1
|
Goodrich KR, Gibernau M. Floral scent of eastern skunk cabbage (Symplocarpus foetidus: Araceae). PHYTOCHEMISTRY 2024; 223:114111. [PMID: 38688443 DOI: 10.1016/j.phytochem.2024.114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
Symplocarpus foetidus (L.) Salisb. (eastern skunk cabbage) occurs across a broad geographic range of northeastern North America, blooming in winter between December and March. The inflorescences are well-known for their thermogenic and thermoregulatory metabolic capabilities. The perceptual qualities of their fetid floral aroma have been described widely in the literature, but to date the floral volatile composition remained largely unknown. Here we present a detailed study of the floral scent produced by S. foetidus collected from intact female- and male-stage inflorescences and from dissected floral parts. Our results show a large range of biosynthetically diverse volatiles including nitrogen- and sulfur-containing compounds, monoterpenes, benzenoids, and aliphatic esters and alcohols. We document high inter-individual variation with some organ-specific volatile trends but no clear strong variation based on sexual stage. Multivariate data analysis revealed two distinct chemotypes from our study populations that are not defined by sexual stage or population origin. The chemotype differences may explain the bimodal perceptual descriptions in earlier work which vary between highly unpleasant/fetid and pleasant/apple-like. We discuss the results in ecological contexts including potential for floral mimicry, taking into account existing pollination studies for the species. We also discuss the results in evolutionary contexts, comparing our scent data to published scent data from the close sister species Symplocarpus renifolius. Future work should more closely examine the chemotype occurrence and frequency within these and other populations, and the impact these chemotypes may have on pollinator attraction and reproductive success.
Collapse
Affiliation(s)
- Katherine R Goodrich
- Widener University, Department of Biological Sciences, 1 University Place, Chester, PA, 19013, USA.
| | - Marc Gibernau
- CNRS - University of Corsica - Laboratory Sciences for the Environment (UMR 6134 SPE), Natural Resources Project - Vignola - Route des Sanguinaires, 20000, Ajaccio, France
| |
Collapse
|
2
|
Szenteczki MA, Godschalx AL, Gauthier J, Gibernau M, Rasmann S, Alvarez N. Transcriptomic analysis of deceptively pollinated Arum maculatum (Araceae) reveals association between terpene synthase expression in floral trap chamber and species-specific pollinator attraction. G3 (BETHESDA, MD.) 2022; 12:jkac175. [PMID: 35861391 PMCID: PMC9434142 DOI: 10.1093/g3journal/jkac175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Deceptive pollination often involves volatile organic compound emissions that mislead insects into performing nonrewarding pollination. Among deceptively pollinated plants, Arum maculatum is particularly well-known for its potent dung-like volatile organic compound emissions and specialized floral chamber, which traps pollinators-mainly Psychoda phalaenoides and Psychoda grisescens-overnight. However, little is known about the genes underlying the production of many Arum maculatum volatile organic compounds, and their influence on variation in pollinator attraction rates. Therefore, we performed de novo transcriptome sequencing of Arum maculatum appendix and male floret tissue collected during anthesis and postanthesis, from 10 natural populations across Europe. These RNA-seq data were paired with gas chromatography-mass spectrometry analyses of floral scent composition and pollinator data collected from the same inflorescences. Differential expression analyses revealed candidate transcripts in appendix tissue linked to malodourous volatile organic compounds including indole, p-cresol, and 2-heptanone. In addition, we found that terpene synthase expression in male floret tissue during anthesis significantly covaried with sex- and species-specific attraction of Psychoda phalaenoides and Psychoda grisescens. Taken together, our results provide the first insights into molecular mechanisms underlying pollinator attraction patterns in Arum maculatum and highlight floral chamber sesquiterpene (e.g. bicyclogermacrene) synthases as interesting candidate genes for further study.
Collapse
Affiliation(s)
- Mark A Szenteczki
- Corresponding author: Université de Neuchâtel, Institut de Biologie, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland. E-mail
| | | | | | | | | | | |
Collapse
|
3
|
Skogen KA, Jogesh T, Hilpman ET, Todd SL, Raguso RA. Extensive population-level sampling reveals clinal variation in (R)-(-)-linalool produced by the flowers of an endemic evening primrose, Oenothera harringtonii. PHYTOCHEMISTRY 2022; 200:113185. [PMID: 35436476 DOI: 10.1016/j.phytochem.2022.113185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The study of floral trait diversity has a long history due to its role in angiosperm diversification. While many studies have focused on visual traits including morphology and color, few have included floral scent despite its importance in pollination. Of the studies that have included floral scent, sampling has been limited and rarely explores variation at the population level. We studied geographic variation in the flowers of Oenothera harringtonii, a rare plant endemic to a vulnerable shortgrass prairie habitat, whose population structure and conservation status are well studied. The self-incompatible flowers of O. harringtonii open at dusk, produce nectar and a strong fragrance, and are pollinated by hawkmoths. We collected floral trait (morphology, scent chemistry and emission rates) data from 650 individuals from 19 wild populations to survey floral variation across the entire range of this species. Similarly, we collected floral data from 49 individuals grown in a greenhouse common garden, to assess whether variation observed in the field is consistent when environment factors (temperature, watering regime, soil) are standardized. We identified 35 floral volatiles representing 5 biosynthetic classes. Population differentiation was stronger for floral scent chemistry than floral morphology. (R)-(-)-linalool was the most important floral trait differentiating populations, exhibiting clinal variation across the distribution of O. harringtonii without any correlated shifts in floral morphology. Populations in the north and west produced (R)-(-)-linalool consistently, those in the east and south largely lacked it, and populations at the center of the distribution were polymorphic. Floral scent emissions in wild populations varied across four years but chemical composition was largely consistent over time. Similarly, volatile emission rates and chemical composition in greenhouse-grown plants were consistent with those of wild populations of origin. Our data set, which represents the most extensive population-level survey of floral scent to date, indicates that such sampling may be needed to capture potentially adaptive geographic variation in wild populations.
Collapse
Affiliation(s)
- Krissa A Skogen
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, 60035, USA.
| | - Tania Jogesh
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, 60035, USA
| | - Evan T Hilpman
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, 60035, USA; School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Sadie L Todd
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, 60035, USA; Iowa Department of Agriculture and Land Stewardship, Ankeny, IA, 50023, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
Claudel C, Lev-Yadun S. Odor polymorphism in deceptive Amorphophallus species - a review. PLANT SIGNALING & BEHAVIOR 2021; 16:1991712. [PMID: 34839800 PMCID: PMC9208769 DOI: 10.1080/15592324.2021.1991712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Some plant lineages, such as Araceae and Orchidaceae, have independently evolved deceptive flowers. These exploit the insect's perception and deceive the insects into believing to have located a suitable opportunity for reproduction. The scent compounds emitted by the flowers are the key signals that dupe the insects, guiding them to the right spots that in turn ensure flower pollination. Most species of the genus Amorphophallus of the Araceae emit scent compounds that are characteristic of a deceit, suggesting a specific plant pollinator interaction and according odors. However, only a few clear evolutionary trends in regard to inflorescence odors in Amorphophallus could be traced in previous studies - an intriguing result, considered the multitude of characteristic scent compounds expressed in Amorphophallus as well as the key function of scent compounds in deceptive floral systems in general. At least two factors could account for this result. (1) The deceptive pollinator-attraction floral system, including the emitted scent compounds, is less specific than assumed. (2) An evolutionary trend cannot be discerned if the intraspecific scent variation (odor polymorphism) exceeds the interspecific odor variation. Therefore, we discuss the potential deceptive function of the emitted scent compounds, in particular those that are related to cadaveric decomposition. Moreover, we review the data about emitted scent compounds in Amorphophallus with a focus on putative odor polymorphism. Upon examination, it appears that the emitted scent compounds in Amorphophallus are highly mimetic of decomposing organic materials. We show that several species display odor polymorphism, which in turn might constitute an obstacle in the analysis of evolutionary trends. An important odor polymorphism is also indicated by subjective odor perceptions. Odor polymorphism may serve several purposes: it might represent an adaptation to local pollinators or it might assumingly prevent insects from learning to distinguish between a real decomposing substrate and an oviposition-site mimic.
Collapse
Affiliation(s)
- Cyrille Claudel
- Institute for Plant Science and Microbiology, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Simcha Lev-Yadun
- Department of Biology & Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon, Israel
| |
Collapse
|
5
|
Suetsugu K, Sato R, Kakishima S, Okuyama Y, Sueyoshi M. The sterile appendix of two sympatric Arisaema species lures each specific pollinator into deadly trap flowers. Ecology 2021; 102:e03242. [PMID: 33190280 DOI: 10.1002/ecy.3242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 09/14/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Rikuo Sato
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Satoshi Kakishima
- Center for Molecular Biodiversity Research, National Museum of Nature and Science, Amakubo 4-1-1, Tsukuba, Ibaraki, 305-0005, Japan
| | - Yudai Okuyama
- Tsukuba Botanical Garden, National Museum of Nature and Science, Amakubo 4-1-1, Tsukuba, Ibaraki, 305-0005, Japan
| | - Masahiro Sueyoshi
- Center for Biodiversity, Forestry and Forest Products Research Institute, Forest Research and Management Organization, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| |
Collapse
|
6
|
Marotz-Clausen G, Jürschik S, Fuchs R, Schäffler I, Sulzer P, Gibernau M, Dötterl S. Incomplete synchrony of inflorescence scent and temperature patterns in Arum maculatum L. (Araceae). PHYTOCHEMISTRY 2018; 154:77-84. [PMID: 30006091 DOI: 10.1016/j.phytochem.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/21/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
In many Araceae both scent and heat production are known to temporally vary throughout anthesis, and in several species strong scents are released for pollinator attraction when thermogenesis is also strong. However, it is not known whether the temporal patterns of both scent emission and temperature are strictly synchronous and, for example, reach their maxima at the same time. We studied Arum maculatum, a brood-site deceptive species attracting its moth fly pollinators with strong fetid scents, to study temporal patterns in scent emission and temperature during anthesis. Inflorescence scents were collected and analysed by dynamic headspace and gas chromatography-mass spectrometry (GC-MS) or by proton-transfer-reaction-time-of-flight mass spectrometry (PTR-TOFMS), and the temperature of the appendix, which is the heating osmophore during pollinator attraction, was recorded by a thermocouple. We overall found that scent emission and temperature patterns were strongly correlated. However, in none of the seven studied individuals was the highest amount of scent released at times with the maximum temperature difference. Thus, patterns of scent emission and temperature are somewhat asynchronous suggesting that high scent emission rates and temporal scent patterns in plants with thermogenesis cannot be solely explained by temperature patterns. This calls for more in-depth studies to better understand the interplay between scent emission and thermogenesis.
Collapse
Affiliation(s)
- Gertrud Marotz-Clausen
- Department of Biosciences, Plant Ecology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Simone Jürschik
- IONICON Analytik Gesellschaft m.b.H., Eduard-Bodem-Gasse 3, 6020 Innsbruck, Austria
| | - Roman Fuchs
- Department of Biosciences, Plant Ecology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Irmgard Schäffler
- Department of Biosciences, Plant Ecology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Philipp Sulzer
- IONICON Analytik Gesellschaft m.b.H., Eduard-Bodem-Gasse 3, 6020 Innsbruck, Austria
| | - Marc Gibernau
- CNRS - University of Corsica, Laboratory Sciences for the Environment (SPE - UMR 6134), Natural Resources Project, Vignola - Route des Sanguinaires, 20000 Ajaccio, France
| | - Stefan Dötterl
- Department of Biosciences, Plant Ecology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria.
| |
Collapse
|
7
|
Hoe YC, Gibernau M, Wong SY. Diversity of pollination ecology in the Schismatoglottis Calyptrata Complex Clade (Araceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:563-578. [PMID: 29316090 DOI: 10.1111/plb.12687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Field studies integrating pollination investigations with an assessment of floral scent composition and thermogenesis in tropical aroids are rather few. Thus, this study aimed to investigate the pollination biology of nine species belonging to Schismatoglottis Calyptrata Complex Clade. The flowering mechanism, visiting insect activities, reproductive system, thermogenesis and floral scent composition were examined. Anthesis for all species started at dawn and lasted 25-29 h. Colocasiomyia (Diptera, Drosophilidae) are considered the main pollinators for all the investigated species. Cycreon (Coleoptera, Hydrophilidae) are considered secondary pollinators as they are only present in seven of the nine host plants, despite the fact that they are the most effective pollen carrier, carrying up to 15 times more pollen grains than Colocasiomyia flies. However, the number of Colocasiomyia individuals was six times higher than Cycreon beetles. Chaloenus (Chrysomelidae, Galeuricinae) appeared to be an inadvertent pollinator. Atheta (Coleoptera, Staphylinidae) is considered a floral visitor in most investigated species of the Calyptrata Complex Clade in Sarawak, but a possible pollinator in S. muluensis. Chironomidae midges and pteromalid wasps are considered visitors in S. calyptrata. Thermogenesis in a biphasic pattern was observed in inflorescences of S. adducta, S. calyptrata, S. giamensis, S. pseudoniahensis and S. roh. The first peak occurred during pistillate anthesis; the second peak during staminate anthesis. Inflorescences of all investigated species of Calyptrata Complex Clade emitted four types of ester compound, with methyl ester-3-methyl-3-butenoic acid as a single major VOC (volatile organic compound). The appendix, pistillate zone, staminate zone and spathe emitted all these compounds. A mixed fly-beetle pollination system is considered an ancestral trait in the Calyptrata Complex Clade, persisting in Sarawak taxa, whereas the marked reduction of interpistillar staminodes in taxa from Peninsular Malaysia and especially, Ambon, Indonesia, is probably linked to a shift in these taxa to a fly-pollinated system.
Collapse
Affiliation(s)
- Y C Hoe
- Tunku Abdul Rahman University College, Johor Branch Campus, Johor, Malaysia
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Sarawak, Malaysia
| | - M Gibernau
- Natural Resources Project, Vignola Route des Sanguinaires Ajaccio, CNRS - University of Corsica, Ajaccio, France
| | - S Y Wong
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Sarawak, Malaysia
- Harvard University Herbaria, Cambridge, MA, USA
| |
Collapse
|