1
|
Dai P, Zou M, Cai Z, Zeng X, Zhang X, Liang M. pH Homeodynamics and Male Fertility: A Coordinated Regulation of Acid-Based Balance during Sperm Journey to Fertilization. Biomolecules 2024; 14:685. [PMID: 38927088 PMCID: PMC11201807 DOI: 10.3390/biom14060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3- and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3- transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3- or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis's low HCO3- concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3- in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| | - Min Liang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| |
Collapse
|
2
|
Wang H, Zhang Y, Wang Z, Zhang L, Guo M, Cao C, Xiao H. Deciphering Nucleic Acid Binding Proteome of Mouse Immune Organs Reveals Hub Proteins for Aging. Mol Cell Proteomics 2023; 22:100611. [PMID: 37391046 PMCID: PMC10412848 DOI: 10.1016/j.mcpro.2023.100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/24/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023] Open
Abstract
Profiling the nucleic acid-binding proteins (NABPs) during aging process is critical to elucidate its roles in biological systems as well as transcriptional and translational regulation. Here, we developed a comprehensive strategy to survey the NABPs of mouse immune organs by using single cell preparation and selective capture technology-based proteomics. Our approach provided a global view of tissue NABPs from different organs under normal physiological conditions with extraction specificity of 70 to 90%. Through quantitative proteomics analysis of mouse spleen and thymus at 1, 4, 12, 24, 48, and 72 weeks, we investigated the molecular features of aging-related NABPs. A total of 2674 proteins were quantified in all six stages, demonstrating distinct and time-specific expression pattern of NABPs. Thymus and spleen exhibited unique aging signatures, and differential proteins and pathways were enriched across the mouse lifespan. Three core modules and 16 hub proteins associated with aging were revealed through weighted gene correlation network analysis. Significant candidates were screened for immunoassay verification, and six hub proteins were confirmed. The integrated strategy pertains the capability to decipher the dynamic functions of NABPs in aging physiology and benefit further mechanism research.
Collapse
Affiliation(s)
- Huiyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chengxi Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Ma T, Xia Y, Wang B, Yang F, Ding J, Wu J, Han X, Wang J, Li D. Environmentally relevant perinatal exposure to DBP accelerated spermatogenesis by promoting the glycolipid metabolism of Sertoli cells in male offspring mice. Toxicol Lett 2023; 377:16-28. [PMID: 36736749 DOI: 10.1016/j.toxlet.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
Since Sertoli cells (SCs) play an essential role in providing energy for spermatogenesis, the present study aimed to investigate the effects of maternal exposure to plasticizer Dibutyl phthalate (DBP) on the onset of spermatogenesis in male offspring through the metabolism pathway as well as the underlying molecular mechanism. Here, pregnant mice were treated with 0 (control), 50, 250, or 500 mg/kg/day DBP in 1 mL/kg corn oil administered daily by oral gavage from gestation day (GD) 12.5 to parturition. The in vivo results showed that 50 mg/kg/day DBP exposure could promote the expression of glucose metabolism-related proteins (GLUT3, LDHA, and MCT4) in the testis of 22 days male offspring. The in vitro results demonstrated that 0.1 mM monobutyl phthalate (MBP, the active metabolite of DBP) promoted the lactate production, glucose consumption, and glycolytic flux of immature SCs, which was paralleled by the upregulated expression of glucose metabolism-related proteins (GLUT1, GLUT3, LDHA, and MCT4). On the other hand, DBP/MBP increased fatty acid (FA) uptake, FA β-oxidation, and ATP production by promoting the expression of CD36 in immature SCs, which might accelerate the maturity of SCs to support the onset of spermatogenesis. Therefore, our findings provided a new perspective on glycolipid metabolism to explain prenatal DBP exposure leading to earlier onset of spermatogenesis in male offspring mice.
Collapse
Affiliation(s)
- Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Bo Wang
- Environmental health risk assessment and prevention engineering center of ecological aluminum industry base, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Fenglian Yang
- Industrial College of biomedicine and health industry, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Junli Wang
- Industrial College of biomedicine and health industry, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Center of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
4
|
Fan M, Yang W, Zhang W, Zhang L. The ontogenic gonadal transcriptomes provide insights into sex change in the ricefield eel Monopterus albus. BMC ZOOL 2022; 7:56. [PMID: 37170354 PMCID: PMC10127409 DOI: 10.1186/s40850-022-00155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The ricefield eel is a freshwater protogynous hermaphrodite fish and has become an important aquaculture species in China. The sex change of ricefield eel is impeding its aquaculture practice, particularly the large-scale artificial breeding. Many studies including transcriptomes of mixed gonadal samples from different individuals have been aimed to elucidate mechanisms underlying the sex change. However, the key physiological factors involved in the initiation of sex change remain to be identified. RESULTS: The present study performed transcriptomic analysis on gonadal samples of different sexual stages obtained through biopsy from the same fish undergoing sex change. A total of 539,764,816 high-quality reads were generated from twelve cDNA libraries of gonadal tissues at female (F), early intersexual (EI), mid-intersexual (MI), and late intersexual (LI) stages of three individual sex-changing fish. Pairwise comparisons between EI and F, MI and EI, and LI and MI identified 886, 319, and 10,767 differentially expressed genes (DEGs), respectively. Realtime quantitative PCR analysis of 12 representative DEGs showed similar expression profiles to those inferred from transcriptome data, suggesting the reliability of RNA-seq data for gene expression analysis. The expression of apoeb, csl2, and enpp2 was dramatically increased and peaked at EI while that of cyp19a1a, wnt4a, fgf16, and foxl2a significantly downregulated from F to EI and remained at very low levels during subsequent development until LI, which suggests that apoeb, csl2, enpp2, cyp19a1a, wnt4a, fgf16, and foxl2a may be closely associated with the initiation of sex change of ricefield eels. CONCLUSIONS Collectively, results of the present study confirmed that the down-regulation of female-related genes, such as cyp19a1a, wnt4a, fgf16, and foxl2a, is important for the sex change of ricefield eels. More importantly, some novel genes, including apoeb, csl2, and enpp2, were shown to be expressed with peak values at EI, which are potentially involved in the initiation of sex change. The present transcriptomic data may provide an important research resource for further unraveling the mechanisms underlying the sex change and testicular development in ricefield eels as well as other teleosts.
Collapse
Affiliation(s)
- Miao Fan
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wei Yang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Present address: Institute of Biomedical Engineering, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, People's Republic of China
| | - Weimin Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- Biology Department, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Lihong Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- Biology Department, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
5
|
Jiang Q, Di Q, Shan D, Xu Q. Nonylphenol inhibited HIF-1alpha regulated aerobic glycolysis and induced ROS mediated apoptosis in rat Sertoli cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113822. [PMID: 35777343 DOI: 10.1016/j.ecoenv.2022.113822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Nonylphenol (NP) is an endocrine disruptor with reproductive toxicity, which can induce apoptosis of Sertoli cells (SCs). SCs have a high aerobic glycolytic flux to ensure sufficient lactate for germ cells as central energy metabolite, and hypoxia-inducible factors 1alpha (HIF-1α) is a major regulator of glycolysis. This study aimed to investigate whether NP can alter HIF-1α-regulated aerobic glycolysis metabolism and thus induce apoptosis in rat SCs. The results revealed that cell viability, intracellular and extracellular lactate levels, the expression of Hk2, Ldha and Mct4, and the protein levels of HIF-1α, HK2, LDHA and MCT4 were decreased significantly when rat SCs exposed to 20 and 30 μM NP for 24 h. Compared with the 30 μM NP group, the protein levels of HIF-1α, HK2 and LDHA, the expression of Hk2 and Ldha and intracellular lactate levels were increased in 30 μM NP and 125 μM cobalt chloride (CoCl2, inhibitor of HIF-1α proteasome-mediated degradation) co-treated group. Furthermore, the elevation of reactive oxygen species (ROS) and apoptosis induced by 30 μM NP were also reversed. In summary, exposure to NP inhibited the ability of SCs to produce and secrete lactate. Meanwhile, NP exposure could lead to a decrease in HIF-1α thereby inhibiting aerobic glycolysis in rat SCs, disrupting intracellular homeostasis and further inducing ROS-mediated apoptosis. This research is the first to explore the NP toxicity on SCs function with respect to nutrition support to germ cells, and provide new evidence on the inhibition of aerobic glycolysis inducing ROS-mediated apoptosis in SCs.
Collapse
Affiliation(s)
- Qianqian Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qiannan Di
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Dandan Shan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
6
|
Malinowski D, Grzegółkowski P, Piotrowska K, Słojewski M, Droździk M. Membrane Transporters and Carriers in Human Seminal Vesicles. J Clin Med 2022; 11:jcm11082213. [PMID: 35456310 PMCID: PMC9029209 DOI: 10.3390/jcm11082213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Seminal vesicles play an important role in the male reproductive system, producing seminal fluid and thus adequate environment for sperm. However, mechanisms underlying secretory functions of the seminal vesicles’ epithelium have not been defined yet. The aim of the present study was to characterize expression and immunolocalization of selected membrane transporters and carriers in the seminal vesicles. The study included biopsy specimens collected from non-affected parts of seminal vesicles from 53 patients of Caucasian origin subjected for prostatectomy. RT-PCR was used to define expression of 15 genes coding for ABC-family and 37 genes encoding 37 SLC-family transporters/carriers. Immunohistochemistry was used to define localization of 6 transporters. In the seminal vesicles, the following membrane transporters and carriers were defined: ABCA1, ABCB1, ABCB5, ABCB6, ABCC1, ABCC2, ABCC3, ABCC4, ABCC5, ABCC6, ABCG2, SLC01C1, SLC02B1, SLC04A1, SLC04C1, SLC10A1, SLC15A1, SLC15A2, SLC16A1, SLC16A3, SLC19A1, SLC22A1, SLC22A3, SLC22A11, SLC22A18, SLC22A4, SLC22A5, SLC28A1, SLC2A9, SLC33A1, SLC47A1, SLC47A2, SLC51A, SLC51B, SLC7A5, SLC7A6. Age-dependent expression was evidenced for ABCB1, ABCG2, SLC04C1, SLC15A1, SLC16A1, SLC22A11, SLC22A18, SLC47A1 and SLC47A2. ABCG2, P-gp, MRP1, MRP3, MCT1 and LAT1 were localized in the apical membrane and P-gp in the basolateral membrane of the seminal vesicle epithelium. The expression of the membrane transporters and carriers in the seminal vesicle epithelium confirms its secretory and barrier functions.
Collapse
Affiliation(s)
- Damian Malinowski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Paweł Grzegółkowski
- Department of Urology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.G.); (M.S.)
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Marcin Słojewski
- Department of Urology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.G.); (M.S.)
| | - Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-91-4661589; Fax: +48-91-4661600
| |
Collapse
|
7
|
Göppner C, Soria AH, Hoegg-Beiler MB, Jentsch TJ. Cellular basis of ClC-2 Cl - channel-related brain and testis pathologies. J Biol Chem 2021; 296:100074. [PMID: 33187987 PMCID: PMC7949093 DOI: 10.1074/jbc.ra120.016031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
The ClC-2 chloride channel is expressed in the plasma membrane of almost all mammalian cells. Mutations that cause the loss of ClC-2 function lead to retinal and testicular degeneration and leukodystrophy, whereas gain-of-function mutations cause hyperaldosteronism. Leukodystrophy is also observed with a loss of GlialCAM, a cell adhesion molecule that binds to ClC-2 in glia. GlialCAM changes the localization of ClC-2 and opens the channel by altering its gating. We now used cell type-specific deletion of ClC-2 in mice to show that retinal and testicular degeneration depend on a loss of ClC-2 in retinal pigment epithelial cells and Sertoli cells, respectively, whereas leukodystrophy was fully developed only when ClC-2 was disrupted in both astrocytes and oligodendrocytes. The leukodystrophy of Glialcam-/- mice could not be rescued by crosses with Clcn2op/op mice in which a mutation mimics the "opening" of ClC-2 by GlialCAM. These data indicate that GlialCAM-induced changes in biophysical properties of ClC-2 are irrelevant for GLIALCAM-related leukodystrophy. Taken together, our findings suggest that the pathology caused by Clcn2 disruption results from disturbed extracellular ion homeostasis and identifies the cells involved in this process.
Collapse
Affiliation(s)
- Corinna Göppner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Audrey H Soria
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Maja B Hoegg-Beiler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
8
|
Dessouky AA, Gouda ZA, Arafa MAA, Elewa YHA, Abo-Ouf AM, Askar EM. Hypoxia-Preconditioned Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Mitigate Hypoglycemic Testicular Injury Induced by Insulin in Rats. Cells Tissues Organs 2020; 209:83-100. [PMID: 33113534 DOI: 10.1159/000510363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/22/2020] [Indexed: 11/19/2022] Open
Abstract
Hypoglycemia is a neglected metabolic disorder. Thus, we evaluated the protective effect of hypoxia-preconditioned human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) on hypoglycemic testicular injury. We examined 56 testes from 28 animals: 7 rats with insulin-induced hypoglycemia (HG group), 7 hypoglycemic rats which received an intratesticular injection of hUCB-MSCs (HG-MSC group), and 14 untreated control rats. Testosterone level, testicular catalase (CAT) activity, and malondialdehyde (MDA) level were analyzed. Immunostaining for specific testicular germ and somatic cell markers was performed. Proliferating and apoptotic cells were detected by anti-PCNA and anti-caspase-3, respectively. Morphometrical data were statistically analyzed. The hypoglycemic rats showed a significant decrease in testosterone level and CAT activity and a significant increase in MDA production. Examination of histological structure and protein expression of diverse germ cell markers revealed collapsed tubules that were lined by degenerated germ cells, decreased lactate dehydrogenase type C immune expression, as well as decreased proliferating and increased apoptotic cells number in hypoglycemic testes. Injection of MSCs improved testicular biochemical parameters, preserved germ cells and somatic cells, and decreased apoptosis. In conclusion, hypoxia-preconditioned hUCB-MSCs attenuate rat testicular injury caused by insulin-induced hypoglycemia. Avoidance and rapid management of hypoglycemia are necessary to avoid significant testicular injury.
Collapse
Affiliation(s)
- Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Zienab A Gouda
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt,
| | - Mona A A Arafa
- Department of Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.,Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.,Laboratory of Anatomy, Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Amany M Abo-Ouf
- Department of Anatomy, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Eman M Askar
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|