1
|
Transplantation of Umbilical Cord-Derived Mesenchymal Stem Cells Attenuates Surgical Wound-Induced Blood-Brain Barrier Dysfunction in Mice. Stem Cells Int 2023; 2023:8667045. [PMID: 36895785 PMCID: PMC9991482 DOI: 10.1155/2023/8667045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 03/04/2023] Open
Abstract
Blood-brain barrier (BBB) is the most important component of central nervous system (CNS) to keep toxins and pathogens from CNS. Although our studies demonstrated that using interleukin-6 antibodies (IL-6-AB) reversed the increased permeability of BBB, IL-6-AB is limited in their application that only could be used a few hours before surgery and seemed delayed the surgical wounds healing process, which urges us to find another more effective method. In this study, we employed the C57BL/6J female mice to investigate the potential effects of umbilical cord-derived mesenchymal stem cells (UC-MSCs) transplantation on BBB dysfunction induced by surgical wound. Compared to IL-6-AB, the transplantation of UC-MSCs more effectively decreased the BBB permeability after surgical wound evaluated by dextran tracer (immunofluorescence imaging and luorescence quantification). In addition, UC-MSCs can largely decrease the ratio of proinflammatory cytokine IL-6 to the anti-inflammatory cytokine IL-10 in both serum and brain tissue after surgical wound. Moreover, UC-MSCs successfully increased the levels of tight junction proteins (TJs) in BBB such as ZO-1, Occludin, and Claudin-5 and extremely decreased the level of matrix metalloproteinase-9 (MMP-9). Interestingly, UC-MSCs treatment also had positive effects on wound healing while protecting the BBB dysfunction induced by surgical wound compared to IL-6-AB treatment. These findings suggest that UC-MSCs transplantation is a highly efficient and promising approach on protecting the integrity of BBB which caused by peripheral traumatic injuries.
Collapse
|
2
|
Dumont V, Lehtonen S. PACSIN proteins in vivo: Roles in development and physiology. Acta Physiol (Oxf) 2022; 234:e13783. [PMID: 34990060 PMCID: PMC9285741 DOI: 10.1111/apha.13783] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/15/2021] [Accepted: 01/01/2022] [Indexed: 12/22/2022]
Abstract
Protein kinase C and casein kinase substrate in neurons (PACSINs), or syndapins (synaptic dynamin‐associated proteins), are a family of proteins involved in the regulation of cell cytoskeleton, intracellular trafficking and signalling. Over the last twenty years, PACSINs have been mostly studied in the in vitro and ex vivo settings, and only in the last decade reports on their function in vivo have emerged. We first summarize the identification, structure and cellular functions of PACSINs, and then focus on the relevance of PACSINs in vivo. During development in various model organisms, PACSINs participate in diverse processes, such as neural crest cell development, gastrulation, laterality development and neuromuscular junction formation. In mouse, PACSIN2 regulates angiogenesis during retinal development and in human, PACSIN2 associates with monosomy and embryonic implantation. In adulthood, PACSIN1 has been extensively studied in the brain and shown to regulate neuromorphogenesis, receptor trafficking and synaptic plasticity. Several genetic studies suggest a role for PACSIN1 in the development of schizophrenia, which is also supported by the phenotype of mice depleted of PACSIN1. PACSIN2 plays an essential role in the maintenance of intestinal homeostasis and participates in kidney repair processes after injury. PACSIN3 is abundant in muscle tissue and necessary for caveolar biogenesis to create membrane reservoirs, thus controlling muscle function, and has been linked to certain genetic muscular disorders. The above examples illustrate the importance of PACSINs in diverse physiological or tissue repair processes in various organs, and associations to diseases when their functions are disturbed.
Collapse
Affiliation(s)
- Vincent Dumont
- Department of Pathology and Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
| | - Sanna Lehtonen
- Department of Pathology and Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
- Department of Pathology University of Helsinki Helsinki Finland
| |
Collapse
|
3
|
Błaszczyk M, Gajewska M, Dymowska M, Majewska A, Domoradzki T, Prostek A, Pingwara R, Hulanicka M, Grzelkowska-Kowalczyk K. Interleukin-6 mimics insulin-dependent cellular distribution of some cytoskeletal proteins and Glut4 transporter without effect on glucose uptake in 3T3-L1 adipocytes. Histochem Cell Biol 2022; 157:525-546. [PMID: 35230485 DOI: 10.1007/s00418-022-02091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2022] [Indexed: 11/04/2022]
Abstract
Interleukin (IL)-6, a known proinflammatory cytokine, is released in both visceral adipose tissue and contracting skeletal muscle. In this study, we used microRNA profiling as a screening method to identify miRNA species modified by IL-6 treatment in mouse 3T3-L1 adipocytes. miRNA microarray analysis and qRT-PCR revealed increased expression of miR-146b-3p in adipocytes exposed to IL-6 (1 ng/ml) during 8-day differentiation. On the basis of ontological analysis of potential targets, selected proteins associated with cytoskeleton and transport were examined in the context of adipocyte response to insulin, using immunofluorescence and confocal microscopy. We concluded that IL-6: (i) does not affect insulin action on actin cellular distribution; (ii) modulates the effect of insulin on myosin light chain kinase (Mylk) distribution by preventing its shift toward cytoplasm; (iii) mimics the effect of insulin on dynein distribution by increasing its near-nuclear accumulation; (iv) mimics the effect of insulin on glucose transporter Glut4 distribution, especially by increasing its near-nuclear accumulation; (v) supports insulin action on early endosome marker Rab4A near-nuclear accumulation. Moreover, as IL-6 did not disturb insulin-dependent glucose uptake, our results do not confirm the IL-6-induced impairment of insulin action observed in some in vitro studies, suggesting that the effect of IL-6 is dose dependent.
Collapse
Affiliation(s)
- Maciej Błaszczyk
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Marta Dymowska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Alicja Majewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Tomasz Domoradzki
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Adam Prostek
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Rafał Pingwara
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Magdalena Hulanicka
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Katarzyna Grzelkowska-Kowalczyk
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|