1
|
Suryawan IGR, Pikir BS, Rantam FA, Ratri AK, Nugraha RA. Hypoxic Preconditioning Promotes Survival of Human Adipose Derived Mesenchymal Stem Cell. F1000Res 2024; 10:843. [PMID: 38938689 PMCID: PMC11208860 DOI: 10.12688/f1000research.55351.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 06/29/2024] Open
Abstract
Background: Contributing factors for improved survival of human adipocytes mesenchymal stem cells (h-AMSCs) cultured through hypoxia preconditioning, in example apoptosis inhibition involving BCL2 and HSP27 expression, trigger signal expression (VEGF), SCF expression, OCT-4 expression, and CD44+ expression. The objective if this study was to explain the mechanism and role of hypoxic preconditioning and the optimal duration of hypoxic preconditioning exposure to improve survival of h-AMSCs. Methods: An experimental laboratory explorative study ( in vitro) with hypoxic preconditioning in h-AMSCs cultures. This research was conducted through four stages. First, isolation of h-AMSCs culture from adipose tissue of patients. Second, the characterization of h-AMSCs from adipose tissue by phenotype (flowcytometry) through CD44+, CD90+ and CD45-expression before being pre-conditioned for hypoxic treatment. Third, the hypoxic preconditioning in h-AMSCs culture ( in vitro) was performed with an oxygen concentration of 1% for 24, 48 and 72 hours. Fourth, observation of survival from h-AMSCs culture was tested on the role of CD44+, VEGF, SCF, OCT-4, BCL2, HSP27 with Flowcytometry and apoptotic inhibition by Tunnel Assay method. Results: The result of regression test showed that time difference had an effect on VEGF expression ( p<0.001; β=-0.482) and hypoxia condition also influenced VEGF expression ( p<0.001; β=0.774). The result of path analysis showed that SCF had effect on OCT-4 expression ( p<0.001; β=0.985). The regression test results showed that time effects on HSP27 expression ( p<0.001; β=0.398) and hypoxia precondition also affects HSP27 expression ( p<0.001; β=0.847). Pathway analysis showed that BCL2 expression inhibited apoptosis ( p=0.030; β=-0.442) and HSP27 expression also inhibited apoptosis ( p<0,001; β=-0.487). Conclusion: Hypoxic preconditioning of h-AMSC culture has proven to increase the expression of VEGF, SCF, OCT-4, and BCL2 and HSP27. This study demonstrated and explained the existence of a new mechanism of increased h-AMSC survival in cultures with hypoxic preconditioning (O2 1%) via VEGF, SCF, OCT-4, BCL2, and HSP 27.
Collapse
Affiliation(s)
- I Gde Rurus Suryawan
- Cardiology and Vascular Medicine, Universitas Airlangga, Surabaya, East Java, 60286, Indonesia
| | - Budi Susetyo Pikir
- Cardiology and Vascular Medicine, Universitas Airlangga, Surabaya, East Java, 60286, Indonesia
| | - Fedik Abdul Rantam
- Virology and Immunology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, 60286, Indonesia
| | - Anudya Kartika Ratri
- Cardiology and Vascular Medicine, Universitas Airlangga, Surabaya, East Java, 60286, Indonesia
| | - Ricardo Adrian Nugraha
- Cardiology and Vascular Medicine, Universitas Airlangga, Surabaya, East Java, 60286, Indonesia
| |
Collapse
|
2
|
Sharifi E, Khazaei N, Kieran NW, Esfahani SJ, Mohammadnia A, Yaqubi M. Unraveling molecular mechanism underlying biomaterial and stem cells interaction during cell fate commitment using high throughput data analysis. Gene 2021; 812:146111. [PMID: 34902512 DOI: 10.1016/j.gene.2021.146111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/08/2021] [Accepted: 11/16/2021] [Indexed: 11/04/2022]
Abstract
Stem cell differentiation towards various somatic cells and body organs has proven to be an effective technique in the understanding and progression of regenerative medicine. Despite the advances made, concerns regarding the low efficiency of differentiation and the remaining differences between stem cell products and their in vivo counterparts must be addressed. Biomaterials that mimic endogenous growth conditions represent one recent method used to improve the quality and efficiency of stem cell differentiation, though the mechanisms of this improvement remain to be completely understood. The effectiveness of various biomaterials can be analyzed through a multidisciplinary approach involving bioinformatics and systems biology tools. Here, we aim to use bioinformatics to accomplish two aims: 1) determine the effect of different biomaterials on stem cell growth and differentiation, and 2) understand the effect of cell of origin on the differentiation potential of multipotent stem cells. First, we demonstrate that the dimensionality (2D versus 3D) and the degradability of biomaterials affects the way that the cells are able to grow and differentiate at the transcriptional level. Additionally, according to transcriptional state of the cells, the particular cell of origin is an important factor in determining the response of stem cells to same biomaterial. Our data demonstrates the ability of bioinformatics to understand novel molecular mechanisms and context by which stem cells are most efficiently able to differentiate. These results and strategies can be used to suggest proper combinations of biomaterials and stem cells to achieve high differentiation efficiency and functionality of desired cell types.
Collapse
Affiliation(s)
- Erfan Sharifi
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Niusha Khazaei
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| | - Nicholas W Kieran
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University Montreal, QC, Canada.
| | | | | | - Moein Yaqubi
- Integrated Program at Neuroscience, Neuroimmunology Unit, Montreal Neurological Institute, McGill University Montreal, QC, Canada.
| |
Collapse
|
3
|
Hsiao HY, Lai CY, Liu JW, Yu YY, Chang FCS, Huang JJ. Fate of Fat Grafting In Vivo and In Vitro: Does the Suction-Assisted Lipectomy Device Matter? Aesthet Surg J 2021; 41:NP1323-NP1336. [PMID: 34043750 DOI: 10.1093/asj/sjab231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Recently, there has been increasing research interest in identifying the effect of liposuction procedures on fat graft survival in order to clarify whether different harvest techniques affect the quality of fat grafts. OBJECTIVES The aim of this study was to investigate the effect of 2 liposuction methods on the survival and regeneration potential of grafted fat tissue. The proliferation and differentiation potentials of adipose-derived stem cells (ASCs) isolated by both methods was also investigated. METHODS Fat grafts were collected from patients who underwent liposuction procedures by 2 different methods: traditional suction-assisted liposuction (TSAL) and vibration amplification of sound energy at resonance (VASER). One portion of the lipoaspirates was implanted into the subcutaneous layer of nu mice for 4 and 12 weeks. ASCs were isolated from the other portion of the lipoaspirate and subjected to proliferation and differentiation assays. RESULTS Although in vivo fat grafting presented similar adipose tissue survival for the 2 different liposuction methods, more angiogenesis and less fibrosis was observed in the VASER group based on histologic evaluation. Furthermore, VASER-derived ASCs presented better quality in terms of cell differentiation capacity. CONCLUSIONS The in vivo study confirmed better graft angiogenesis with less inflammation, apoptosis, and scar formation in the VASER group. ASCs harvested with VASER exhibited increased differentiation capacity compared with those obtained by TSAL, and represent an excellent source for fat grafting and regenerative medicine.
Collapse
Affiliation(s)
- Hui-Yi Hsiao
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Jia-Wei Liu
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuan-Yuan Yu
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Frank Chun-Shin Chang
- Division of Craniofacial Surgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jung-Ju Huang
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Chu X, Wang M, Qiu X, Huang Y, Li T, Otieno E, Li N, Luo L, Xiao X. Strategies for constructing pluripotent stem cell- and progenitor cell-derived three-dimensional cardiac micro-tissues. J Biomed Mater Res A 2021; 110:488-503. [PMID: 34397148 DOI: 10.1002/jbm.a.37298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) cardiac micro-tissue is a promising model for simulating the structural and functional features of heart in vitro. This scientific achievement provides a platform for exploration about the mechanisms on the development, damage, and regeneration of tissue, hence, paving a way toward development of novel therapies for heart diseases. However, 3D micro-tissue technology is still in its infant stages faced with many challenges such as incompleteness of the tissue microarchitecture, loss of the resident immune cells, poor reproducibility, and deficiencies in continuously feeding the nutrients and removing wastes during micro-tissue culturing. There is an urgent need to optimize the construction of 3D cardiac micro-tissue and improve functions of the involved cells. Therefore, scaffolds and cell resources for building 3D cardiac micro-tissues, strategies for inducing the maturation and functionalization of pluripotent stem cell- or cardiac progenitor cell-derived cardiomyocytes, and the major challenges were reviewed in this writing to enable future fabrication of 3D cardiac micro-tissues or organoids for drug screening, disease modeling, regeneration treatment, and so on.
Collapse
Affiliation(s)
- Xinyue Chu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mingyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China.,Institute of Laboratory Animals Science, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xiaoyan Qiu
- Department of Animal Husbandry Engineering, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yun Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Tong Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Edward Otieno
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Na Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Li Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiong Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Zeng WR, Doran PM. Interactivity of biochemical and physical stimuli during epigenetic conditioning and cardiomyocytic differentiation of stem and progenitor cells derived from adult hearts. Integr Biol (Camb) 2021; 13:73-85. [PMID: 33704437 DOI: 10.1093/intbio/zyab003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/10/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022]
Abstract
Mixed populations of cardiosphere-derived stem and progenitor cells containing proliferative and cardiomyogenically committed cells were obtained from adult rat hearts. The cells were cultured in either static 2D monolayers or dynamic 3D scaffold systems with fluid flow. Cardiomyocyte lineage commitment in terms of GATA4 and Nkx2.5 expression was significantly enhanced in the dynamic 3D cultures compared with static 2D conditions. Treatment of the cells with 5-azacytidine (5-aza) produced different responses in the two culture systems, as activity of this chemical epigenetic conditioning agent depended on the cell attachment and hydrodynamic conditions provided during culture. Cell growth was unaffected by 5-aza in the static 2D cultures but was significantly reduced under dynamic 3D conditions relative to untreated controls. Myogenic differentiation measured as Mef2c expression was markedly upregulated by 5-aza in the dynamic 3D cultures but downregulated in the static 2D cultures. The ability of the physical environment to modulate the cellular cardiomyogenic response to 5-aza underscores the interactivity of biochemical and physical stimuli applied for cell differentiation. Accordingly, observations about the efficacy of 5-aza as a cardiomyocyte induction agent may not be applicable across different culture systems. Overall, use of dynamic 3D rather than static 2D culture was more beneficial for cardio-specific myogenesis than 5-aza treatment, which generated a more ambiguous differentiation response.
Collapse
Affiliation(s)
- Wendy R Zeng
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Pauline M Doran
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Park Y, Huh KM, Kang SW. Applications of Biomaterials in 3D Cell Culture and Contributions of 3D Cell Culture to Drug Development and Basic Biomedical Research. Int J Mol Sci 2021; 22:2491. [PMID: 33801273 PMCID: PMC7958286 DOI: 10.3390/ijms22052491] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 01/10/2023] Open
Abstract
The process of evaluating the efficacy and toxicity of drugs is important in the production of new drugs to treat diseases. Testing in humans is the most accurate method, but there are technical and ethical limitations. To overcome these limitations, various models have been developed in which responses to various external stimuli can be observed to help guide future trials. In particular, three-dimensional (3D) cell culture has a great advantage in simulating the physical and biological functions of tissues in the human body. This article reviews the biomaterials currently used to improve cellular functions in 3D culture and the contributions of 3D culture to cancer research, stem cell culture and drug and toxicity screening.
Collapse
Affiliation(s)
- Yujin Park
- Department of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
| | - Sun-Woong Kang
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea
- Human and Environmental Toxicology Program, University of Science and Technology, Daejeon 34114, Korea
| |
Collapse
|
7
|
Afzali E, Eslaminejad T, Yazdi Rouholamini SE, Shahrokhi-Farjah M, Ansari M. Cytotoxicity Effects of Curcumin Loaded on Chitosan Alginate Nanospheres on the KMBC-10 Spheroids Cell Line. Int J Nanomedicine 2021; 16:579-589. [PMID: 33531802 PMCID: PMC7846832 DOI: 10.2147/ijn.s251056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Breast cancer is one of the most lethal types of cancer in women. Curcumin showed therapeutic potential against breast cancer, but applying that by itself does not lead to the associated health benefits due to its poor bioavailability, which appears to be primarily due to poor absorption, rapid metabolism, and rapid elimination. Moreover, poor water solubility of curcumin causes accumulation of a high concentration of curcumin and so decrease its permeability to the cell. Many strategies are employed to reduce curcumin metabolism such as adjuvants and designing novel delivery systems. Therefore, in this study sodium alginate and chitosan were used to synthesize the hydrogels that are known as biocompatible, hydrophilic and low toxic drug delivery systems. Also, folic acid was used to link to chitosan in order to actively targetfolate receptors on the cells. Methods Chitosan-β-cyclodextrin-TPP-Folic acid/alginate nanoparticles were synthesized and then curcumin was loaded on them. Interaction between the constituents of the particles was characterized by FTIR spectroscopy. Morphological structures of samples were studied by FE-SEM. Release profile of curcumin was determined by dialysis membrane. The cytotoxic test was done on the Kerman male breast cancer (KMBC-10) cell line by using MTT assay. The viability of cells was detected by fluorescent staining. Gene expression was investigated by real-time PCR. Results The encapsulation of curcumin into nano-particles showed an almost spherical shape and an average particle size of 155 nm. In vitro cytotoxicity investigation was indicated as dose-respond reaction against cancer breast cells after 24 h incubation. On the other hand, in vitro cell uptake study revealed active targeting of CUR-NPs into spheroids. Besides, CXCR4 expression was detected about 30-fold less than curcumin alone. The CUR-NPs inhibited proliferation and increased apoptosis in spheroid human breast cancer cells. Conclusion Our results showed the potential of NPs as an effective candidate for curcumin delivery to the target tumor spheroids that confirmed the creatable role of folate receptors.
Collapse
Affiliation(s)
- Elham Afzali
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyede Elmira Yazdi Rouholamini
- Physiology Research Centre, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mariam Shahrokhi-Farjah
- Physiology Research Centre, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Department of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Saheli M, Pirhajati Mahabadi V, Mesbah-Namin SA, Seifalian A, Bagheri-Hosseinabadi Z. DNA methyltransferase inhibitor 5-azacytidine in high dose promotes ultrastructural maturation of cardiomyocyte. Stem Cell Investig 2021; 7:22. [PMID: 33437842 DOI: 10.21037/sci-2020-007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 12/01/2020] [Indexed: 01/26/2023]
Abstract
Background The adult human heart muscle cells, cardiomyocytes are not capable of regenerate after injury. Stem cells are a powerful means for future regenerative medicine because of their capacity for self-renewal and multipotency. Several studies have reported the cardiogenic potential in human adipose tissue-derived stem cells (ADSCs) differentiation, but there is still no efficient protocol for the induction of cardiac differentiation by 5-azacytidine (5-Aza). The present study involves characterization and mainly, the ultrastructure of ADSCs derived cardiomyocyte-like cells. Methods The cultured ADSCs were treated with 50 µM 5-Aza for 24 hours, followed by a 10-week extension. At different time points, cardiomyocyte-like cells were assessed by qRT-PCR and were evaluated by transmission electron microscopy at 10th week. Results The expression of cardiac-specific markers entailing cardiac troponin I (cTnI), connexin 43, myosin light chain-2v (Mlc-2v), increased over 10 weeks and the highest expression was at 10th week. The expression of the β-myosin heavy chain (β-MHC) increased significantly over 5 weeks and then decreased. At the ultrastructural level myofibrils, transverse tubules (T-tubules), sarcoplasmic reticular membrane, and intercalated discs were present. Conclusions These data suggest that treatment with 5-Aza in high dose could promote differentiation of ADSCs into cardiomyocyte-like cells. These differentiated cells could be used for regeneration of damaged cardiomyocytes with the 3D scaffold for delivery of the cells.
Collapse
Affiliation(s)
- Mona Saheli
- Department of Anatomical Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Pirhajati Mahabadi
- Neuroscience Research Center, Vice-Chancellor for Research and Technology, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Vice-Chancellor for Research and Technology, Iran university of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd.), London BioScience Innovation Centre, London, UK
| | - Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Bagheri-Hosseinabadi Z, Seyedi F, Mollaei HR, Moshrefi M, Seifalian A. Combination of 5-azaytidine and hanging drop culture convert fat cell into cardiac cell. Biotechnol Appl Biochem 2020; 68:92-101. [PMID: 32028539 DOI: 10.1002/bab.1897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
One of the promising approaches for the treatment of cardiac disease is stem cell therapy. In this study, we compared the cardiomyogenic differentiation rate, from human adipose-derived stem cells (hADSCs) in a three-dimensional (3D) hanging drop (HD) spheroid culture system, versus a two-dimensional (2D) culture condition at different concentrations of 5-azacytidine (5-Aza). 5-Azaytidine (5-Aza) is a pyrimidine nucleoside analogue of cytidine that initiates cell differentiation programs through DNA demethylation. The hADSCs were isolated and cultured both in 2D and 3D HD conditions, with either 10 or 50 μM concentrations of 5-Aza. Then DNA content, gene expression, and protein content were analyzed. 3D HD culture resulted in a higher percentage of cells in G0/G1 and S phase in the cell division cycle, whereas 2D culture led to a greater percentage of cells in the G2/M phase. A significantly higher gene expression rate of HAND1, HAND2, cTnI, Cx43, βMHC, GATA4, NKX2.5, and MLC2V was observed in HD treated with 50 μM 5-Aza. This was confirmed by immunocytochemistry. These findings suggest that 50 μM concentration of 5-Aza can induce hADSCs to differentiate into cardiomyocytes. The differentiation rate was significantly higher when accompanied by the 3D HD culture system. This work provides a new culture system for cell differentiation for cardiovascular tissue engineering.
Collapse
Affiliation(s)
- Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Seyedi
- Department of Anatomy, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hamid Reza Mollaei
- Department of Medical Microbiology, Afzalipour Medical Faculty, Kerman University of Medical Science, Kerman, Iran
| | - Mojgan Moshrefi
- Medical Nanotechnology & Tissue Engineering Research Centre, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd.), London BioScience Innovation Centre, London, United Kingdom
| |
Collapse
|
10
|
Najafipour H, Bagheri-Hosseinabadi Z, Eslaminejad T, Mollaei HR. The effect of sodium valproate on differentiation of human adipose-derived stem cells into cardiomyocyte-like cells in two-dimensional culture and fibrin scaffold conditions. Cell Tissue Res 2019; 378:127-141. [PMID: 31049685 DOI: 10.1007/s00441-019-03027-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 04/02/2019] [Indexed: 01/04/2023]
Abstract
Differentiation of mesenchymal stem cells (MSCs) into cardiomyocytes is a complex phenomenon, and attempts to find an effective inducing agent are still ongoing. We studied the effect of fibrin scaffold and sodium valproate (VPA, as a histone deacetylase inhibitor) on the differentiation of human adipose-derived stem cells (hADSCs) into cardiomyocyte-like cells. The cells were cultured in culture flask (2D) and in fibrin scaffold (3D), fabricated of human plasma fibrinogen, with and without VPA (1 mM). QRT-PCR, Western blot, and immunochemistry assays were used to evaluate the expression of cardiac markers at gene and protein levels. High levels of CD44, CD90, CD73, and CD105 were expressed on the surface of hADSCs. Treated encapsulated hADSCs (3D) presented significantly higher mRNA expression of HAND1 (1.54-fold), HAND2 (1.59-fold), cTnI (1.76-fold), MLC2v (1.4-fold), Cx43 (1.38-fold), βMHC (1.34-fold), GATA4 (1.48-fold), and NKX2.5 (1.66-fold) in comparison to 2D conditions at four weeks after induction. The protein expressions of NKX2.5 (0.78 vs 0.65), cTnI (1.04 vs 0.81), and Cx43 (1.11 vs 1.08) were observed in the differentiated cells both in 3D and 2D groups, while control cells were absolutely negative for these proteins. The frequency of cTnI and Cx43-positive cells was significantly higher in 3D (24.2 ± 15 and 12 ± 3%) than 2D conditions (19.8 ± 3 and 10 ± 2%). Overall, the results showed that VPA can increase cardiomyogenesis in hADSCs and that fibrin scaffold enhances the inductive effect of VPA. Results of this study may improve cell-based protocols for implementation of more successful cardiac repair strategies.
Collapse
Affiliation(s)
- Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences and Department of Physiology, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Reza Mollaei
- Department of Medical Microbiology, and Physiology Research Center, Afzalipour Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Nazari B, Kazemi M, Kamyab A, Nazari B, Ebrahimi‐Barough S, Hadjighassem M, Norouzi‐Javidan A, Ai A, Ahmadi A, Ai J. Fibrin hydrogel as a scaffold for differentiation of induced pluripotent stem cells into oligodendrocytes. J Biomed Mater Res B Appl Biomater 2019; 108:192-200. [DOI: 10.1002/jbm.b.34378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Bahareh Nazari
- Department of Medical BiotechnologySchool of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Mansure Kazemi
- Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Ahmadreza Kamyab
- Department of GeneticsScience and Research Branch, Islamic Azad University Tehran Iran
| | - Banafsheh Nazari
- Section of RheumatologyBoston University School of Medicine Boston Massachusetts
| | - Somayeh Ebrahimi‐Barough
- Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical Sciences Tehran Iran
| | - Abbas Norouzi‐Javidan
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical Sciences Tehran Iran
| | - Arman Ai
- School of MedicineTehran University of Medical Sciences Tehran Iran
| | - Akbar Ahmadi
- School of Advanced Technologies in MedicineTehran University of Medical Sciences Tehran Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
- Brain and Spinal Cord Injury Research CenterNeuroscience Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|