1
|
Li X, Pu Z, Xu G, Yang Y, Cui Y, Zhou X, Wang C, Zhong Z, Zhou S, Yin J, Shan F, Yang C, Jiao L, Chen D, Huang J. Hypoxia-Induced Myocardial Hypertrophy Companies with Apoptosis Enhancement and p38-MAPK Pathway Activation. High Alt Med Biol 2024; 25:186-196. [PMID: 38647652 DOI: 10.1089/ham.2023.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Li, Xiaoxu, Zhijun Pu, Gang Xu, Yidong Yang, Yu Cui, Xiaoying Zhou, Chenyuan Wang, Zhifeng Zhong, Simin Zhou, Jun Yin, Fabo Shan, Chengzhong Yang, Li Jiao, Dewei Chen, and Jian Huang. Hypoxia-induced myocardial hypertrophy companies with apoptosis enhancement and p38-MAPK pathway activation. High Alt Med Biol. 25:186-196, 2024. Background: Right ventricular function and remodeling are closely associated with symptom severity and patient survival in hypoxic pulmonary hypertension. However, the detailed molecular mechanisms underlying hypoxia-induced myocardial hypertrophy remain unclear. Methods: In Sprague-Dawley rats, hemodynamics were assessed under both normoxia and hypobaric hypoxia at intervals of 7 (H7), 14 (H14), and 28 (H28) days. Morphological changes in myocardial tissue were examined using hematoxylin and eosin (HE) staining, while myocardial hypertrophy was evaluated with wheat germ agglutinin (WGA) staining. Apoptosis was determined through TUNEL assays. To further understand the mechanism of myocardial hypertrophy, RNA sequencing was conducted, with findings validated via Western blot analysis. Results: The study demonstrated increased hypoxic pulmonary hypertension and improved right ventricular diastolic and systolic function in the rat models. Significant elevations in pulmonary arterial systolic pressure (PASP), mean pulmonary arterial pressure (mPAP), right ventricular mean pressure (RVMP), and the absolute value of +dp/dtmax were observed in the H14 and H28 groups compared with controls. In addition, right ventricular systolic pressure (RVSP), -dp/dtmax, and the mean dp/dt during isovolumetric relaxation period were notably higher in the H28 group. Heart rate increased in the H14 group, whereas the time constant of right ventricular isovolumic relaxation (tau) was reduced in both H14 and H28 groups. Both the right heart hypertrophy index and the heart weight/body weight ratio (HW/BW) were elevated in the H14 and H28 groups. Myocardial cell cross-sectional area also increased, as shown by HE and WGA staining. Western blot results revealed upregulated HIF-1α levels and enhanced HIF-2α expression in the H7 group. In addition, phosphorylation of p38 and c-fos was augmented in the H28 group. The H28 group showed elevated levels of Cytochrome C (Cyto C), whereas the H14 and H28 groups exhibited increased levels of Cleaved Caspase-3 and the Bax/Bcl-2 ratio. TUNEL analysis revealed a rise in apoptosis with the extension of hypoxia duration in the right ventricle. Conclusions: The study established a link between apoptosis and p38-MAPK pathway activation in hypoxia-induced myocardial hypertrophy, suggesting their significant roles in this pathological process.
Collapse
Affiliation(s)
- Xiaoxu Li
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Zhijun Pu
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Gang Xu
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Yidong Yang
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Yu Cui
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Xiaoying Zhou
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Chenyuan Wang
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Zhifeng Zhong
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Simin Zhou
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Jun Yin
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Fabo Shan
- State Key Laboratory of Trauma, Burn and Combined Injury, Da-ping Hospital, Army Medical University, Chongqing, China
| | - Chengzhong Yang
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Li Jiao
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Dewei Chen
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| | - Jian Huang
- Department of High Altitude Physiology & Pathology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High-Altitude Medicine, Chongqing, China
| |
Collapse
|
2
|
Liu C, Yang F, Wang J, Zhu R, Zhu J, Huang M. Myclobutanil induces cardiotoxicity in developing zebrafish larvae by initiating oxidative stress and apoptosis: The protective role of curcumin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116484. [PMID: 38820875 DOI: 10.1016/j.ecoenv.2024.116484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 05/18/2024] [Indexed: 06/02/2024]
Abstract
Myclobutanil (MYC) is a common triazole fungicide widely applied in agriculture. MYC extensively exists in the natural environment and can be detected in organisms. However, little is known about MYC-induced embryonic developmental damage. This study aimed to unravel the cardiotoxicity of MYC and the underlying mechanisms, as well as the cardioprotective effect of curcumin (CUR, an antioxidant polyphenol) using the zebrafish model. Here, zebrafish embryos were exposed to MYC at concentrations of 0, 0.5, 1 and 2 mg/L from 4 to 96 h post fertilization (hpf) and cardiac development was assessed. As results, MYC reduced the survival and hatching rate, body length and heart rate, but increased the malformation rate and spontaneous movement. MYC caused abnormal cardiac morphology and function in myl7:egfp transgenic zebrafish, and downregulated cardiac developmental genes. MYC promoted oxidative stress through excessive reactive oxygen species (ROS) accumulation and suppressed the activities of antioxidant enzymes, triggering cardiomyocytic apoptosis via upregulated expression of apoptosis-related genes. These adverse toxicities could be significantly ameliorated by the antioxidant properties of CUR, indicating that CUR rescued MYC-induced cardiotoxicity by inhibiting oxidative stress and apoptosis. Overall, our study revealed the potential mechanisms of oxidative stress and apoptosis in MYC-induced cardiotoxicity in zebrafish and identified the cardioprotection of CUR in this pathological process.
Collapse
Affiliation(s)
- Chunlan Liu
- School of Public Health Management, Jiangsu Health Vocational College, Nanjing 211800, PR China
| | - Fan Yang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong, Nantong 226011, PR China
| | - Jingyu Wang
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, PR China
| | - Renfei Zhu
- Department of Hepatobiliary Surgery, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu 226006, PR China.
| | - Jiansheng Zhu
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Mingtao Huang
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, PR China.
| |
Collapse
|
3
|
Yang Y, Zhao L, Wang T, Zheng X, Wu Y. Biological activity and structural modification of isosteviol over the past 15 years. Bioorg Chem 2024; 143:107074. [PMID: 38176378 DOI: 10.1016/j.bioorg.2023.107074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Isosteviol is a tetracyclic diterpenoid obtained by hydrolysis of stevioside. Due to its unique molecular skeleton and extensive pharmacological activities, isosteviol has attracted more and more attention from researchers. This review summarized the structural modification, pharmacological activity and microbial transformation of isosteviol from 04/2008 to 10/2023. In addition, the research history, structural characterization, and pharmacokinetics of isosteviol were also briefly reviewed. This review aims to provide useful literature resources and inspirations for the exploration of diterpenoid drugs.
Collapse
Affiliation(s)
- Youfu Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Lijun Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Tongsheng Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, PR China.
| | - Ya Wu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, PR China.
| |
Collapse
|