1
|
Zhang Z, Zhang Q, Liu Z, Wang C, Chen H, Luo X, Shen L, Long C, Wei G, Liu X. Rab25 is involved in hypospadias via the β1 integrin/EGFR pathway. Exp Cell Res 2024; 436:113980. [PMID: 38401686 DOI: 10.1016/j.yexcr.2024.113980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Hypospadias is a common congenital abnormality of the penile. Abnormal regulation of critical genes involved in urethral development leads to hypospadias. We used the Rab25-/- mice and foreskin fibroblasts transfected with lentivirus in vitro and in vivo to investigate the role of Rab25 in hypospadias. METHODS The expression levels of various molecules in tissue samples and foreskin fibroblasts were confirmed using molecular biology methods (western blotting, PCR, immunohistochemistry, etc.). A scanning electron microscope (SEM) was used to visualize the external morphology of genital tubercles (GTs) of gestation day (GD) 18.5 male wild-type (WT) and Rab25-/- mice. RESULTS An expanded distal cleft and V-shaped urethral opening were observed in GD 18.5 Rab25-/- mice. We demonstrated that Rab25 mediated hypospadias through the β1 integrin/EGFR pathway. In addition, silencing Rab25 inhibited cell proliferation and migration and promoted apoptosis in the foreskin fibroblasts; Ki-67- and TUNEL-positive cells were mainly concentrated near the urethral seam. CONCLUSION These findings suggest that Rab25 plays an essential role in hypospadias by activation of β1 integrin/EGFR pathway, and Rab25 is a critical mediator of urethral seam formation in GD18.5 male fetal mice.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Qiang Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Zhenmin Liu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chong Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Hongsong Chen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Xingguo Luo
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Guanghui Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Xing Liu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Program for Youth Innovation in Future Medicine, Chongqing Medical University, Chongqing, 400014, PR China.
| |
Collapse
|
2
|
Perske C, Sennert M, Fawzy M, Wirmer J, Hadidi AT. Hormone receptor expression in hypospadias. J Pediatr Urol 2023; 19:697.e1-697.e8. [PMID: 37532608 DOI: 10.1016/j.jpurol.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Sex hormone imbalance in utero is hypothesized to play an important role in the pathogenesis of hypospadias. Due to its easy accessibility, foreskin samples have been used to describe hormone receptor expression in rodents, and both adult and pediatric patients. In this study we conducted a systematic approach to assess hormone receptor expression in pediatric patients with hypospadias compared to healthy controls with a focus on age-matching and differences in severity and degree of hypospadias. METHODS Foreskin samples were collected from 35 children during hypospadias operations (18 distal and 17 proximal hypospadias) and compared with ventral foreskin samples of a control group of 32 children during circumcision (15 age-matched and 17 older boys). The samples were stained with H/E, androgen (AR), estrogen (ER) and progesterone receptors (PR). The receptor stainings were blindly evaluated. An Allred score was used to evaluate receptor expression in both the epithelium as well as stroma. RESULTS AR was detected in all cases. AR expression in the stroma was more evident than in the epithelium. AR expression in the hypospadias groups was significantly less than the age matched controls (p < 0.05). There was no significant difference between the two hypospadias groups nor between the two control groups. Older control group showed significantly elevated levels of AR expression compared to the hypospadias group (p < 0.05). ER was also detected in all cases. The stroma showed more ER than in epithelium. PR was minimal or negative in all samples. CONCLUSION Boys with hypospadias showed significantly weaker expression of androgen receptors than age matched controls. The severity of hypospadias did not influence hormone receptor distribution. AR expression is better observed in the stroma than in the epithelium. There was no difference in ER expression between the hypospadias group (distal or proximal) and age matched normal controls. ER was expressed in larger numbers in normal older preputial tissue. The foreskin of prepubertal boys shows little to no expression of PR.
Collapse
Affiliation(s)
- Christina Perske
- Institute for Pathology, University Medical Center Goettingen, Germany
| | - Michael Sennert
- Hypospadias Centre, Department of Pediatric Surgery, Emma and Sana Klinikum Offenbach Hospitals, Germany
| | - Mohammed Fawzy
- Hypospadias Centre, Department of Pediatric Surgery, Emma and Sana Klinikum Offenbach Hospitals, Germany
| | - Johannes Wirmer
- Hypospadias Centre, Department of Pediatric Surgery, Emma and Sana Klinikum Offenbach Hospitals, Germany
| | - Ahmed T Hadidi
- Hypospadias Centre, Department of Pediatric Surgery, Emma and Sana Klinikum Offenbach Hospitals, Germany.
| |
Collapse
|
3
|
Zhang H, Yi X, Hu W, Zhu G, Fu X, Jin W, Qin L, Li M. MEHP activates JNK to inhibit the migration of human foreskin fibroblasts. Syst Biol Reprod Med 2023; 69:423-434. [PMID: 37812750 DOI: 10.1080/19396368.2023.2262082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/11/2023] [Indexed: 10/11/2023]
Abstract
This study aimed to investigate the impact of mono(2-ethylhexyl) phthalate (MEHP) on the proliferation, apoptosis, and migration of human foreskin fibroblast cells (HFF-1) and the role of the JNK signaling pathway in cell migration. HFF-1 cells were randomly assigned to the control group with 0 MEHP exposure (M0) or the experimental groups with 25, 50, 100, 200, and 400 μmol/L MEHP exposure (M25, M50, M100, M200, and M400, respectively). After 24 and 48 h of MEHP exposure, the proliferation of HFF-1 cells in any group had no significant change. However, compared with the M0 group, the M200 and M400 groups presented substantially increased apoptosis of HFF-1 cells. Moreover, cell migration ability significantly decreased in all groups (p < 0.05). Additionally, the transcription and phosphorylated protein activation of JNK kinase in HFF-1 cells were substantially upregulated with the increase in MEHP exposure. Subsequently, HFF-1 cells were randomly divided into three groups: the DMSO blank control group, the 100 μM MEHP experimental group (M100), and the 100 μM MEHP plus 10 μM SP600125 (specific JNK inhibitor) experimental group (S10). The activation of JNK protein in HFF-1 cells was substantially downregulated in the S10 group. HFF-1 cells were also divided into the blank control group (M0). They were treated with 100 μM MEHP and varying concentrations of SP600125 (5, 10, and 15 μM for S5, S10, and S15, respectively). As the concentration of the antagonist increased, the migration ability of HFF-1 cells was returned to normal. Finally, the ROS in HFF-1 cells increased under MEHP exposure. This finding indicates that the regulation of cell migration by the JNK signaling pathway may be important in the occurrence of hypospadias.
Collapse
Affiliation(s)
- Hu Zhang
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Xuan Yi
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Wei Hu
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Guoqiang Zhu
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Xiaowen Fu
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Wei Jin
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Long Qin
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Mingyong Li
- Urology Department, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| |
Collapse
|
4
|
Zhang Q, Zhang Z, He X, Liu Z, Shen L, Long C, Wei G, Liu X. Expression of Rab25 is down-regulated in the foreskin of children with hypospadias. J Pediatr Urol 2023; 19:581.e1-581.e6. [PMID: 37246119 DOI: 10.1016/j.jpurol.2023.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Hypospadias, a congenital malformation of the penis, is one of the newborns' most common developmental defects. The incidence of hypospadias is increasing yearly, and its pathogenesis is closely related to genetic susceptibility and environmental exposure to endocrine disruptors. Exploring the hypospadias' key molecular regulatory mechanism is crucial to reducing its incidence. OBJECTIVE To examine the differential expression of Rab25 in hypospadias and normal penile tissue and to identify whether it is a candidate gene for exploring the mechanism of hypospadias. STUDY DESIGN This study included 18 children aged 1-6 years undergoing hypospadias repair surgery at the Children's Hospital of Chongqing Medical University, and foreskin samples were collected. Children diagnosed with cryptorchidism, intersex status, or endocrine abnormalities were excluded from this study. Another 18 children aged 3-8 years with phimosis were included in the control group. The specimens were used for immunohistochemistry, western blotting, immunofluorescence, and polymerase chain reaction to assess the expression of Rab25. RESULTS Rab25 protein expression was lower in the hypospadias group than in the control group [ (2.101 ± 0.1845), (0.7506 ± 0.1779), p = 0.0008 < 0.05). The hypospadias group showed decreased expression of Rab25 protein in the epithelial cell layer. Rab25 mRNA levels were downregulated in the foreskin of children with hypospadias compared with controls [(1.697 ± 0.2005), (0.7687 ± 0.2130), p = 0.0053 < 0.05)]. DISCUSSION Rab25 mRNA and protein expressions in the hypospadias group were significantly downregulated compared with the control group. This was consistent with the results of single-cell sequencing of fetal mice reproductive nodules at 15.5 days of gestation (Zhang Z, Liu Z, Zhang Q, et al., unpublished observations). Our study represents the first report of abnormal Rab25 expression in the foreskin tissue of patients with hypospadias. More detailed research on the relationship between Rab25 and urethral development could be conducted to reveal the molecular mechanism of hypospadias. CONCLUSION The expression of Rab25 in foreskin tissue was lower in the hypospadias group than in the control group. Rab25 is involved in the formation of the urethral seam and the occurrence of hypospadias. The potential mechanism by which Rab25 affects the canalization of the urethral plate needs to be further investigated.
Collapse
Affiliation(s)
- Qiang Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Zhicheng Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Xueyu He
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Zhenmin Liu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Guanghui Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Xing Liu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Program for Youth Innovation in Future Medicine, Chongqing Medical University, Chongqing, 400014, PR China.
| |
Collapse
|
5
|
Huang J, Su C, Lu P, Zhao X, Liu Y, Xie Q, Chen C. hsa_circ_0000417 downregulation suppresses androgen receptor expression and apoptotic signals in human foreskin fibroblasts via sponging miR-6756-5p. Mol Biol Rep 2023; 50:6769-6781. [PMID: 37389702 DOI: 10.1007/s11033-023-08628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Dysregulated apoptosis of penile mesenchymal cells during male urethragenesis has been previously demonstrated to underly hypospadiac urethral closure failure, and androgen receptor (AR) has been shown to play a central role in regulating penile mesenchyme cell proliferation and survival. However, the regulatory mechanisms upstream and downstream of AR remain poorly understood. Our clinical data and bioinformatics analysis previously indicated that hsa_circ_0000417, a circRNA significantly downregulated in hypospadias preputial specimens, may act as a ceRNA for AR via sequestering hsa_miR-6756-5p, and that the biological functions of hsa_circ_0000417 may significantly involve the PI3K/AKT pathway. In this study, we employed human foreskin fibroblasts (HFF-1) to experimentally validate this putative hsa_circ_0000417/miR-6756-5p/AR axis and its impact on penile mesenchymal cell proliferation and apoptosis. METHOD AND RESULTS We showed that hsa_circ_0000417 knockdown significantly promoted proliferation and suppressed apoptosis of HFF-1 cells. Mechanistically, hsa_circ_0000417 functioned as a molecular sponge for miR-6756-5p in HFF-1 cells and relieved the latter's translational repression on AR mRNA, leading to decreased AKT activation and increased expression of pro-apoptotic proteins BAX and cleaved-caspase 9. Conversely, elevated levels of miR-6756-5p resulted in diminished AR expression concomitant with enhanced AKT activation and HFF-1 cell proliferation. CONCLUSIONS Collectively, our data describe for the first time a circRNA-mediated post-transcriptional regulatory mechanism of AR and its functional consequences in penile mesenchymal cells in the context of hypospadias. These findings may contribute to advancing our current understanding of the roles of AR and mesenchymal cell fate decisions during penile morphogenesis.
Collapse
Affiliation(s)
- Junqiang Huang
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cheng Su
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pingan Lu
- Faculty of Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Xiangyou Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuling Liu
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qike Xie
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
6
|
Almaramhy HH, Abdul Samad F, Al-Harbi G, Zaytuni D, Imam SN, Masoodi T, Shamsi MB. Identification of a novel candidate HSD3B2 gene variant for familial hypospadias by whole-exome sequencing. Front Genet 2023; 14:1106933. [PMID: 37384334 PMCID: PMC10297146 DOI: 10.3389/fgene.2023.1106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/27/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction: Hypospadias [MIM: 300633] is one of the most frequent congenital malformations of male external genitalia. The spectrum of genetic variants causing hypospadias is varied, with studies commonly implicating genes critical in the fetal steroidogenic pathway. This is the first genetic study on hypospadias from the Yemen ethnicity and the second to report HSD3B2 mutations in more than one affected individual from the same family. Material and methods: Surgical hypospadias repair was performed on two hypospadias-affected siblings from a consanguineous family. Whole-exome sequencing (WES) was performed to identify the potential pathogenic variant for hypospadias, which was later confirmed by Sanger sequencing. The identified variant was further analyzed for its pathogenicity by using in silico tools such as SIFT, PolyPhen-2, MutationAssessor, MutationTaster, FATHMM, and ConSurf. Results: We identified a novel missense mutation (Chr1:119964631T>A, c.507T>A, p. N169K) in 3β-hydroxysteroid 2-dehydrogenase (HSD3B2) gene by WES. Sanger sequencing confirmed that the variant segregated the disease in the family between the affected and non-affected individuals. Both patients are homozygous, while parents and two unaffected siblings are heterozygous carriers, indicating an autosomal recessive pattern of inheritance. The in silico analysis by all six in silico tools (SIFT, PolyPhen-2, MutationAssessor, MutationTaster, FATHMM, and ConSurf) predicted the variant to be pathogenic/deleterious. Discussion: An abnormal fetal steroidogenic pathway due to genetic influences may affect the development of the male genital tract, including the urethral tract closure and morphogenesis of male genitalia. Furthermore, the pathogenicity of the observed variant in this study, confirmed by multiple in silico tools, characterizes the influence HSD3B2 gene variants may have in the etiology of hypospadias. Conclusion: Understanding of pathogenic manifestation and inheritance of confounding genetic variants in hypospadias is a matter of great concern, especially in familial cases.
Collapse
Affiliation(s)
| | - Firoz Abdul Samad
- College of Applied Medical Science, Taibah University, Medina, Saudi Arabia
| | - Ghadeer Al-Harbi
- Centre for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia
| | - Dimah Zaytuni
- Centre for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia
| | - Syed Nazar Imam
- College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Tariq Masoodi
- Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Monis Bilal Shamsi
- Centre for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia
- Department of Biochemistry, College of Medicine, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
7
|
Long-term Complications of Hypospadias Repair. CURRENT SEXUAL HEALTH REPORTS 2022. [DOI: 10.1007/s11930-022-00336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Kong X, Liu Z, Long C, Shen L, Liu X, Wei G. Repression of Mafb promotes foreskin fibroblast proliferation through upregulation of CDK2, cyclin E and PCNA. Andrologia 2022; 54:e14411. [PMID: 35220623 DOI: 10.1111/and.14411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/05/2022] [Accepted: 02/21/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Xiaoyan Kong
- Department of Urology Children’s Hospital of Chongqing Medical University Chongqing China
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering Chongqing Key Laboratory of Pediatrics Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation base of Child development and Critical Disorders Children’s Hospital of Chongqing Medical University Chongqing China
- Department of Imaging Chengdu Second People's Hospital Chengdu Sichuan China
| | - Zhenmin Liu
- Department of Urology Children’s Hospital of Chongqing Medical University Chongqing China
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering Chongqing Key Laboratory of Pediatrics Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation base of Child development and Critical Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Chunlan Long
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering Chongqing Key Laboratory of Pediatrics Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation base of Child development and Critical Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Lianju Shen
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering Chongqing Key Laboratory of Pediatrics Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation base of Child development and Critical Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Xing Liu
- Department of Urology Children’s Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering Chongqing Key Laboratory of Pediatrics Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation base of Child development and Critical Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| | - Guanghui Wei
- Department of Urology Children’s Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering Chongqing Key Laboratory of Pediatrics Ministry of Education Key Laboratory of Child Development and Disorders National Clinical Research Center for Child Health and Disorders China International Science and Technology Cooperation base of Child development and Critical Disorders Children’s Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
9
|
Amato CM, Yao HHC. Developmental and sexual dimorphic atlas of the prenatal mouse external genitalia at the single-cell level. Proc Natl Acad Sci U S A 2021; 118:e2103856118. [PMID: 34155146 PMCID: PMC8237666 DOI: 10.1073/pnas.2103856118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Birth defects of the external genitalia are among the most common in the world. Proper formation of the external genitalia requires a highly orchestrated process that involves special cell populations and sexually dimorphic hormone signaling. It is clear what the end result of the sexually dimorphic development is (a penis in the male versus clitoris in the female); however, the cell populations involved in the process remain poorly defined. Here, we used single-cell messenger RNA sequencing in mouse embryos to uncover the dynamic changes in cell populations in the external genitalia during the critical morphogenetic window. We found that overall, male and female external genitalia are largely composed of the same core cellular components. At the bipotential stage of development (embryonic day or E14.5), few differences in cell populational composition exist between male and female. Although similar in cell population composition, genetic differences in key sexual differentiation developmental pathways arise between males and females by the early (E16.5) and late (E18.5) differentiation stages. These differences include discrete cell populations with distinct responsiveness to androgen and estrogen. By late sexual differentiation (E18.5), unique cell populations in both male and female genitalia become apparent and are enriched with androgen- and estrogen-responsive genes, respectively. These data provide insights into the morphogenesis of the external genitalia that could be used to understand diseases associated with defects in the external genitalia.
Collapse
Affiliation(s)
- Ciro Maurizio Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| |
Collapse
|
10
|
Endocrine disrupting chemicals in the pathogenesis of hypospadias; developmental and toxicological perspectives. Curr Res Toxicol 2021; 2:179-191. [PMID: 34345859 PMCID: PMC8320613 DOI: 10.1016/j.crtox.2021.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Penis development is regulated by a tight balance of androgens and estrogens. EDCs that impact androgen/estrogen balance during development cause hypospadias. Cross-disciplinary collaborations are needed to define a mechanistic link.
Hypospadias is a defect in penile urethral closure that occurs in approximately 1/150 live male births in developed nations, making it one of the most common congenital abnormalities worldwide. Alarmingly, the frequency of hypospadias has increased rapidly over recent decades and is continuing to rise. Recent research reviewed herein suggests that the rise in hypospadias rates can be directly linked to our increasing exposure to endocrine disrupting chemicals (EDCs), especially those that affect estrogen and androgen signalling. Understanding the mechanistic links between endocrine disruptors and hypospadias requires toxicologists and developmental biologists to define exposures and biological impacts on penis development. In this review we examine recent insights from toxicological, developmental and epidemiological studies on the hormonal control of normal penis development and describe the rationale and evidence for EDC exposures that impact these pathways to cause hypospadias. Continued collaboration across these fields is imperative to understand the full impact of endocrine disrupting chemicals on the increasing rates of hypospadias.
Collapse
Key Words
- Androgen
- BBP, benzyl butyl phthalate
- BPA, bisphenol A
- DBP, Σdibutyl phthalate
- DDT, dichlorodiphenyltrichloroethane
- DEHP, Σdi-2(ethylhexyl)-phthalate
- DHT, dihydrotestosterone
- EDC, endocrine disrupting chemicals
- EMT, epithelial to mesenchymal transition
- ER, estrogen receptor
- Endocrine disruptors
- Estrogen
- GT, genital tubercle
- Hypospadias
- NOAEL, no observed adverse effect level
- PBB, polybrominated biphenyl
- PBDE, polybrominated diphenyl ether
- PCB, polychlorinated biphenyl
- PCE, tetrachloroethylene
- Penis
Collapse
|
11
|
Xing Z, Zhang S, Jiang YT, Wang XX, Cui H. Association between prenatal air pollution exposure and risk of hypospadias in offspring: a systematic review and meta-analysis of observational studies. Aging (Albany NY) 2021; 13:8865-8879. [PMID: 33742607 PMCID: PMC8034939 DOI: 10.18632/aging.202698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/04/2021] [Indexed: 01/17/2023]
Abstract
Background: The findings of associations between prenatal air pollution exposure and hypospadias risk in offspring are inconsistent. No systematic review or meta-analysis has yet summarized the present knowledge on the aforementioned topic. Methods: Relevant manuscripts were identified by searching PubMed and Web of Science databases through January 31, 2020. Summary odds ratios (ORs) with 95% confidence intervals (CIs) in meta-analyses were estimated based on a random effects model. Publication bias was evaluated by funnel plots, Begg’s test, and Egger’s test. Results: The search identified 3,032 relevant studies. Sixteen studies cumulatively involving 21,701 hypospadias cases and 1,465,364 participants were included. All of these studies were classified as having a low risk of bias. We classified pollutants as nitrogen oxides, particulate matter (PM), ozone, and other exposures. The exposure window to pollutants varied from three months before conception to seven days after delivery. In the meta-analyses, only PM2.5 exposure in the first trimester was related to increased risk of hypospadias (per 10 μg/m3 OR = 1.34; 95% CI: 1.06–1.68). Conclusion: We found evidence for an effect of PM2.5 exposure on hypospadias risk. Improvements in the areas of study design, exposure assessment, and specific exposure window are needed to advance this field.
Collapse
Affiliation(s)
- Ze Xing
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Ting Jiang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.,Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiu-Xia Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong Cui
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Lin HC, Guo JM, Ge P, Ou P. Association between prenatal exposure to ambient particulate matter and risk of hypospadias in offspring: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2021; 192:110190. [PMID: 32919959 DOI: 10.1016/j.envres.2020.110190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/05/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Epidemiological studies on whether prenatal exposure to PM2.5, PM2.5-10, and PM10 increases the risk of hypospadias are limited and the results are inconsistent. OBJECTIVES We conducted this systematic review and meta-analysis to evaluate these associations. METHODS Relevant studies were identified by searching the PubMed and Embase databases up to the end of February 2020. Observational studies that investigated the relationships between prenatal exposure to PM10, PM2.5, and PM2.5-10 and the risk of hypospadias in offspring were eligible for the review. The risk of bias was evaluated using the Newcastle-Ottawa scale. Random-effects models were used to estimate pooled relative risks (RRs) and 95% confidence intervals (CIs) for the associations. RESULTS Nine studies (two cohort and seven case-control studies) with a total of 2806 hypospadias cases were included. Eight studies were at low risk of bias and only one study was at high risk of bias. Five studies reported the association between per interquartile range increase in PM2.5 exposure within the first trimester and the risk of hypospadias. The pooled RR was 1.17 (95% CI: 1.00, 1.36). Two studies reported the per interquartile range increase in PM2.5 exposure during 1 month before pregnancy associated with the risk of hypospadias, with a pooled RR of 1.25 (95% CI: 1.03, 1.51). No association was observed between PM2.5-10 and PM10 exposure during pregnancy and the risk of hypospadias in offspring. CONCLUSION This study suggested a modest association between prenatal PM2.5 exposure during 1 month before pregnancy or within the first trimester and the risk of hypospadias in offspring. Further large-scale cohort studies are required to verify this association.
Collapse
Affiliation(s)
- Hua-Chuan Lin
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jing-Min Guo
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Pin Ge
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ping Ou
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
13
|
TGF-β1 relieves epithelial-mesenchymal transition reduction in hypospadias induced by DEHP in rats. Pediatr Res 2020; 87:639-646. [PMID: 31726466 DOI: 10.1038/s41390-019-0622-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 08/19/2019] [Accepted: 09/29/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUNDS To investigate the potential mechanism of hypospadias induced by DEHP in rats to reveal the preventative effect of TGF-β1 in hypospadias induced by DEHP via the reduction of EMT. METHODS Time-mated Sprague-Dawley rats underwent cesarean section, and the penises of male pups were collected after exposure to corn oil or DEHP to establish a rat model of hypospadias and to further study the molecular mechanisms of hypospadias in vivo. In addition, the penises were cultured and treated with MEHP or MEHP+TGF-β1 in vitro. Subsequently, histomorphology and elements in TGF-β/Smad signaling pathway changes were evaluated using scanning electron microscopy, immunofluorescence, polymerase chain reaction, and western blot. RESULTS The development of rat penis and urethral seam fusion were delayed after the treatment with DEHP in vivo or MEHP in vitro compared with the Control group. Moreover, TGF-β1, Smad2/Smad3, and the mesenchymal biomarkers, including α-SMA, N-cadherin, and Vimentin, were decreased. However, the epithelial biomarkers, including E-cadherin, ZO-1, β-catenin, and occludin, were increased. In addition, TGF-β1 could relieve all of the above changes. CONCLUSION Gestational DEHP exposure could lead to hypospadias by reducing urethral EMT. Moreover, TGF-β1 could prevent it by regenerating EMT through activating the TGF-β/Smad signal pathway.
Collapse
|
14
|
Tack LJW, Praet M, Van Dorpe J, Haid B, Buelens S, Hoebeke P, Van Laecke E, Cools M, Spinoit AF. Androgen receptor expression in preputial dartos tissue correlates with physiological androgen exposure in congenital malformations of the penis and in controls. J Pediatr Urol 2020; 16:43.e1-43.e8. [PMID: 31810878 DOI: 10.1016/j.jpurol.2019.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The androgen receptor (AR) plays an important role in the development of male genitalia, and impaired androgen signalling has been hypothesised to underlie congenital penile malformations (CPM) such as hypospadias. Previous studies exploring the role of AR expression in the development of CPM have yielded conflicting results. OBJECTIVES To assess AR expression in human foreskin of boys/men born with hypospadias, buried penis versus controls. STUDY DESIGN Foreskin samples of 428 boys and men undergoing primary penile surgery (198 controls, 197 hypospadias, and 33 buried penis) were collected between October 2013 and July 2018. AR staining was performed in all samples and semi-quantitatively scored by two researchers independently, using a modified quick score (mQuicks) that assesses the proportion and intensity of AR staining in smooth muscle fibres. RESULTS The interobserver variability of the mQuicks had a high level of agreement for the total score, as well as for the subscores. Two phases of high AR expression were observed in all groups, the first following the postnatal gonadotropin surge (i.e., mini-puberty) and the second in (pre-) puberty. No differences in AR expression were found in hypospadias or buried penis cases as compared to controls matched for age at time of surgery. DISCUSSION This study describes the physiological evolution in AR expression in the human foreskin of boys with CPM and explains the cause of the previously reported, conflicting results. Despite the very large cohort, the limitations of this study are the low number of cases younger than six months at the time of surgery and the lack of Tanner stages to correlate with the mQuicks in adolescents. CONCLUSIONS The mQuicks is a straightforward and informative tool to semi-quantitatively assess AR expression in the dartos tissue. In this study, AR expression in human foreskin shows a bimodal distribution in boys with CMP and controls, following physiological androgen exposure. No statistically significant difference in AR expression could be found between both groups. Whether other local mechanisms are affected by these physiological changes is currently unclear. However, strict age-matching should be considered when exploring the mechanisms underlying disturbed penile and urethral development in CMP.
Collapse
Affiliation(s)
- L J W Tack
- Pediatric Endocrinology Service, Ghent University Hospital, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - M Praet
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - J Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - B Haid
- Department of Pediatric Urology Ordensklinikum Linz, Hospital of the Sisters of Charity, Linz Austria & Department of Urology, Ludwig-Maximilian University of Munich, Germany
| | - S Buelens
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - P Hoebeke
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - E Van Laecke
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - M Cools
- Pediatric Endocrinology Service, Ghent University Hospital, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - A F Spinoit
- Department of Urology, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
15
|
Chen Z, Lin X, Lei Y, Chen H, Finnell RH, Wang Y, Xu J, Lu D, Xie H, Chen F. Genome-wide association study in Chinese cohort identifies one novel hypospadias risk associated locus at 12q13.13. BMC Med Genomics 2019; 12:196. [PMID: 31856834 PMCID: PMC6923877 DOI: 10.1186/s12920-019-0642-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/04/2019] [Indexed: 12/21/2022] Open
Abstract
Background Hypospadias risk–associated gene variants have been reported in populations of European descent using genome-wide association studies (GWASs). There is little known at present about any possible hypospadias risk associations in Han Chinese populations. Methods To systematically investigate hypospadias risk–associated gene variants in Chinese patients, we performed the first GWAS in a Han Chinese cohort consisting of 197 moderate-severe hypospadias cases and 933 unaffected controls. Suggestive loci (p < 1 × 10− 4) were replicated in 118 cases and 383 controls, as well as in a second independent validation population of 137 cases and 190 controls. Regulatory and protein-protein interactions (PPIs) were then conducted for the functional analyses of candidate variants. Results We identified rs11170516 with the risk allele G within the SP1/SP7 region that was independently associated with moderate-severe hypospadias [SP1/SP7, rs11170516, Pcombine = 3.5 × 10− 9, odds ratio (OR) = 1.96 (1.59–2.44)]. Results also suggested that rs11170516 is associated with the expression of SP1 as a cis-expression quantitative trait locus (cis-eQTL). Protein SP1 could affect the risk of hypospadias via PPIs. Conclusions We performed the first GWAS of moderate-severe hypospadias in a Han Chinese cohort, and identified one novel susceptibility cis-acting regulatory locus at 12q13.13, which may regulate a variety of hypospadias-related pathways by affecting proximal SP1 gene expression and subsequent PPIs. This study complements known common hypospadias risk-associated variants and provides the possible role of cis-acting regulatory variant in causing hypospadias.
Collapse
Affiliation(s)
- Zhongzhong Chen
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Xiaoling Lin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yunping Lei
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Haitao Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Richard H Finnell
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yaping Wang
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Jianfeng Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Hua Xie
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China.
| | - Fang Chen
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China. .,Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,Shanghai Eastern Urological Reconstruction and Repair institute, Shanghai, 200233, China.
| |
Collapse
|
16
|
Su T, Liu H, Zhang D, Xu G, Liu J, Evans SM, Pan J, Cui S. LIM homeodomain transcription factor Isl1 affects urethral epithelium differentiation and apoptosis via Shh. Cell Death Dis 2019; 10:713. [PMID: 31558700 PMCID: PMC6763423 DOI: 10.1038/s41419-019-1952-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
Urethral hypoplasia, including failure of urethral tube closure, is one of the common phenotypes observed in hereditary human disorders, the mechanism of which remains unclear. The present study was thus designed to study the expression, functions, and related mechanisms of the LIM homeobox transcription factor Isl1 throughout mouse urethral development. Results showed that Isl1 was highly expressed in urethral epithelial cells and mesenchymal cells of the genital tubercle (GT). Functional studies were carried out by utilizing the tamoxifen-inducible Isl1-knockout mouse model. Histological and morphological results indicated that Isl1 deletion caused urethral hypoplasia and inhibited maturation of the complex urethral epithelium. In addition, we show that Isl1-deleted mice failed to maintain the progenitor cell population required for renewal of urethral epithelium during tubular morphogenesis and exhibited significantly increased cell death within the urethra. Dual-Luciferase reporter assays and yeast one-hybrid assays showed that ISL1 was essential for normal urethral development by directly targeting the Shh gene. Collectively, results presented here demonstrated that Isl1 plays a crucial role in mouse urethral development, thus increasing our potential for understanding the mechanistic basis of hereditary urethral hypoplasia.
Collapse
Affiliation(s)
- Tiantian Su
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Hui Liu
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, Jiangsu, People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, Jiangsu, People's Republic of China
| | - Guojin Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Jiali Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Sylvia M Evans
- Skaggs School of Pharmacy, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jirong Pan
- Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal Science, Chinese Academy of Medical Science and Comparative Medical Center, Peking Union Medical College, 100021, Beijing, People's Republic of China.
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, People's Republic of China. .,College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
17
|
Cripps SM, Mattiske DM, Black JR, Risbridger GP, Govers LC, Phillips TR, Pask AJ. A loss of estrogen signaling in the aromatase deficient mouse penis results in mild hypospadias. Differentiation 2019; 109:42-52. [PMID: 31520742 DOI: 10.1016/j.diff.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 11/18/2022]
Abstract
Hypospadias is the abnormal opening of the urethra on the underside of the penis and occurs in approximately 1/125 live male births worldwide. The incidence rate of hypospadias has dramatically increased over the past few decades. This is now attributed, at least in part, to our exposure to endocrine-disrupting chemicals (EDCs) which alter the hormonal signals required for development of the penis. In humans androgens are the main drivers of fusion of the urethral folds to form the urethra within the shaft of the penis, a process required for termination of the urethra in its normal location at the tip of the penis. However, recent research has suggested that estrogen also plays a role in this process. To better understand how EDCs impact urethral development it is essential that we understand the normal function of hormones during development of the penis. To define the role of estrogen in urethral development we examined development of the penis in the aromatase (Cyp19a1) Knockout (ArKO) mouse strain in which endogenous estrogen production is completely ablated. We found that the ArKO penis had a mild hypospadias phenotype. The developing ArKO postnatal penis displayed an early disruption in preputial development, which likely causes the mild hypospadias observed in adults. Using qPCR, we found altered expression of keratin genes and key urethral patterning genes in response to the disrupted estrogen signaling. The hypospadias phenotype was almost identical to that reported for the estrogen receptor α (ERα) knockout confirming that ERα is the predominant receptor for mediating estrogen action during development of the mouse penis. Our results show that estrogen is required for normal prepucial development and placement of the mature urethral opening at the distal aspect of the penis. We also identified several genes which are potential downstream targets of estrogen during normal urethral closure. With this knowledge, we can now better understand how anti-estrogenic as well as estrogenic EDCs disrupt urethral closure to cause mild hypospadias in both mice and humans.
Collapse
Affiliation(s)
- Samuel M Cripps
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Jay R Black
- School of Earth Sciences, The University of Melbourne, Victoria, Australia
| | - Gail P Risbridger
- Monash Biomedicine Discovery Institute, Monash University, Victoria, Australia; Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Luke C Govers
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | | | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
18
|
Hashimoto D, Hyuga T, Acebedo AR, Alcantara MC, Suzuki K, Yamada G. Developmental mutant mouse models for external genitalia formation. Congenit Anom (Kyoto) 2019; 59:74-80. [PMID: 30554442 DOI: 10.1111/cga.12319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
Abstract
Development of external genitalia and perineum is the subject of developmental biology as well as toxicology and teratology researches. Cloaca forms in the lower (caudal) end of endoderm. Such endodermal epithelia and surrounding mesenchyme interact with various signals to form the external genitalia. External genitalia (the anlage termed as genital tubercle: GT) formation shows prominent sexually dimorphic morphogenesis in late embryonic stages, which is an unexplored developmental research field because of many reasons. External genitalia develop adjacent to the cloaca which develops urethra and corporal bodies. Developmental regulators including growth factor signals are necessary for epithelia-mesenchyme interaction (EMI) in posterior embryos including the cloaca and urethra in the genitalia. In the case of male type urethra, formation of tubular urethra proceeds from the lower (ventral) side of external genitalia as a masculinization process in contrast to the case of female urethra. Mechanisms for its development are not elucidated yet due to the lack of suitable mutant mouse models. Because of the recent progresses of Cre (recombinase)-mediated conditional target gene modification analyses, many developmental regulatory genes become increasingly analyzed. Conditional gene knockout mouse approaches and tissue lineage approaches are expected to offer vital information for such sexually dimorphic developmental processes. This review aims to offer recent updates on the progresses of these emerging developmental processes for the research field of congenital anomalies.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Taiju Hyuga
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Alvin R Acebedo
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Mellissa C Alcantara
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University (WMU), Wakayama, Japan
| |
Collapse
|
19
|
Ogino Y, Tohyama S, Kohno S, Toyota K, Yamada G, Yatsu R, Kobayashi T, Tatarazako N, Sato T, Matsubara H, Lange A, Tyler CR, Katsu Y, Iguchi T, Miyagawa S. Functional distinctions associated with the diversity of sex steroid hormone receptors ESR and AR. J Steroid Biochem Mol Biol 2018; 184:38-46. [PMID: 29885351 DOI: 10.1016/j.jsbmb.2018.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Sex steroid hormones including estrogens and androgens play fundamental roles in regulating reproductive activities and they act through estrogen and androgen receptors (ESR and AR). These steroid receptors have evolved from a common ancestor in association with several gene duplications. In most vertebrates, this has resulted in two ESR subtypes (ESR1 and ESR2) and one AR, whereas in teleost fish there are at least three ESRs (ESR1, ESR2a and ESR2b) and two ARs (ARα and ARβ) due to a lineage-specific whole genome duplication. Functional distinctions have been suggested among these receptors, but to date their roles have only been characterized in a limited number of species. Sexual differentiation and the development of reproductive organs are indispensable for all animal species and in vertebrates these events depend on the action of sex steroid hormones. Here we review the recent progress in understanding of the functions of the ESRs and ARs in the development and expression of sexually dimorphic characteristics associated with steroid hormone signaling in vertebrates, with representative fish, amphibians, reptiles, birds and mammals.
Collapse
Affiliation(s)
- Yukiko Ogino
- Attached Promotive Centre for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka 812-8581, Japan
| | - Saki Tohyama
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | - Satomi Kohno
- Department of Biology, St. Cloud State University, St. Cloud, MN 56301, USA
| | - Kenji Toyota
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan; Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Gen Yamada
- Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-8509, Japan
| | - Ryohei Yatsu
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Tohru Kobayashi
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | | | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
| | - Hajime Matsubara
- Department of Aquatic Biology, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido 099-2493, Japan
| | - Anke Lange
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Yoshinao Katsu
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0809, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan.
| | - Shinichi Miyagawa
- Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan; Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama 641-8509, Japan.
| |
Collapse
|
20
|
Liu G, Liu X, Shen J, Sinclair A, Baskin L, Cunha GR. Contrasting mechanisms of penile urethral formation in mouse and human. Differentiation 2018; 101:46-64. [PMID: 29859371 DOI: 10.1016/j.diff.2018.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 11/27/2022]
Abstract
This paper addresses the developmental mechanisms of formation of the mouse and human penile urethra and the possibility that two disparate mechanisms are at play. It has been suggested that the entire penile urethra of the mouse forms via direct canalization of the endodermal urethral plate. While this mechanism surely accounts for development of the proximal portion of the mouse penile urethra, we suggest that the distal portion of the mouse penile urethra forms via a series of epithelial fusion events. Through review of the recent literature in combination with new data, it is unlikely that the entire mouse urethra is formed from the endodermal urethral plate due in part to the fact that from E14 onward the urethral plate is not present in the distal aspect of the genital tubercle. Formation of the distal portion of the mouse urethra receives substantial contribution from the preputial swellings that form the preputial-urethral groove and subsequently the preputial-urethral canal, the later of which is subdivided by a fusion event to form the distal portion of the mouse penile urethra. Examination of human penile development also reveals comparable dual morphogenetic mechanisms. However, in the case of human, direct canalization of the urethral plate occurs in the glans, while fusion events are involved in formation of the urethra within the penile shaft, a pattern exactly opposite to that of the mouse. The highest incidence of hypospadias in humans occurs at the junction of these two different developmental mechanisms. The relevance of the mouse as a model of human hypospadias is discussed.
Collapse
Affiliation(s)
- Ge Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Department of Urology, University of California, San Francisco, CA, United States
| | - Xin Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Department of Urology, University of California, San Francisco, CA, United States
| | - Joel Shen
- Department of Urology, University of California, San Francisco, CA, United States
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, CA, United States
| | - Laurence Baskin
- Department of Urology, University of California, San Francisco, CA, United States
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, CA, United States.
| |
Collapse
|
21
|
Regulation of masculinization: androgen signalling for external genitalia development. Nat Rev Urol 2018; 15:358-368. [DOI: 10.1038/s41585-018-0008-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Amato CM, Boyd M, Yang J, McCoy KA. Organizational effects of the antiandrogen, vinclozolin, on penis development in the mouse†. Biol Reprod 2018; 99:639-649. [DOI: 10.1093/biolre/ioy087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/12/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ciro M Amato
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Morgan Boyd
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Joshua Yang
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Krista A McCoy
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
23
|
Zhou Y, Liu X, Huang F, Liu Y, Cao X, Shen L, Long C, He D, Lin T, Wei G. Epithelial-mesenchymal transformation and apoptosis in rat urethra development. Pediatr Res 2017; 82:1073-1079. [PMID: 28876330 DOI: 10.1038/pr.2017.185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/24/2017] [Indexed: 01/04/2023]
Abstract
BackgroundTo examine the mechanism of urethral seam formation during embryonal development of rat urethra.MethodsTime-mated Sprague-Dawley rats were killed and the genital tubercles of male pups harvested on embryonic day (ED) 15, 16, 18, and 19. External morphology was observed under scanning electron microscope. Serial transverse sections were prepared to examine dynamic changes in the urethral seam morphology with hematoxylin-eosin staining, immunohistochemistry, transmission electron microscopy, and double immunofluorescence.ResultsBilateral outgrowth of urethral swelling followed by urethral plate fusion in the midline to form urethral seam was observed from ED 16 onwards. Coexpression of epithelial and mesenchymal markers was observed in several cells at the urethral seam; a few cells with coexpression of epithelial and apoptotic markers were also observed. Mesenchymal transformation of epithelial cells and apoptotic epithelial cells was observed under transmission electron microscope.ConclusionUrethral formation occurs by tubulogenesis, which initiates proximally and progresses distally. This is the first study to demonstrate epithelial-mesenchymal transformation and epithelial cell apoptosis in the urethral seam cells of fetal rats. These findings provide new insights into the mechanisms involved in embryonal development of the urethra.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xing Liu
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Fangyuan Huang
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yang Liu
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xining Cao
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lianju Shen
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chunlan Long
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Dawei He
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tao Lin
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Guanghui Wei
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
24
|
Abstract
The newborn infant with atypical genitalia presents a challenging clinical scenario and requires expert input. There have been appreciable advances in our knowledge of the underlying causes that may lead to a mere difference or a more serious disorder of sex development (DSD), the natural history of conditions, as well as the short and long-term complications of these conditions themselves, together with the clinical interventions that are associated with these conditions. With this information, the DSD expert can be more confident when discussing options with the parents of the newborn infant. By working within a multidisciplinary team, the expert should be able to support the family whilst individualising the management plan so that it is also cognizant of the shifts in societal attitudes and expectations around concepts of diversity and openness. It is, therefore, likely that the practice of assigning sex, especially in those cases where sex assignment is unclear on expert assessment, will continue to show temporal, social and geographical variations. It is imperative that clinical data for rare conditions such as these are collected in a standardized format and shared through a common registry so that any evidence that is used for future shifts in practice has a stronger foundation than that which is currently available.
Collapse
Affiliation(s)
- Renata Markosyan
- Yerevan State Medical University, Muratsan University Hospital, Clinic of Endocrinology, Yerevan, Armenia
,
University of Glasgow School of Medicine, Developmental Endocrinology Research Group, Glasgow, United Kingdom
| | - S. Faisal Ahmed
- University of Glasgow School of Medicine, Developmental Endocrinology Research Group, Glasgow, United Kingdom
,* Address for Correspondence: University of Glasgow School of Medicine, Royal Hospital for Children, Developmental Endocrinology Research Group, Glasgow, United Kingdom Phone: +44 141 451 5841 E-mail:
| |
Collapse
|
25
|
Wang YP, Wang DJ, Niu ZB, Cui WT. Chromosome 13q deletion syndrome involving 13q31‑qter: A case report. Mol Med Rep 2017; 15:3658-3664. [PMID: 28393221 PMCID: PMC5436299 DOI: 10.3892/mmr.2017.6425] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 01/27/2017] [Indexed: 02/05/2023] Open
Abstract
Partial deletions on the long arm of chromosome 13 lead to a number of different phenotypes depending on the size and position of the deleted region. The present study investigated 2 patients with 13q terminal (13qter) deletion syndrome, which manifested as anal atresia with rectoperineal fistula, complex type congenital heart disease, esophageal hiatus hernia with gastroesophageal reflux, facial anomalies and developmental and mental retardation. Array comparative genomic hybridization identified 2 regions of deletion on chromosome 13q31‑qter; 20.38 Mb in 13q31.3‑qter and 12.99 Mb in 13q33.1‑qter in patients 1 and 2, respectively. Comparisons between the results observed in the present study and those obtained from patients in previous studies indicate that the gene encoding ephrin B2 (EFNB2) located in the 13q33.3‑q34 region, and the gene coding for endothelin receptor type B, in the 13q22.1‑31.3 region, may be suitable candidate genes for the observed urogenital/anorectal anomalies. In addition, the microRNA‑17‑92a‑1 cluster host gene and the glypican 6 gene in the 13q31.3 region, as well as EFNB2 and the collagen type IV a1 chain (COL4A1) and COL4A2 genes in the 13q33.1‑q34 region may together contribute to cardiovascular disease development. It is therefore possible that these genes may be involved in the pathogenesis of complex type congenital heart disease in patients with 13q deletion syndrome.
Collapse
Affiliation(s)
- Yue-Ping Wang
- Department of Clinical Genetics, Shengjing Hospital Affiliated to China Medical University, Heping, Shenyang, Liaoning 110004, P.R. China
| | - Da-Jia Wang
- Department of Pediatric Surgery, Shengjing Hospital Affiliated to China Medical University, Heping, Shenyang, Liaoning 110004, P.R. China
| | - Zhi-Bin Niu
- Department of Pediatric Surgery, Shengjing Hospital Affiliated to China Medical University, Heping, Shenyang, Liaoning 110004, P.R. China
| | - Wan-Ting Cui
- Department of Clinical Genetics, Shengjing Hospital Affiliated to China Medical University, Heping, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
26
|
Abstract
BACKGROUND Studies have shown that hypospadias is associated with placenta-mediated pregnancy complication (PMPC). The role of placental lesions is still unclear. We aimed to examine the association between hyposadias and placental pathology, and the effect of PMPC. METHODS Using data from the US Collaborative Perinatal Project in 1959-1966, we identified 15,780 male subjects (167 hypospadias) for analysis. Detailed placental examinations were conducted following a standard protocol. Subjects were divided into two groups according to whether they had PMPC, including small-for-gestational-age, pre-eclampsia/eclampsia or placental abruption. Logistic regression models were used to explore the association. RESULTS The prevalence of hypospadias was two times higher in subjects with PMPC than those without. Compared to pregnancies with PMPC but no hypospadias, those with both PMPC and hypospadias had significant higher prevalence of placental lesions, such as low placental weight, vascular lesions, villous lesions, and membranous insertion of cord (adjusted odds ratio (OR) ranging from 2.6 to 5.2) after adjusting for potential confounders. In subjects without PMPC, no significant difference of placental pathology was found between those with or without hypospadias. CONCLUSION About one third of hypospadias cases were complicated with PMPC and had a higher risk of placental lesions, suggesting heterogeneity of hypospadias etiology and mechanisms.
Collapse
|
27
|
Eggers S, Sadedin S, van den Bergen JA, Robevska G, Ohnesorg T, Hewitt J, Lambeth L, Bouty A, Knarston IM, Tan TY, Cameron F, Werther G, Hutson J, O'Connell M, Grover SR, Heloury Y, Zacharin M, Bergman P, Kimber C, Brown J, Webb N, Hunter MF, Srinivasan S, Titmuss A, Verge CF, Mowat D, Smith G, Smith J, Ewans L, Shalhoub C, Crock P, Cowell C, Leong GM, Ono M, Lafferty AR, Huynh T, Visser U, Choong CS, McKenzie F, Pachter N, Thompson EM, Couper J, Baxendale A, Gecz J, Wheeler BJ, Jefferies C, MacKenzie K, Hofman P, Carter P, King RI, Krausz C, van Ravenswaaij-Arts CMA, Looijenga L, Drop S, Riedl S, Cools M, Dawson A, Juniarto AZ, Khadilkar V, Khadilkar A, Bhatia V, Dũng VC, Atta I, Raza J, Thi Diem Chi N, Hao TK, Harley V, Koopman P, Warne G, Faradz S, Oshlack A, Ayers KL, Sinclair AH. Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort. Genome Biol 2016; 17:243. [PMID: 27899157 PMCID: PMC5126855 DOI: 10.1186/s13059-016-1105-y] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/10/2016] [Indexed: 01/20/2023] Open
Abstract
Background Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously. Results We analyzed DNA from the largest reported international cohort of patients with DSD (278 patients with 46,XY DSD and 48 with 46,XX DSD). Our targeted gene panel compares favorably with other sequencing platforms. We found a total of 28 diagnostic genes that are implicated in DSD, highlighting the genetic spectrum of this disorder. Sequencing revealed 93 previously unreported DSD gene variants. Overall, we identified a likely genetic diagnosis in 43% of patients with 46,XY DSD. In patients with 46,XY disorders of androgen synthesis and action the genetic diagnosis rate reached 60%. Surprisingly, little difference in diagnostic rate was observed between singletons and trios. In many cases our findings are informative as to the likely cause of the DSD, which will facilitate clinical management. Conclusions Our massively parallel sequencing targeted DSD gene panel represents an economical means of improving the genetic diagnostic capability for patients affected by DSD. Implementation of this panel in a large cohort of patients has expanded our understanding of the underlying genetic etiology of DSD. The inclusion of research candidate genes also provides an invaluable resource for future identification of novel genes. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1105-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefanie Eggers
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia.,Victorian Clinical Genetic Services, Melbourne, VIC, Australia
| | - Simon Sadedin
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | | | | | - Thomas Ohnesorg
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia
| | - Jacqueline Hewitt
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia.,University of Melbourne, School of Bioscience, Melbourne, VIC, Australia.,Department Of Paediatric Urology, Monash Children's Hospital, Clayton, VIC, Australia
| | - Luke Lambeth
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia
| | - Aurore Bouty
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia.,The Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Ingrid M Knarston
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Tiong Yang Tan
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.,The Royal Children's Hospital Melbourne, Melbourne, VIC, Australia.,Victorian Clinical Genetic Services, Melbourne, VIC, Australia
| | - Fergus Cameron
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia.,The Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - George Werther
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia.,The Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - John Hutson
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Michele O'Connell
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia.,The Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Sonia R Grover
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.,The Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Yves Heloury
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia.,The Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Margaret Zacharin
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia.,The Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Philip Bergman
- Department of Paediatric Endocrinology and Diabetes, Monash Children's Hospital, Clayton, VIC, Australia.,Monash Medical Centre, Clayton, VIC, Australia
| | - Chris Kimber
- Monash Children's Hospital, Clayton, VIC, Australia
| | - Justin Brown
- Department of Paediatric Endocrinology and Diabetes, Monash Children's Hospital, Clayton, VIC, Australia.,Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | - Nathalie Webb
- Department Of Paediatric Urology, Monash Children's Hospital, Clayton, VIC, Australia
| | - Matthew F Hunter
- Department of Paediatrics, Monash University, Clayton, VIC, Australia.,Monash Genetics, Monash Health, Clayton, VIC, Australia
| | - Shubha Srinivasan
- The Children's Hospital at Westmead, Institute of Endocrinology and Diabetes, Westmead, NSW, Australia
| | - Angela Titmuss
- The Children's Hospital at Westmead, Institute of Endocrinology and Diabetes, Westmead, NSW, Australia
| | - Charles F Verge
- Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW, Sydney, NSW, Australia
| | - David Mowat
- Department of Medical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Grahame Smith
- Urology and Clinical Programs, The Children's Hospital at Westmead, Westmead, NSW, Australia.,The University of Sydney, Westmead, NSW, Australia
| | - Janine Smith
- Department of Clinical Genetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Lisa Ewans
- Department of Medical Genomics, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Carolyn Shalhoub
- Department of Medical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Patricia Crock
- John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Chris Cowell
- The Children's Hospital at Westmead, Institute of Endocrinology and Diabetes, Westmead, NSW, Australia
| | - Gary M Leong
- Department of Paediatric Endocrinology and Diabetes, Lady Cilento Children's Hospital, Brisbane, QLD, Australia
| | - Makato Ono
- Department of Paediatrics, Tokyo Bay Medical Centre, Tokyo, Chiba, Japan
| | - Antony R Lafferty
- Centenary Hospital for Women and Children, Canberra, ACT, Australia.,ANU Medical School, Canberra, ACT, Australia
| | - Tony Huynh
- Department of Paediatric Endocrinology and Diabetes, Lady Cilento Children's Hospital, Brisbane, QLD, Australia
| | - Uma Visser
- Sydney Children's Hospital, Randwick, NSW, Australia
| | - Catherine S Choong
- Department of Endocrinology and Diabetes, Princess Margaret Hospital, Subiaco, WA, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Crawley, WA, Australia
| | - Fiona McKenzie
- School of Paediatrics and Child Health, The University of Western Australia, Crawley, WA, Australia.,Genetic Services of Western Australia, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Nicholas Pachter
- School of Paediatrics and Child Health, The University of Western Australia, Crawley, WA, Australia.,Genetic Services of Western Australia, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Elizabeth M Thompson
- SA Clinical Genetics Service, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Jennifer Couper
- Women's and Children's Hospital and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Anne Baxendale
- SA Clinical Genetics Service, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia
| | - Jozef Gecz
- School of Medicine and The Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Benjamin J Wheeler
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - Craig Jefferies
- Diabetes and Endocrinology, Auckland District Health Board, Auckland, New Zealand
| | | | - Paul Hofman
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Philippa Carter
- Starship Paediatric Diabetes and Endocrinology, Auckland, New Zealand
| | - Richard I King
- Canterbury Health Laboratories, Christchurch, Canterbury, New Zealand
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Leendert Looijenga
- Department of Pathology, Josephine Nefkens Institute, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Sten Drop
- Department of Paediatrics, Division of Endocrinology, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Stefan Riedl
- St Anna Children's Hospital, Vienna, Austria.,Paediatric Department, Medical University of Vienna, Vienna, Austria
| | - Martine Cools
- Department of Paediatric Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Angelika Dawson
- Genomic Laboratory, Diagnostic Services of Manitoba and Genetics & Metabolism Program, WRHA, Winnipeg, MB, Canada.,Department Biochemistry & Medical Genetics and Paediatrics & Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Achmad Zulfa Juniarto
- Division of Human Genetics, Centre for Biomedical Research Faculty of Medicine Diponegoro University (FMDU), Semarang, Indonesia
| | - Vaman Khadilkar
- Growth and Pediatric Endocrine Clinic, Hirabai Cowasji Jehangir Medical Research Institute, Pune, India.,Hirabai Cowasji Jehangir Medical Research Institute, Pune, India
| | - Anuradha Khadilkar
- Growth and Pediatric Endocrine Clinic, Hirabai Cowasji Jehangir Medical Research Institute, Pune, India.,Hirabai Cowasji Jehangir Medical Research Institute, Pune, India
| | | | - Vũ Chí Dũng
- Department of Endocrinology, Metabolism and Genetics National Children's Hospital, Hanoi, Vietnam
| | - Irum Atta
- National Institute of Child Health, Karachi, Pakistan
| | - Jamal Raza
- National Institute of Child Health, Karachi, Pakistan
| | | | - Tran Kiem Hao
- Paediatric Centre, Hue Central Hospital, Hue city, Vietnam
| | - Vincent Harley
- Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Garry Warne
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.,The Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Sultana Faradz
- Division of Human Genetics, Centre for Biomedical Research Faculty of Medicine Diponegoro University (FMDU), Semarang, Indonesia
| | - Alicia Oshlack
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia.,University of Melbourne, School of Bioscience, Melbourne, VIC, Australia
| | - Katie L Ayers
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew H Sinclair
- Murdoch Childrens Research Institute, Melbourne, VIC, Australia. .,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
28
|
Chew KY, Renfree MB. Inducing Sex Reversal in Marsupial Mammals. Sex Dev 2016; 10:301-312. [DOI: 10.1159/000450927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 12/24/2022] Open
|
29
|
Giltay JC, Klijn AJ, de Jong TPVM, Kats P, van Breugel M, Lens S, Vromans M, van der Veken LT, Hochstenbach R. Tetraploid/Diploid Mosaicism in Cultured Genital Skin Fibroblasts: Is It Causally Related to Penoscrotal Hypospadias? Mol Syndromol 2016; 7:153-9. [PMID: 27587991 DOI: 10.1159/000446203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 11/19/2022] Open
Abstract
Tetraploid/diploid mosaicism is a rare chromosomal abnormality that is infrequently reported in patients with severe developmental delay, growth retardation, and short life span. Here, we present a 6-year-old patient with severe penoscrotal hypospadias and a coloboma of the left eye but with normal growth, normal psychomotor development, and without dysmorphisms. We considered a local, mosaic sex chromosomal aneuploidy as a possible cause of his genital anomaly and performed karyotyping in cultured fibroblasts from the genital skin, obtained during surgical correction. Tetraploid/diploid (92,XXYY/46,XY) mosaicism was found in 43/57 and 6/26 metaphases in 2 separate cultures, respectively. Buccal smear cells, blood lymphocytes, and cells from urine sediment all showed diploidy. We investigated whether this chromosomal abnormality could be found in other patients with severe hypospadias and karyotyped genital fibroblasts of 6 additional patients but found only low frequencies (<11%) of tetraploid cells, not statistically different from those found in control males with no hypospadias. This is the first time tetraploid mosaicism is found in such a high percentage in a patient without psychomotor retardation, dysmorphisms or growth delay. Although the relationship between this observed mosaicism in cultured cells and the underlying pathogenetic mechanism in penoscrotal hypospadias remains to be determined, our data clearly illustrate the power of cytogenetic techniques in detecting mosaicism compared to next-generation sequencing techniques, in which DNA pooled from multiple cells is used.
Collapse
Affiliation(s)
- Jacques C Giltay
- Departments of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aart J Klijn
- Departments of Pediatric Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tom P V M de Jong
- Departments of Pediatric Urology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter Kats
- Departments of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marjolijn van Breugel
- Departments of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Susan Lens
- Departments of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martijn Vromans
- Departments of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lars T van der Veken
- Departments of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ron Hochstenbach
- Departments of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
Jin ZW, Jin Y, Li XW, Murakami G, Rodríguez-Vázquez JF, Wilting J. Perineal raphe with special reference to its extension to the anus: a histological study using human fetuses. Anat Cell Biol 2016; 49:116-24. [PMID: 27382513 PMCID: PMC4927426 DOI: 10.5115/acb.2016.49.2.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/28/2016] [Accepted: 04/25/2016] [Indexed: 12/18/2022] Open
Abstract
The raphe of the human penis and scrotum is considered to develop secondarily after disappearance of the initial midline seam by fusion of the bilateral genital folds. However, the fetal development was still obscure. We examined histological sections of 30 fetuses (17 males and 13 females) at 10–15 weeks. In male fetuses, the scrotum was not yet clearly identified because of no descent of testis. The perineal raphe was thin and wavy at 10 weeks, and it was continuous with and took a direction same as the inferior wall of the closed penile urethra after physiological hypospadias. Depending on growth of the bulbospongiosus muscle and corpus spongiosus penis, the midline intermuscular septum obtained a connection to the subcutaneous wavy raphe and made the latter thick and straight at 12–15 weeks. Notably, the perineal raphe extended posteriorly to attach to the external anal sphincter. In female fetuses, an epithelial fusion occurred along a short distance at the posterior end of the vestibule. However, in front of the external anal sphincter, a large midline mesenchymal tissue from the urorectal septum did not contain a raphe-like structure. Moreover, since the bilateral bulbospongiosus muscles were separated widely by the vestibule, they did not provide a midline septum. Fetal development of the perineal raphe was accelerated by reinforcement from the muscular septum. In contrast, without such a muscular support, the female raphe could not maintain its growth even if the seed appeared at the posterior end of the vestibule.
Collapse
Affiliation(s)
- Zhe Wu Jin
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Yu Jin
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Xiang Wu Li
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Gen Murakami
- Division of Internal Medicine, Iwamizawa Kojinkai Hospital, Iwamizawa, Japan
| | | | - Joerg Wilting
- Department of Anatomy, School of Medicine, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
31
|
Requirement for basement membrane laminin α5 during urethral and external genital development. Mech Dev 2016; 141:62-69. [PMID: 27208857 DOI: 10.1016/j.mod.2016.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/31/2022]
Abstract
Hypospadias, a congenital malformation of the penis characteristic of an abnormal urethral orifice, affects 1 in every 125 boys, and its incidence is rising. Herein we test the hypothesis that the basement membrane protein laminin α5 (LAMA5) plays a key role in the development of the mouse genital tubercle, the embryonic anlage of the external genitalia. Using standard histological analyses and electron microscopy, we characterized the morphology of the external genitalia in Lama5 knockout (LAMA5-KO) mouse embryos during both androgen-independent genital tubercle development and androgen-mediated sexual differentiation. We compared regulatory gene expression between control and LAMA5-KO by in situ hybridization. We also examined the epithelial structure of the mutant genital tubercle using immunofluorescence staining and histological analyses of semi-thin sections. We found that Lama5 was expressed in both ectodermal and endodermal epithelia of the cloaca. The LAMA5-KO displayed a profound external genital malformation in which the genital tubercle was underdeveloped with a large ectopic orifice at the proximal end. In older embryos, the urethra failed to form a tubular structure and was left completely exposed. These defects were not associated with a significant alteration in regulatory gene expression, but rather with a defective ectodermal epithelium and an abnormal disintegration of the cloacal membrane. We conclude that LAMA5 is required in the basement membrane to maintain normal architecture of the ventral ectoderm during genital tubercle development, which is essential for the formation of a tubular urethra. Perturbation of LAMA5, and possibly other basement membrane components, may cause hypospadias in humans.
Collapse
|
32
|
Computational modeling and simulation of genital tubercle development. Reprod Toxicol 2016; 64:151-61. [PMID: 27180093 DOI: 10.1016/j.reprotox.2016.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/13/2016] [Accepted: 05/07/2016] [Indexed: 11/22/2022]
Abstract
Hypospadias is a developmental defect of urethral tube closure that has a complex etiology involving genetic and environmental factors, including anti-androgenic and estrogenic disrupting chemicals; however, little is known about the morphoregulatory consequences of androgen/estrogen balance during genital tubercle (GT) development. Computer models that predictively model sexual dimorphism of the GT may provide a useful resource to translate chemical-target bipartite networks and their developmental consequences across the human-relevant chemical universe. Here, we describe a multicellular agent-based model of genital tubercle (GT) development that simulates urethrogenesis from the sexually-indifferent urethral plate stage to urethral tube closure. The prototype model, constructed in CompuCell3D, recapitulates key aspects of GT morphogenesis controlled by SHH, FGF10, and androgen pathways through modulation of stochastic cell behaviors, including differential adhesion, motility, proliferation, and apoptosis. Proper urethral tube closure in the model was shown to depend quantitatively on SHH- and FGF10-induced effects on mesenchymal proliferation and epithelial apoptosis-both ultimately linked to androgen signaling. In the absence of androgen, GT development was feminized and with partial androgen deficiency, the model resolved with incomplete urethral tube closure, thereby providing an in silico platform for probabilistic prediction of hypospadias risk across combinations of minor perturbations to the GT system at various stages of embryonic development.
Collapse
|
33
|
Overland M, Li Y, Cao M, Shen J, Yue X, Botta S, Sinclair A, Cunha G, Baskin L. Canalization of the Vestibular Plate in the Absence of Urethral Fusion Characterizes Development of the Human Clitoris: The Single Zipper Hypothesis. J Urol 2016; 195:1275-83. [PMID: 26926534 DOI: 10.1016/j.juro.2015.07.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE We characterized the early gestation development of the female external genitalia using optical projection tomography to visualize anatomical structures at high resolution. MATERIALS AND METHODS First and early second trimester human female fetal external genitalia were collected with consent after voluntary termination. Specimens labeled with anti-E-Cadherin antibody underwent analysis with optical projection tomography. Histological sections were immunostained for androgen receptor, 5α-reductase, Ki67 for proliferation and Caspase 3 for apoptosis. RESULTS Three-dimensional reconstructions demonstrated proximal to distal canalization of the epithelial vestibular plate and formation of a vestibular groove, which remained open. Ki67 was observed throughout with greatest density in the dorsal vestibular plate at the level of the opening groove. Staining for Caspase 3 was minimal in all sections. Androgen receptor staining was seen throughout the mesenchyme and in the apical epithelium of the dorsal vestibular groove. Throughout the epithelium and epidermis 5α-reductase staining was observed. CONCLUSIONS Early development of the external genitalia in the female is analogous to that in the male, demonstrating a similar opening zipper driving canalization of the vestibular plate with localized epithelial proliferation in the absence of significant apoptosis. Thus we hypothesize that the mechanism underlying the opening zipper must be androgen independent and the absence of androgen driven urethral fusion characterizes the normal development of the human clitoris.
Collapse
Affiliation(s)
- Maya Overland
- Division of Pediatric Urology, University of California-San Francisco Benioff Children's Hospital, San Francisco, California
| | - Yi Li
- Division of Pediatric Urology, University of California-San Francisco Benioff Children's Hospital, San Francisco, California
| | - Mei Cao
- Division of Pediatric Urology, University of California-San Francisco Benioff Children's Hospital, San Francisco, California
| | - Joel Shen
- Division of Pediatric Urology, University of California-San Francisco Benioff Children's Hospital, San Francisco, California
| | - Xuan Yue
- Division of Pediatric Urology, University of California-San Francisco Benioff Children's Hospital, San Francisco, California
| | - Sisir Botta
- Division of Pediatric Urology, University of California-San Francisco Benioff Children's Hospital, San Francisco, California
| | - Adriane Sinclair
- Division of Pediatric Urology, University of California-San Francisco Benioff Children's Hospital, San Francisco, California
| | - Gerald Cunha
- Division of Pediatric Urology, University of California-San Francisco Benioff Children's Hospital, San Francisco, California
| | - Laurence Baskin
- Division of Pediatric Urology, University of California-San Francisco Benioff Children's Hospital, San Francisco, California.
| |
Collapse
|
34
|
Sinclair AW, Cao M, Baskin L, Cunha GR. Diethylstilbestrol-induced mouse hypospadias: "window of susceptibility". Differentiation 2016; 91:1-18. [PMID: 26810244 DOI: 10.1016/j.diff.2016.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/07/2016] [Indexed: 11/26/2022]
Abstract
This review presents published and novel results that define the programming window for diethylstilbestrol (DES)-induced abnormal development of the mouse penis. These data indicate that DES has its greatest effect during the period of most intense penile morphogenesis, namely postnatal days 0-15 (P0-P15). Pregnant mice and their neonatal pups were injected subcutaneously with 200 ng/gbw DES every other day from embryonic day 12-18 (DES E12-E18), postnatal day 0-10 (DES P0-P10), embryonic day 12 to postnatal day 10 (DES E12-P10), postnatal day 5-15 (DES P5-P15), and postnatal day 10-20 (DES P10-P20). Aged-matched controls received sesame oil vehicle. After euthanasia at 10, 15, 20 and 60 days, penises were analyzed by gross morphology, histology and morphometry. Penises of all 5 groups of DES-treated mice were reduced in size, which was confirmed by morphometric analysis of internal penile structures. The most profound effects were seen in the DES E12-P10, DES P0-P10, and DES P5-P15 groups, thus defining a DES "programming window". For all parameters, DES treatment from P10 to P20 showed the most mild of effects. Adverse effects of DES on the MUMP cartilage and erectile bodies observed shortly after the last DES injection reverted to normality in the DES P5-P15, but not in the E12-P10 and P0-P10 groups, in which MUMP cartilage and erectile body malformations persisted into adulthood, again emphasizing a "window of susceptibility" in the early neonatal period.
Collapse
Affiliation(s)
- Adriane Watkins Sinclair
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, United States
| | - Mei Cao
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, United States
| | - Laurence Baskin
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, United States
| | - Gerald R Cunha
- Department of Urology, University of California San Francisco, 400 Parnassus Avenue, Box A610, San Francisco, CA 94143, United States.
| |
Collapse
|
35
|
Bouty A, Ayers KL, Pask A, Heloury Y, Sinclair AH. The Genetic and Environmental Factors Underlying Hypospadias. Sex Dev 2015; 9:239-259. [PMID: 26613581 DOI: 10.1159/000441988] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2015] [Indexed: 12/22/2022] Open
Abstract
Hypospadias results from a failure of urethral closure in the male phallus and affects 1 in 200-300 boys. It is thought to be due to a combination of genetic and environmental factors. The development of the penis progresses in 2 stages: an initial hormone-independent phase and a secondary hormone-dependent phase. Here, we review the molecular pathways that contribute to each of these stages, drawing on studies from both human and mouse models. Hypospadias can occur when normal development of the phallus is disrupted, and we provide evidence that mutations in genes underlying this developmental process are causative. Finally, we discuss the environmental factors that may contribute to hypospadias and their potential immediate and transgenerational epigenetic impacts.
Collapse
Affiliation(s)
- Aurore Bouty
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Surgery, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Katie L Ayers
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Andrew Pask
- Department of Zoology, University of Melbourne, Melbourne, Vic., Australia
| | - Yves Heloury
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Surgery, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
36
|
Georgas KM, Armstrong J, Keast JR, Larkins CE, McHugh KM, Southard-Smith EM, Cohn MJ, Batourina E, Dan H, Schneider K, Buehler DP, Wiese CB, Brennan J, Davies JA, Harding SD, Baldock RA, Little MH, Vezina CM, Mendelsohn C. An illustrated anatomical ontology of the developing mouse lower urogenital tract. Development 2015; 142:1893-908. [PMID: 25968320 DOI: 10.1242/dev.117903] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 04/01/2015] [Indexed: 01/10/2023]
Abstract
Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation.
Collapse
Affiliation(s)
- Kylie M Georgas
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jane Armstrong
- Center for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Janet R Keast
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine E Larkins
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Kirk M McHugh
- Centre for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Division of Anatomy, The Ohio State University, Columbus, OH 43205/10, USA
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Martin J Cohn
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA Howard Hughes Medical Institute, University of Florida, Gainesville, FL 32610, USA
| | | | - Hanbin Dan
- Columbia University, Department of Urology, New York, NY 10032, USA
| | - Kerry Schneider
- Columbia University, Department of Urology, New York, NY 10032, USA
| | - Dennis P Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Carrie B Wiese
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jane Brennan
- Center for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Jamie A Davies
- Center for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Simon D Harding
- MRC Human Genetics Unit, MRC IGMM, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Richard A Baldock
- MRC Human Genetics Unit, MRC IGMM, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chad M Vezina
- University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI 53706, USA
| | - Cathy Mendelsohn
- Columbia University, Department of Urology, New York, NY 10032, USA
| |
Collapse
|
37
|
Cunha GR, Sinclair A, Risbridger G, Hutson J, Baskin LS. Current understanding of hypospadias: relevance of animal models. Nat Rev Urol 2015; 12:271-80. [DOI: 10.1038/nrurol.2015.57] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Li Y, Sinclair A, Cao M, Shen J, Choudhry S, Botta S, Cunha G, Baskin L. Canalization of the urethral plate precedes fusion of the urethral folds during male penile urethral development: the double zipper hypothesis. J Urol 2015; 193:1353-59. [PMID: 25286011 PMCID: PMC4456085 DOI: 10.1016/j.juro.2014.09.108] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2014] [Indexed: 11/23/2022]
Abstract
PURPOSE We describe the "double zipper" mechanism of human male urethral formation, where the distal zipper opens the urethral groove through canalization of the urethral plate, and a second closing zipper follows behind and closes the urethral groove to form the tubular urethra. MATERIALS AND METHODS Anonymous human fetal genital specimens were acquired and gender was determined by polymerase chain reaction of the Y chromosome. Specimens were processed for optical projection tomography, stained with E-cadherin, Ki67 and caspase 3, and imaged. RESULTS Eight developing male fetal specimens from 6.5 to 16.5 weeks of gestation were analyzed by optical projection tomography, and an additional 5 specimens by serial sections. Phallus length ranged from 1.3 to 3.7 mm. The urethral plate canalized into a groove with 2 epithelial edges that subsequently fused. Ki67 staining was localized to the dorsal aspect of the urethral plate. In contrast, caspase 3 staining was not observed. The entire process was completed during a 10-week period. CONCLUSIONS The human male urethra appears to form by 2 mechanisms, an initial "opening zipper" that facilitates distal canalization of the solid urethral plate to form the urethral groove, which involves a high rate of epithelial proliferation (apoptosis not observed), and a "closing zipper" facilitating fusion of the 2 epithelial surfaces of the urethral groove, and thus extending the penile urethra distally. Improved knowledge of the molecular mechanisms of these processes is critical to understanding mechanisms of abnormal urethral development, such as hypospadias.
Collapse
Affiliation(s)
- Yi Li
- Division of Pediatric Urology, Benioff Children's Hospital, UCSF, San Francisco, California
| | - Adriane Sinclair
- Division of Pediatric Urology, Benioff Children's Hospital, UCSF, San Francisco, California
| | - Mei Cao
- Division of Pediatric Urology, Benioff Children's Hospital, UCSF, San Francisco, California
| | - Joel Shen
- Division of Pediatric Urology, Benioff Children's Hospital, UCSF, San Francisco, California
| | - Shweta Choudhry
- Division of Pediatric Urology, Benioff Children's Hospital, UCSF, San Francisco, California
| | - Sisir Botta
- Division of Pediatric Urology, Benioff Children's Hospital, UCSF, San Francisco, California
| | - Gerald Cunha
- Division of Pediatric Urology, Benioff Children's Hospital, UCSF, San Francisco, California
| | - Laurence Baskin
- Division of Pediatric Urology, Benioff Children's Hospital, UCSF, San Francisco, California.
| |
Collapse
|
39
|
Palmsten K, Chambers CD. Hypospadias: One Defect, Multiple Causes, Acting Through Shared Pathways. CURR EPIDEMIOL REP 2015. [DOI: 10.1007/s40471-014-0034-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Sexually dimorphic expression of Mafb regulates masculinization of the embryonic urethral formation. Proc Natl Acad Sci U S A 2014; 111:16407-12. [PMID: 25362053 DOI: 10.1073/pnas.1413273111] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Masculinization of external genitalia is an essential process in the formation of the male reproductive system. Prominent characteristics of this masculinization are the organ size and the sexual differentiation of the urethra. Although androgen is a pivotal inducer of the masculinization, the regulatory mechanism under the control of androgen is still unknown. Here, we address this longstanding question about how androgen induces masculinization of the embryonic external genitalia through the identification of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (Mafb) gene. Mafb is expressed prominently in the mesenchyme of male genital tubercle (GT), the anlage of external genitalia. MAFB expression is rarely detected in the mesenchyme of female GTs. However, exposure to exogenous androgen induces its mesenchymal expression in female GTs. Furthermore, MAFB expression is prominently down-regulated in male GTs of androgen receptor (Ar) KO mice, indicating that AR signaling is necessary for its expression. It is revealed that Mafb KO male GTs exhibit defective embryonic urethral formation, giving insight into the common human congenital anomaly hypospadias. However, the size of Mafb KO male GTs is similar with that of wild-type males. Moreover, androgen treatment fails to induce urethral masculinization of the GTs in Mafb KO mice. The current results provide evidence that Mafb is an androgen-inducible, sexually dimorphic regulator of embryonic urethral masculinization.
Collapse
|
41
|
Mahawong P, Sinclair A, Li Y, Schlomer B, Rodriguez E, Ferretti MM, Liu B, Baskin LS, Cunha GR. Comparative effects of neonatal diethylstilbestrol on external genitalia development in adult males of two mouse strains with differential estrogen sensitivity. Differentiation 2014; 88:70-83. [PMID: 25449353 PMCID: PMC4254630 DOI: 10.1016/j.diff.2014.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/27/2014] [Accepted: 09/19/2014] [Indexed: 11/28/2022]
Abstract
The effect of neonatal exposure to diethylstilbestrol (DES), a potent synthetic estrogen, was examined to evaluate whether the CD-1 (estrogen insensitive, outbred) and C57 (estrogen sensitive, inbred) mouse strains differ in their response to estrogen disruption of male ExG differentiation. CD-1 and C57BL/6 litters were injected with sesame oil or DES (200 ng/g/5 μl in sesame oil vehicle) every other day from birth to day 10. Animals were sacrificed at the following time points: birth, 5, 10 and 60 days postnatal. Neonatally DES-treated mice from both strains had many ExG abnormalities that included the following: (a) severe truncation of the prepuce and glans penis, (b) an abnormal urethral meatus, (c) ventral tethering of the penis, (d) reduced os penis length and glans width, (e) impaired differentiation of cartilage, (f) absence of urethral flaps, and (g) impaired differentiation of erectile bodies. Adverse effects of DES correlated with the expression of estrogen receptors within the affected tissues. While the effects of DES were similar in the more estrogen-sensitive C57BL/6 mice versus the less estrogen-sensitive CD-1 mice, the severity of DES effects was consistently greater in C57BL/6 mice. We suggest that many of the effects of DES, including the induction of hypospadias, are due to impaired growth and tissue fusion events during development.
Collapse
Affiliation(s)
- Phitsanu Mahawong
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA
| | - Adriane Sinclair
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA
| | - Yi Li
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA
| | - Bruce Schlomer
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA
| | - Esequiel Rodriguez
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA
| | - Max M Ferretti
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA
| | - Baomai Liu
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA
| | - Laurence S Baskin
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA
| | - Gerald R Cunha
- Division of Pediatric Urology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
42
|
Geller F, Feenstra B, Carstensen L, Pers TH, van Rooij IALM, Körberg IB, Choudhry S, Karjalainen JM, Schnack TH, Hollegaard MV, Feitz WFJ, Roeleveld N, Hougaard DM, Hirschhorn JN, Franke L, Baskin LS, Nordenskjöld A, van der Zanden LFM, Melbye M. Genome-wide association analyses identify variants in developmental genes associated with hypospadias. Nat Genet 2014; 46:957-63. [DOI: 10.1038/ng.3063] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/18/2014] [Indexed: 12/15/2022]
|
43
|
Hadidi AT, Roessler J, Coerdt W. Development of the human male urethra: a histochemical study on human embryos. J Pediatr Surg 2014; 49:1146-52. [PMID: 24952805 DOI: 10.1016/j.jpedsurg.2014.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 12/31/2013] [Accepted: 01/04/2014] [Indexed: 12/01/2022]
Abstract
PURPOSE Controversy persists regarding the formation of human penile urethra. The classic fusion theory for the development of the spongy urethra and ectodermal ingrowth or endodermal transformation theories for the development of the glanular urethra do not explain the wide spectrum of anomalies seen in patients with hypospadias. This histological study was made to clarify the mechanism of urethral development. MATERIALS & METHODS 15 human male embryos ranging from 6 to 14 weeks were studied. The phalluses were examined microscopically and photographed. Tissues were prepared as serial histological sections and stained with haematoxylin and eosin and with special immuno-histochemical stains. RESULTS 1) The penile urethra: At 6 weeks of gestation, the urethral plate which is solid distally and partially grooved proximally becomes grooved distally and has fused proximally by 8 weeks. At 14 weeks of gestation; the urethral opening migrates only to the middle of the shaft. 2) The glanular urethra: At the 6th week of gestation, a solid epithelial plate reached the tip of the genital tubercle, and a glans cannot be identified. At the 7th week, a central vacuolation appears and the penile urethral groove does not reach the tip of the phallus. At the 8th week; coronal sulcus starts to appear, and a well defined blind central canal was evident in the 13th week. During the 14th week, the floor of the glanular canal degenerated to form a glanular groove. CONCLUSIONS Our observations suggest that the spongy urethra passes through 3 stages of development: a solid epithelial plate, deep urethral groove, and fused urethra. The glanular urethra passes through 4 developmental stages: a solid epithelial plate, a blind central canal, a deep glanular groove, and the floor from the preputial lamella. There was no evidence of ectodermal ingrowth. These observations raise serious questions to the current theories for human urethra development. Further studies on fresh human embryos are needed.
Collapse
Affiliation(s)
- Ahmed T Hadidi
- Hypospadias Clinic, Pediatric Surgery Dept., Emma and Offenbach Hospitals, Germany.
| | - Jasmin Roessler
- Department of Pediatric Pathology, Institute of Pathology, University Medical Center, Mainz, Germany
| | - Wiltrud Coerdt
- Department of Pediatric Pathology, Institute of Pathology, University Medical Center, Mainz, Germany
| |
Collapse
|
44
|
|
45
|
Abstract
Hypospadias is a congenital hypoplasia of the penis, with displacement of the urethral opening along the ventral surface, and has been reported to be one of the most common congenital anomalies, occurring in approximately 1:250 to 1:300 live births. As hypospadias is reported to be an easily diagnosed malformation at the crossroads of genetics and environment, it is important to study the genetic component in order to elucidate its etiology. In this study, the gene expression profiles both in human hypospadias tissues and normal penile tissues were studied by Human Gene Expression Array. Twenty-four genes were found to be upregulated. Among these, ATF3 and CYR61 have been reported previously. Other genes that have not been previously reported were also found to be upregulated: BTG2, CD69, CD9, DUSP1, EGR1, EIF4A1, FOS, FOSB, HBEGF, HNRNPUL1, IER2, JUN, JUNB, KLF2, NR4A1, NR4A2, PTGS2, RGS1, RTN4, SLC25A25, SOCS3 and ZFP36 (p <0.05). Further studies including genome-wide association studies (GWAS) with expression studies in a large patient group will help us for identifiying the candidate gene(s) in the etiology of hypospadias.
Collapse
|
46
|
Biswas S, Ghosh D, Das S. Congenital urethrocutaneous fistula-our experience with nine cases. Indian J Surg 2014; 76:156-8. [PMID: 24891786 PMCID: PMC4039680 DOI: 10.1007/s12262-012-0763-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022] Open
Abstract
Congenital urethrocutaneous fistula is a very rare anomaly with about 40 odd cases reported in literature till 2008 .We present here 9 such cases all of whom were uncircumcised at presentation.7 out of 9 cases had a fistula in the distal shaft and the rest 2 cases had a fistula in the mid-shaft of the penis with an associated chordee.Associated congenital anomaly was present in only one case which had an associated imperforate anus . When the fistula was present distally , we did a primary repair of the fistula which was reinforced by a Bayer's Flap. When the fistula was present in the mid shaft we did a Primary repair of the fistula & reinforced it by a Tunica Vaginalis Flap.
Collapse
Affiliation(s)
- Siddhartha Biswas
- />Departmentof General Surgery, Nilratan Sircar (NRS) Medical College, Calcutta, India
| | - Dipak Ghosh
- />Departmentof Paediatric Surgery, Medical College, Calcutta, India
| | - Sukanta Das
- />Departmentof Paediatric Surgery, Medical College, Calcutta, India
| |
Collapse
|
47
|
Pechriggl EJ, Bitsche M, Blumer MJ, Fritsch H. The male urethra: Spatiotemporal distribution of molecular markers during early development. Ann Anat 2013; 195:260-71. [DOI: 10.1016/j.aanat.2013.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 02/03/2023]
|
48
|
Li M, Qiu L, Zhang Y, Hua Y, Tu S, He Y, Wen S, Wang Q, Wei G. Dose-related effect by maternal exposure to di-(2-ethylhexyl) phthalate plasticizer on inducing hypospadiac male rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:55-60. [PMID: 23228707 DOI: 10.1016/j.etap.2012.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 10/25/2012] [Accepted: 10/28/2012] [Indexed: 05/04/2023]
Abstract
The aim of this study was to evaluate dose-related effects on external genitalia of adult male offspring rats by maternal exposure to di-(2-ethylhexyl) phthalate (DEHP) plasticizer. Timed-pregnant rats were given DEHP by gastric intubation at doses of 0, 500, 750 or 1000mg/kg body weight/day from gestation day 12-19 to establish a hypospadiac rat model. The hypospadias was observed and the incidence in three DEHP dosage levels was 10.7%, 30.6% and 37.0%, respectively. With exposed dose increased, mild, moderate and severe hypospadiac rats were distinguished and an increased incidence of severe hypospadias was observed. The other reproductive lesions like reduced penile length and anogenital distance/body weight were observed. The results indicated the dose-related external genitalia teratogenic toxicity, and graded hypospadias on male offspring was resulted from high dosage DEHP maternal exposure.
Collapse
Affiliation(s)
- Mingyong Li
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Adamovic T, Thai H, Liedén A, Nordenskjöld A. Association of a Tagging Single Nucleotide Polymorphism in theAndrogen ReceptorGene Region with Susceptibility to Severe Hypospadias in a Caucasian Population. Sex Dev 2013; 7:173-9. [DOI: 10.1159/000348882] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2012] [Indexed: 11/19/2022] Open
|
50
|
Li M, Qiu L, Lin T, He D, Hua Y, Yuan X, Liu X, Wei G. c-Jun N-Terminal Kinase is Upregulated in Patients With Hypospadias. Urology 2013; 81:178-83. [DOI: 10.1016/j.urology.2012.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/29/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
|