Center for Neuro-Oncology Research, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Merve Karabork
- School of Medicine, Koç University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
| | - Can Ekinci
- School of Medicine, Koç University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
| | - Ihsan Solaroglu
- School of Medicine, Koç University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey.,School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Kenneth D Aldape
- McFeeters-Hamilton Center for Neuro-Oncology Research, 101 College St., Toronto, ON, M5G 1L7, Canada
| | - Gelareh Zadeh
- McFeeters-Hamilton Center for Neuro-Oncology Research, 101 College St., Toronto, ON, M5G 1L7, Canada.,Division of Neurosurgery, Toronto Western Hospital, Toronto, M5T 2S8, Canada
| |
Collapse
|
42
|
Shimono Y, Mukohyama J, Nakamura SI, Minami H. MicroRNA Regulation of Human Breast Cancer Stem Cells. J Clin Med 2015; 5:jcm5010002. [PMID: 26712794 PMCID: PMC4730127 DOI: 10.3390/jcm5010002] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/01/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in virtually all biological processes, including stem cell maintenance, differentiation, and development. The dysregulation of miRNAs is associated with many human diseases including cancer. We have identified a set of miRNAs differentially expressed between human breast cancer stem cells (CSCs) and non-tumorigenic cancer cells. In addition, these miRNAs are similarly upregulated or downregulated in normal mammary stem/progenitor cells. In this review, we mainly describe the miRNAs that are dysregulated in human breast CSCs directly isolated from clinical specimens. The miRNAs and their clusters, such as the miR-200 clusters, miR-183 cluster, miR-221-222 cluster, let-7, miR-142 and miR-214, target the genes and pathways important for stem cell maintenance, such as the self-renewal gene BMI1, apoptosis, Wnt signaling, Notch signaling, and epithelial-to-mesenchymal transition. In addition, the current evidence shows that metastatic breast CSCs acquire a phenotype that is different from the CSCs in a primary site. Thus, clarifying the miRNA regulation of the metastatic breast CSCs will further advance our understanding of the roles of human breast CSCs in tumor progression.
Collapse
Affiliation(s)
- Yohei Shimono
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Junko Mukohyama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Shun-Ichi Nakamura
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
- Division of Biochemistry, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| |
Collapse
|
43
|
Santra M, Chopp M, Santra S, Nallani A, Vyas S, Zhang ZG, Morris DC. Thymosin beta 4 up-regulates miR-200a expression and induces differentiation and survival of rat brain progenitor cells. J Neurochem 2015; 136:118-32. [PMID: 26466330 DOI: 10.1111/jnc.13394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/27/2015] [Accepted: 10/05/2015] [Indexed: 12/24/2022]
Abstract
Thymosin beta 4 (Tβ4), a secreted 43 amino acid peptide, promotes oligodendrogenesis, and improves neurological outcome in rat models of neurologic injury. We demonstrated that exogenous Tβ4 treatment up-regulated the expression of the miR-200a in vitro in rat brain progenitor cells and in vivo in the peri-infarct area of rats subjected to middle cerebral artery occlusion (MCAO). The up-regulation of miR-200a down-regulated the expression of the following targets in vitro and in vivo models: (i) growth factor receptor-bound protein 2 (Grb2), an adaptor protein involved in epidermal growth factor receptor (EGFR)/Grb2/Ras/MEK/ERK1/c-Jun signaling pathway, which negatively regulates the expression of myelin basic protein (MBP), a marker of mature oligodendrocyte; (ii) ERRFI-1/Mig-6, an endogenous potent kinase inhibitor of EGFR, which resulted in activation/phosphorylation of EGFR; (iii) friend of GATA 2, and phosphatase and tensin homolog deleted in chromosome 10 (PTEN), which are potent inhibitors of the phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway, and resulted in marked activation of AKT; and (iv) transcription factor, p53, which induces pro-apoptotic genes, and possibly reduced apoptosis of the progenitor cells subjected to oxygen glucose deprivation (OGD). Anti-miR-200a transfection reversed all the effects of Tβ4 treatment in vitro. Thus, Tβ4 up-regulated MBP synthesis, and inhibited OGD-induced apoptosis in a novel miR-200a dependent EGFR signaling pathway. Our findings of miR-200a-mediated protection of progenitor cells may provide a new therapeutic importance for the treatment of neurologic injury. Tβ4-induced micro-RNA-200a (miR-200a) regulates EGFR signaling pathways for MBP synthesis and apoptosis: up-regulation of miR-200a after Tβ4 treatment, increases MBP synthesis after targeting Grb2 and thereby inactivating c-Jun from inhibition of MBP synthesis; and also inhibits OGD-mediated apoptosis after targeting EGFR inhibitor (Mig-6), PI3K inhibitors (FOG2 and Pten) and an inducer (p53) of pro-apoptotic genes, for AKT activation and down-regulation of p53. These findings may contribute the therapeutic benefits for stroke and other neuronal diseases associated with demyelination disorders.
Collapse
Affiliation(s)
- Manoranjan Santra
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA.,Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Sutapa Santra
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Ankita Nallani
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Shivam Vyas
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Daniel C Morris
- Department of Emergency Medicine, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
44
|
Jing J, Xiong S, Li Z, Wu J, Zhou L, Gui JF, Mei J. A feedback regulatory loop involving p53/miR-200 and growth hormone endocrine axis controls embryo size of zebrafish. Sci Rep 2015; 5:15906. [PMID: 26507500 PMCID: PMC4623745 DOI: 10.1038/srep15906] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/05/2015] [Indexed: 12/26/2022] Open
Abstract
In vertebrates, growth hormone/insulin-like growth factor (GH/IGF) axis signaling plays a critical role in regulating somatic growth. Understanding the direct upstream regulators of GH/IGF axis remains a major challenge. Our studies of the zebrafish reveal that the conserved miR-200 family members are critical regulators of embryo size by targeting several GH/IGF axis genes, including GH, GHRa, GHRb and IGF2a. Overexpression of miR-200s led to cell cycle arrest in the G1 phase and induced apoptotic responses during embryo development, thereby inhibiting somatic growth of zebrafish embryos. Intriguingly, GH induced expression of both p53 and miR-200s, and miR-200s is a potential p53 transcriptional target, thus forming a negative feedback loop. Significantly, the up-regulation of miR-200s associated with GH activation is abolished in embryos with p53 mutation. By integrating these studies, we conclude that p53/miR-200 and GH/IGF signaling pathway form a negative regulatory loop to control embryo size, that provide critical insights into the long-standing puzzle of how body growth is determined during early development of teleosts.
Collapse
Affiliation(s)
- Jing Jing
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuting Xiong
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Junjie Wu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Jie Mei
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
45
|
Skourti E, Logotheti S, Kontos CK, Pavlopoulou A, Dimoragka PT, Trougakos IP, Gorgoulis V, Scorilas A, Michalopoulos I, Zoumpourlis V. Progression of mouse skin carcinogenesis is associated with the orchestrated deregulation of mir-200 family members, mir-205 and their common targets. Mol Carcinog 2015; 55:1229-42. [PMID: 26527515 DOI: 10.1002/mc.22365] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 12/15/2022]
Abstract
MicroRNAs are small, non-coding RNAs which regulate post-transcriptionally hundreds of target mRNAs. Given that their expression is deregulated in several cancer types, they represent potential diagnostic, prognostic, and predictive biomarkers, as well as next-generation therapeutic targets. Nevertheless, the involvement of miRNAs in non-melanoma skin cancer, a cancer type with increasing prevalence, is not extensively studied, and their comprehensive characterization as regard to the initiation, promotion, and progression stages is missing. To this end, we exploited a well-established multistage mouse skin carcinogenesis model in order to identify miRNAs consistently implicated in different stages of skin carcinogenesis. The cell lines comprising this model were subjected to miRNA expression profiling using microarrays, followed by bioinformatics analysis and validation with Q-PCR, as well as treatment with miRNA modulators. We showed that among all deregulated miRNAs in our system, only a functionally coherent group consisting of the miR-200 family members and miR-205-5p displays a pattern of progressive co-downregulation from the early toward the most aggressive stages of carcinogenesis. Their overlapping, co-regulated putative targets are potentially inter-associated and, of these, the EMT-related Rap1a is overexpressed toward aggressive stages. Ectopic expression of miR-205-5p in spindle cancer cells reduces Rap1a, mitigates cell invasiveness, decreases proliferation, and delays tumor onset. We conclude that deregulation of this miRNA group is primarily associated with aggressive phenotypes of skin cancer cells. Restoration of the miR-205-5p member of this group in spindle cells reduces the expression of critical, co-regulated targets that favor cancer progression, thus reversing the EMT characteristics. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elena Skourti
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Stella Logotheti
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Athens, Greece
| | - Athanasia Pavlopoulou
- Computational Biology and Medicine, Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Paraskevi T Dimoragka
- Computational Biology and Medicine, Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| | - Vassilis Gorgoulis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Athens, Greece
| | - Ioannis Michalopoulos
- Computational Biology and Medicine, Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
46
|
MicroRNA-8 targets the Wingless signaling pathway in the female mosquito fat body to regulate reproductive processes. Proc Natl Acad Sci U S A 2015; 112:1440-5. [PMID: 25605933 DOI: 10.1073/pnas.1424408112] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Female mosquitoes require a blood meal for reproduction, and this blood meal provides the underlying mechanism for the spread of many important vector-borne diseases in humans. A deeper understanding of the molecular mechanisms linked to mosquito blood meal processes and reproductive events is of particular importance for devising innovative vector control strategies. We found that the conserved microRNA miR-8 is an essential regulator of mosquito reproductive events. Two strategies to inhibit miR-8 function in vivo were used for functional characterization: systemic antagomir depletion and spatiotemporal inhibition using the miRNA sponge transgenic method in combination with the yeast transcriptional activator gal4 protein/upstream activating sequence system. Depletion of miR-8 in the female mosquito results in defects related to egg development and deposition. We used a multialgorithm approach for miRNA target prediction in mosquito 3' UTRs and experimentally verified secreted wingless-interacting molecule (swim) as an authentic target of miR-8. Our findings demonstrate that miR-8 controls the activity of the long-range Wingless (Wg) signaling by regulating Swim expression in the female fat body. We discovered that the miR-8/Wg axis is critical for the proper secretion of lipophorin and vitellogenin by the fat body and subsequent accumulation of these yolk protein precursors by developing oocytes.
Collapse
|