1
|
Wright C, Helms AM, Bernal JS, Grunseich JM, Medina RF. Aphelinus nigritus Howard (Hymenoptera: Aphelinidae) Preference for Sorghum Aphid, Melanaphis sorghi (Theobald, 1904) (Hemiptera: Aphididae), Honeydew Is Stronger in Johnson Grass, Sorghum halepense, Than in Grain Sorghum, Sorghum bicolor. INSECTS 2022; 14:10. [PMID: 36661939 PMCID: PMC9862272 DOI: 10.3390/insects14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/03/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
How aphid parasitoids of recent invasive species interact with their hosts can affect the feasibility of biological control. In this study, we focus on a recent invasive pest of US grain sorghum, Sorghum bicolor, the sorghum aphid (SA), Melanaphis sorghi. Understanding this pest's ecology in the grain sorghum agroecosystem is critical to develop effective control strategies. As parasitoids often use aphid honeydew as a sugar resource, and honeydew is known to mediate parasitoid-aphid interactions, we investigated the ability of SA honeydew to retain the parasitoid Aphelinus nigritus. Since SAs in the US have multiple plant hosts, and host-plant diet can modulate parasitoid retention (a major component in host foraging), we measured SA honeydew sugar, organic acid, and amino acid profiles, then assessed via retention time A. nigritus preference for honeydew produced on grain sorghum or Johnson grass, Sorghum halepense. Compared to a water control, A. nigritus spent more time on SA honeydew produced on either host plant. Despite similar honeydew profiles from both plant species, A. nigritus preferred honeydew produced on Johnson grass. Our results suggest the potential for SA honeydew to facilitate augmentation strategies aimed at maintaining A. nigritus on Johnson grass to suppress SAs before grain sorghum is planted.
Collapse
|
2
|
Improving Natural Enemy Selection in Biological Control through Greater Attention to Chemical Ecology and Host-Associated Differentiation of Target Arthropod Pests. INSECTS 2022; 13:insects13020160. [PMID: 35206733 PMCID: PMC8877252 DOI: 10.3390/insects13020160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/04/2022]
Abstract
Host-associated differentiation (HAD) refers to cases in which genetically distinct populations of a species (e.g., herbivores or natural enemies) preferentially reproduce or feed on different host species. In agroecosystems, HAD often results in unique strains or biotypes of pest species, each attacking different species of crops. However, HAD is not restricted to pest populations, and may cascade to the third trophic level, affecting host selection by natural enemies, and ultimately leading to HAD within natural enemy species. Natural enemy HAD may affect the outcomes of biological control efforts, whether classical, conservation, or augmentative. Here, we explore the potential effects of pest and natural enemy HAD on biological control in agroecosystems, with emphases on current knowledge gaps and implications of HAD for selection of biological control agents. Additionally, given the importance of semiochemicals in mediating interactions between trophic levels, we emphasize the role of chemical ecology in interactions between pests and natural enemies, and suggest areas of consideration for biological control. Overall, we aim to jump-start a conversation concerning the relevance of HAD in biological control by reviewing currently available information on natural enemy HAD, identifying challenges to incorporating HAD considerations into biological control efforts, and proposing future research directions on natural enemy selection and HAD.
Collapse
|
3
|
Jermy T, Szentesi Á. Why are there not more herbivorous insect species? ACTA ZOOL ACAD SCI H 2021. [DOI: 10.17109/azh.67.2.119.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insect species richness is estimated to exceed three million species, of which roughly half is herbivorous. Despite the vast number of species and varied life histories, the proportion of herbivorous species among plant-consuming organisms is lower than it could be due to constraints that impose limits to their diversification. These include ecological factors, such as vague interspecific competition; anatomical and physiological limits, such as neural limits and inability of handling a wide range of plant allelochemicals; phylogenetic constraints, like niche conservatism; and most importantly, a low level of concerted genetic variation necessary to a phyletic conversion. It is suggested that diversification ultimately depends on what we call the intrinsic trend of diversification of the insect genome. In support of the above, we survey the major types of host-specificity, the mechanisms and constraints of host specialization, possible pathways of speciation, and hypotheses concerning insect diversification.
Collapse
|
4
|
Sochard C, Leclair M, Simon JC, Outreman Y. Host plant effects on the outcomes of defensive symbioses in the pea aphid complex. Evol Ecol 2019. [DOI: 10.1007/s10682-019-10005-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Vidal MC, Murphy SM. Quantitative measure of fitness in tri-trophic interactions and its influence on diet breadth of insect herbivores. Ecology 2018; 99:2681-2691. [PMID: 30289561 DOI: 10.1002/ecy.2527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/03/2018] [Accepted: 09/18/2018] [Indexed: 11/12/2022]
Abstract
Herbivore-plant interactions should be studied using a tri-trophic approach, but we lack a quantitative measure of the combined effect of top-down and bottom-up forces on herbivore fitness. We propose the combination of the bi-trophic fitness slopes as a tri-trophic fitness measure. We use the relationship between fitness associated with top-down and bottom-up forces and the frequency of host plant use to calculate the top-down and bottom-up fitness slopes, which we then combine to obtain three possible directions of tri-trophic slopes. A positive tri-trophic slope indicates that herbivores have overall greater tri-trophic fitness on the more frequently used hosts. A null tri-trophic fitness slope indicates that herbivores have similar fitness on all host plants. A negative tri-trophic slope indicates that herbivores have generally lower fitness on the more frequently used hosts. We tested the explanation power of our method using data from the literature that tested herbivore host shifts and experimentally using a generalist herbivore with variable diet breadth across populations. We found that in host shifts, herbivores have higher tri-trophic fitness on the novel host, while in generalist populations, herbivores use most frequently the best host available. We present applications in other research areas and consider the limitations of our approach. Our approach is a first step towards a comprehensive model of multiple selective forces acting on the evolution of interactions.
Collapse
Affiliation(s)
- Mayra C Vidal
- Department of Biological Sciences, University of Denver, Boettcher West 302, 2050 E. Iliff Avenue Denver, Colorado, 80208, USA
| | - Shannon M Murphy
- Department of Biological Sciences, University of Denver, Boettcher West 302, 2050 E. Iliff Avenue Denver, Colorado, 80208, USA
| |
Collapse
|
6
|
Stireman JO, Singer MS. Tritrophic niches of insect herbivores in an era of rapid environmental change. CURRENT OPINION IN INSECT SCIENCE 2018; 29:117-125. [PMID: 30551817 DOI: 10.1016/j.cois.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 06/09/2023]
Abstract
A multi-trophic perspective improves understanding of the ecological and evolutionary consequences of rapid environmental change on insect herbivores. Loss of specialized enemies due to human impacts is predicted to dramatically reduce the number of tritrophic niches of herbivores compared to a bitrophic niche perspective. Habitat fragmentation and climate change promote the loss of both specialist enemies and herbivores, favoring ecological generalism across trophic levels. Species invasion can fundamentally alter trophic interactions toward various outcomes and contributes to ecological homogenization. Adaptive evolution on ecological timescales is expected to dampen tritrophic instabilities and diversify niches, yet its ability to compensate for tritrophic niche losses in the short term is unclear.
Collapse
Affiliation(s)
- John O Stireman
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA.
| | - Michael S Singer
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
7
|
Bunnefeld L, Hearn J, Stone GN, Lohse K. Whole-genome data reveal the complex history of a diverse ecological community. Proc Natl Acad Sci U S A 2018; 115:E6507-E6515. [PMID: 29946026 PMCID: PMC6048486 DOI: 10.1073/pnas.1800334115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
How widespread ecological communities assemble remains a key question in ecology. Trophic interactions between widespread species may reflect a shared population history or ecological fitting of local pools of species with very different population histories. Which scenario applies is central to the stability of trophic associations and the potential for coevolution between species. Here we show how alternative community assembly hypotheses can be discriminated using whole-genome data for component species and provide a likelihood framework that overcomes current limitations in formal comparison of multispecies histories. We illustrate our approach by inferring the assembly history of a Western Palearctic community of insect herbivores and parasitoid natural enemies, trophic groups that together comprise 50% of terrestrial species. We reject models of codispersal from a shared origin and of delayed enemy pursuit of their herbivore hosts, arguing against herbivore attainment of "enemy-free space." The community-wide distribution of species expansion times is also incompatible with a random, neutral model of assembly. Instead, we reveal a complex assembly history of single- and multispecies range expansions through the Pleistocene from different directions and over a range of timescales. Our results suggest substantial turnover in species associations and argue against tight coevolution in this system. The approach we illustrate is widely applicable to natural communities of nonmodel species and makes it possible to reveal the historical backdrop against which natural selection acts.
Collapse
Affiliation(s)
- Lynsey Bunnefeld
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, Scotland;
- Biological & Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland
| | - Jack Hearn
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, Scotland
| | - Graham N Stone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, Scotland
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, Scotland
| |
Collapse
|
8
|
Vosteen I, Gershenzon J, Kunert G. Hoverfly preference for high honeydew amounts creates enemy-free space for aphids colonizing novel host plants. J Anim Ecol 2016; 85:1286-97. [PMID: 27328648 DOI: 10.1111/1365-2656.12564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/29/2016] [Indexed: 11/28/2022]
Abstract
The existence of an enemy-free space can play an important role in aphid host race formation processes, but little is known about the mechanisms that create an area of low predation pressure on particular host plants. In this paper, we identify a mechanism generating lower predation pressure that promotes the maintenance of the different host races of the pea aphid (Acyrthosiphon pisum) complex, a well-studied model for ecological speciation. The pea aphid consists of at least 15 genetically distinct host races which are native to specific host plants of the legume family, but can all develop on the universal host plant Vicia faba. Previous work showed that hoverfly (Episyrphus balteatus) oviposition preferences contribute to the enemy-free space that helps to maintain the different pea aphid host races, and that higher amounts of honeydew are more attractive to ovipositing hoverflies. Here we demonstrated that aphid honeydew is produced in large amounts when aphid reproduction rate was highest, and is an important oviposition cue for hoverflies under field conditions. However, on less suitable host plants, where honeydew production is reduced, pea aphids enjoy lower predation rates. A reduction in enemy pressure can mitigate the performance disadvantages of aphids colonizing a novel host and probably plays an important role in pea aphid host race formation.
Collapse
Affiliation(s)
- Ilka Vosteen
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Grit Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| |
Collapse
|