1
|
Srygley RB. Effects of parental diet on Mormon cricket egg diapause, embryonic development rate, and periodic outbreaks. JOURNAL OF INSECT PHYSIOLOGY 2024; 157:104681. [PMID: 39079656 DOI: 10.1016/j.jinsphys.2024.104681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Transgenerational phenotypic modification can alter organismal fitness, population demographics, and community interactions. For ectotherms, both dietary composition and temperature have important effects on organismal fitness, but they are rarely investigated together. Mormon crickets Anabrus simplex are capable of diapausing as eggs in the soil for multiple years with duration largely dependent on cumulative heat units or degree days. Because Mormon crickets can be abundant in the landscape in one year and disappear suddenly the next, I asked: does parental nutrition affect the duration of egg diapause? Beginning in the ultimate nymphal instar, Mormon crickets were fed a diet high in protein, one equal in protein to carbohydrate, or a diet high in carbohydrates and the time for eggs to develop after they were laid was measured. If parental nutrition affects temperature-sensitive egg diapause, then that change in sensitivity to temperature might also alter the relationship between embryonic development rate and temperature. I asked: does parental nutrition affect embryonic development rate as a function of temperature? To this end, I manipulated densities of Mormon cricket nymphs and protein-rich prey (grasshoppers) in field cages, collected eggs from the adult Mormon crickets, and measured the optimal temperature, maximum development rate, and thermal breadth for embryonic development of the offspring. I found that Mormon crickets fed a high protein diet laid eggs with shorter diapause. Consistent with this long-term result, those housed with the most grasshoppers to eat laid eggs that had the fastest maximum development rate, whereas those without grasshoppers laid eggs with slower maximum developmental rates but the broadest thermal breadth. Eggs from Mormon crickets housed with intermediate levels of grasshopper densities had a decline in peak development rate with an increase in density. In addition, Mormon crickets housed with more conspecifics laid eggs with faster development rates, whereas thermal breadth and the temperature optima were not affected by cricket density. As predicted, Mormon cricket diets significantly affected egg diapause and development rates. Contrary to expectations based on observed changes in diet preferences during a Mormon cricket outbreak, Mormon crickets fed high protein diets laid eggs with significantly shorter egg diapause and significantly faster egg development rates. Interestingly, doubling of Mormon cricket density caused eggs to develop in nearly half the time. This latter result indicates that Mormon cricket aggregations promote rapid development of progeny. Moreover, the tight, linear structure of migratory bands in which females intermittently stop to lay eggs assures that the progeny hatch and develop in dense cohorts. In this manner, the banding behavior might carry-over into subsequent generations as long as cohorts are dense and protein is available. With band thinning or protein restriction, females spread their bet-hedging and progeny remain longer as eggs in the soil.
Collapse
Affiliation(s)
- Robert B Srygley
- Pest Management Research Unit, Northern Plains Agricultural Research Laboratory, USDA-Agricultural Research Service, 1500 N. Central Ave., Sidney, MT 59270, USA.
| |
Collapse
|
2
|
Hardison EA, Eliason EJ. Diet effects on ectotherm thermal performance. Biol Rev Camb Philos Soc 2024; 99:1537-1555. [PMID: 38616524 DOI: 10.1111/brv.13081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
The environment is changing rapidly, and considerable research is aimed at understanding the capacity of organisms to respond. Changes in environmental temperature are particularly concerning as most animals are ectothermic, with temperature considered a key factor governing their ecology, biogeography, behaviour and physiology. The ability of ectotherms to persist in an increasingly warm, variable, and unpredictable future will depend on their nutritional status. Nutritional resources (e.g. food availability, quality, options) vary across space and time and in response to environmental change, but animals also have the capacity to alter how much they eat and what they eat, which may help them improve their performance under climate change. In this review, we discuss the state of knowledge in the intersection between animal nutrition and temperature. We take a mechanistic approach to describe nutrients (i.e. broad macronutrients, specific lipids, and micronutrients) that may impact thermal performance and discuss what is currently known about their role in ectotherm thermal plasticity, thermoregulatory behaviour, diet preference, and thermal tolerance. We finish by describing how this topic can inform ectotherm biogeography, behaviour, and aquaculture research.
Collapse
Affiliation(s)
- Emily A Hardison
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, 93106, USA
| |
Collapse
|
3
|
Choy YMM, Walter GM, Mirth CK, Sgrò CM. Within-population plastic responses to combined thermal-nutritional stress differ from those in response to single stressors, and are genetically independent across traits in both males and females. J Evol Biol 2024; 37:717-731. [PMID: 38757509 DOI: 10.1093/jeb/voae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/25/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Phenotypic plasticity helps animals to buffer the effects of increasing thermal and nutritional stress created by climate change. Plastic responses to single and combined stressors can vary among genetically diverged populations. However, less is known about how plasticity in response to combined stress varies among individuals within a population or whether such variation changes across life-history traits. This is important because individual variation within populations shapes population-level responses to environmental change. Here, we used isogenic lines of Drosophila melanogaster to assess the plasticity of egg-to-adult viability and sex-specific body size for combinations of 2 temperatures (25 °C or 28 °C) and 3 diets (standard diet, low caloric diet, or low protein:carbohydrate ratio diet). Our results reveal substantial within-population genetic variation in plasticity for egg-to-adult viability and wing size in response to combined thermal-nutritional stress. This genetic variation in plasticity was a result of cross-environment genetic correlations that were often < 1 for both traits, as well as changes in the expression of genetic variation across environments for egg-to-adult viability. Cross-sex genetic correlations for body size were weaker when the sexes were reared in different conditions, suggesting that the genetic basis of traits may change with the environment. Furthermore, our results suggest that plasticity in egg-to-adult viability is genetically independent from plasticity in body size. Importantly, plasticity in response to diet and temperature individually differed from plastic shifts in response to diet and temperature in combination. By quantifying plasticity and the expression of genetic variance in response to combined stress across traits, our study reveals the complexity of animal responses to environmental change, and the need for a more nuanced understanding of the potential for populations to adapt to ongoing climate change.
Collapse
Affiliation(s)
- Yeuk Man Movis Choy
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, Victoria, Australia
| | - Greg M Walter
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, Victoria, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, Victoria, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Rho MS, Lee KP. Mapping the nutritional landscape in the yellow mealworm: testing the nutrient-mediated life-history trade-offs. J Exp Biol 2023; 226:jeb245522. [PMID: 37493055 DOI: 10.1242/jeb.245522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
Animals must acquire an ideal amount and balance of macronutrients to optimize their performance, health and fitness. The nutritional landscape provides an integrative framework for analysing how animal phenotypes are associated with multiple nutritional components. Here, we applied this powerful approach to examine how the intake of protein and carbohydrate affects nutrient acquisition and performance in the yellow mealworm (Tenebrio molitor) reared on one of 42 synthetic foods varying in protein and carbohydrate content. Tenebrio molitor larvae increased their food consumption rate in response to nutrient dilution, but this increase was not sufficient to fully compensate for the dilution. Diluting the food nutrient content with cellulose reduced the efficiency of post-ingestive nutrient utilization, further restricting macronutrient acquisition. Tenebrio molitor larvae utilized macronutrients most efficiently at a protein to carbohydrate (P:C) ratio of 1.77:1, but became less efficient at imbalanced P:C ratios. Survivorship was high at high protein intake and fell with decreasing protein intake. Pupal mass and growth rate exhibited a bell-shaped landscape, with the nutritional optima being located around protein-biased P:C ratios of 1.99:1 to 2.03:1 and 1.66:1 to 2.86:1, respectively. The nutritional optimum for development time was also identified at high P:C ratios (1.66:1 to 5.86:1). Unlike these performance traits, lipid content was maximized at carbohydrate-biased P:C ratios of 1:3.88 to 1:3.06. When given a food choice, T. molitor larvae self-composed a slightly carbohydrate-biased P:C ratio of 1:1.24, which lies between the P:C ratios that maximize performance and lipid content. Our findings indicate the occurrence of a nutrient-mediated trade-off between performance and energy storage in this insect.
Collapse
Affiliation(s)
- Myung Suk Rho
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kwang Pum Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Weldon CW, Terblanche JS, Bosua H, Malod K, Chown SL. Male Mediterranean fruit flies prefer warmer temperatures that improve sexual performance. J Therm Biol 2022; 108:103298. [DOI: 10.1016/j.jtherbio.2022.103298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
|
6
|
Rho MS, Lee KP. Behavioural and physiological regulation of protein and carbohydrates in mealworm larvae: A geometric analysis. JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104329. [PMID: 34826391 DOI: 10.1016/j.jinsphys.2021.104329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Protein-carbohydrate regulation in the larvae of the mealworm beetle (Tenebrio molitor L.) was analyzed using the Geometric Framework for nutrition. In this study, the ingestive and post-ingestive responses were measured from T. molitor larvae that were subjected to choice and no-choice experiments. In the choice experiment, T. moitor larvae were simultaneously presented with one of two protein-biased foods (p35:c7 or p28:c5.6) and one of two carbohydrate-biased foods (p7:c35 or p5.6:c28). T. molitor larvae selected protein and carbohydrate in a ratio close to 1:1 over the first 15 days since the start of the experiment (days 0-15), but exhibited preference for carbohydrate-biased food over the next 15 days. The average protein:carbohydrate ratio selected over days 0-30 was 1:1.24. In the no-choice experiment, T. molitor larvae were restricted to one of seven foods with different protein and carbohydrate content (p0:c42, p7:c35, p14:c28, p21:c21, p28:c14, p35:c7, or p42:c0). On the p0:c42 food, consumption was greatly suppressed and no larvae completed their development. Across a range of these foods except p0:c42, T. molitor larvae consistently over-ate the surplus nutrient in the foods and showed a pattern of nutrient balancing similar to that previously described for other nutritional generalists. Despite having consumed substantially different amounts and ratios of macronutrients as larvae, T. molitor pupae in the no-choice food treatments had similar body nutrient composition, suggesting the presence of strong homeostatic regulation for body nutrient growth. Larval survivorship was significantly lower on two extremely imbalanced foods (p7:c35 and p42:0) than on more balanced foods. T. molitor larvae reared on p7:c35 suffered reduced biomass growth and delayed development compared with those on foods with higher protein content.
Collapse
Affiliation(s)
- Myung Suk Rho
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kwang Pum Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Hardison EA, Kraskura K, Van Wert J, Nguyen T, Eliason EJ. Diet mediates thermal performance traits: implications for marine ectotherms. J Exp Biol 2021; 224:272691. [PMID: 34647599 DOI: 10.1242/jeb.242846] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022]
Abstract
Thermal acclimation is a key process enabling ectotherms to cope with temperature change. To undergo a successful acclimation response, ectotherms require energy and nutritional building blocks obtained from their diet. However, diet is often overlooked as a factor that can alter acclimation responses. Using a temperate omnivorous fish, opaleye (Girella nigricans), as a model system, we tested the hypotheses that (1) diet can impact the magnitude of thermal acclimation responses and (2) traits vary in their sensitivity to both temperature acclimation and diet. We fed opaleye a simple omnivorous diet (ad libitum Artemia sp. and Ulva sp.) or a carnivorous diet (ad libitum Artemia sp.) at two ecologically relevant temperatures (12 and 20°C) and measured a suite of whole-animal (growth, sprint speed, metabolism), organ (cardiac thermal tolerance) and cellular-level traits (oxidative stress, glycolytic capacity). When opaleye were offered two diet options compared with one, they had reduced cardiovascular thermal performance and higher standard metabolic rate under conditions representative of the maximal seasonal temperature the population experiences (20°C). Further, sprint speed and absolute aerobic scope were insensitive to diet and temperature, while growth was highly sensitive to temperature but not diet, and standard metabolic rate and maximum heart rate were sensitive to both diet and temperature. Our results reveal that diet influences thermal performance in trait-specific ways, which could create diet trade-offs for generalist ectotherms living in thermally variable environments. Ectotherms that alter their diet may be able to regulate their performance at different environmental temperatures.
Collapse
Affiliation(s)
- Emily A Hardison
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Krista Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jacey Van Wert
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tina Nguyen
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
8
|
Leclerc JC, de Bettignies T, de Bettignies F, Christie H, Franco JN, Leroux C, Davoult D, Pedersen MF, Filbee-Dexter K, Wernberg T. Local flexibility in feeding behaviour and contrasting microhabitat use of an omnivore across latitudes. Oecologia 2021; 196:441-453. [PMID: 34009471 DOI: 10.1007/s00442-021-04936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
As the environment is getting warmer and species are redistributed, consumers can be forced to adjust their interactions with available prey, and this could have cascading effects within food webs. To better understand the capacity for foraging flexibility, our study aimed to determine the diet variability of an ectotherm omnivore inhabiting kelp forests, the sea urchin Echinus esculentus, along its entire latitudinal distribution in the northeast Atlantic. Using a combination of gut content and stable isotope analyses, we determined the diet and trophic position of sea urchins at sites in Portugal (42° N), France (49° N), southern Norway (63° N), and northern Norway (70° N), and related these results to the local abundance and distribution of putative food items. With mean estimated trophic levels ranging from 2.4 to 4.6, omnivory and diet varied substantially within and between sites but not across latitudes. Diet composition generally reflected prey availability within epiphyte or understorey assemblages, with local affinities demonstrating that the sea urchin adjusts its foraging to match the small-scale distribution of food items. A net "preference" for epiphytic food sources was found in northern Norway, where understorey food was limited compared to other regions. We conclude that diet change may occur in response to food source redistribution at multiple spatial scales (microhabitats, sites, regions). Across these scales, the way that key consumers alter their foraging in response to food availability can have important implication for food web dynamics and ecosystem functions along current and future environmental gradients.
Collapse
Affiliation(s)
- Jean-Charles Leclerc
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France. .,Departamento de Ecología, Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile.
| | - Thibaut de Bettignies
- UMS Patrimoine Naturel (PATRINAT), AFB-CNRS-MNHN, CP41, 36 rue Geoffroy Saint-Hilaire, 75005, Paris, France.,School of Biological Sciences and UWA Oceans Institute, University of Western Australia, 39 Fairway, Crawley, WA, 6009, Australia
| | - Florian de Bettignies
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Hartvig Christie
- Marine Biology Section, Norwegian Institute for Water Research, Oslo, Norway
| | - João N Franco
- CIIMAR, Terminal de Cruzeiros de Leixões. Av. General Norton de Matos, 4450-208, Matosinhos, Portugal.,MARE-Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal
| | - Cédric Leroux
- Sorbonne Université, CNRS, FR 2424, Station Biologique, Place Georges Teissier, 29680, Roscoff, France
| | - Dominique Davoult
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Morten F Pedersen
- Department for Science and Environment (DSE), Roskilde University, PO Box 260, 4000, Roskilde, Denmark
| | - Karen Filbee-Dexter
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, 39 Fairway, Crawley, WA, 6009, Australia.,Benthic Communities Research Group, Institute of Marine Research, His, Norway
| | - Thomas Wernberg
- School of Biological Sciences and UWA Oceans Institute, University of Western Australia, 39 Fairway, Crawley, WA, 6009, Australia.,Department for Science and Environment (DSE), Roskilde University, PO Box 260, 4000, Roskilde, Denmark.,Benthic Communities Research Group, Institute of Marine Research, His, Norway
| |
Collapse
|
9
|
Walker R, Wilder SM, González AL. Temperature dependency of predation: Increased killing rates and prey mass consumption by predators with warming. Ecol Evol 2020; 10:9696-9706. [PMID: 33005340 PMCID: PMC7520176 DOI: 10.1002/ece3.6581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 05/10/2020] [Accepted: 05/31/2020] [Indexed: 01/10/2023] Open
Abstract
Temperature dependency of consumer-resource interactions is fundamentally important for understanding and predicting the responses of food webs to climate change. Previous studies have shown temperature-driven shifts in herbivore consumption rates and resource preference, but these effects remain poorly understood for predatory arthropods. Here, we investigate how predator killing rates, prey mass consumption, and macronutrient intake respond to increased temperatures using a laboratory and a field reciprocal transplant experiment. Ectothermic predators, wolf spiders (Pardosa sp.), in the lab experiment, were exposed to increased temperatures and different prey macronutrient content (high lipid/low protein and low lipid/high protein) to assess changes in their killing rates and nutritional demands. Additionally, we investigate prey mass and lipid consumption by spiders under contrasting temperatures, along an elevation gradient. We used a field reciprocal transplant experiment between low (420 masl; 26°C) and high (2,100 masl; 15°C) elevations in the Ecuadorian Andes, using wild populations of two common orb-weaver spider species (Leucauge sp. and Cyclosa sp.) present along the elevation gradient. We found that killing rates of wolf spiders increased with warmer temperatures but were not significantly affected by prey macronutrient content, although spiders consumed significantly more lipids from lipid-rich prey. The field reciprocal transplant experiment showed no consistent predator responses to changes in temperature along the elevational gradient. Transplanting Cyclosa sp. spiders to low- or high-elevation sites did not affect their prey mass or lipid consumption rate, whereas Leucauge sp. individuals increased prey mass consumption when transplanted from the high to the low warm elevation. Our findings show that increases in temperature intensify predator killing rates, prey consumption, and lipid intake, but the responses to temperature vary between species, which may be a result of species-specific differences in their hunting behavior and sensitivity to temperature.
Collapse
Affiliation(s)
- Ryan Walker
- Department of BiologyRutgers UniversityCamdenNJUSA
| | - Shawn M. Wilder
- Department of Integrative BiologyOklahoma State UniversityStillwaterOKUSA
| | - Angélica L. González
- Department of BiologyRutgers UniversityCamdenNJUSA
- Center for Computational and Integrative BiologyRutgers UniversityCamdenNJUSA
| |
Collapse
|
10
|
Kim KE, Jang T, Lee KP. Combined effects of temperature and macronutrient balance on life-history traits in Drosophila melanogaster: implications for life-history trade-offs and fundamental niche. Oecologia 2020; 193:299-309. [PMID: 32418116 DOI: 10.1007/s00442-020-04666-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/05/2020] [Indexed: 12/22/2022]
Abstract
Temperature and nutrition are amongst the most influential environmental determinants of Darwinian fitness in ectotherms. Since the ongoing climate warming is known to alter nutritional environments encountered by ectotherms, a precise understanding of the integrated effects of these two factors on ectotherm performance is essential for improving the accuracy of predictions regarding how ectotherms will respond to climate warming. Here we employed response surface methodology to examine how multiple life-history traits were expressed across a grid of environmental conditions representing full combinations of six ambient temperatures (13, 18, 23, 28, 31, 33 °C) and eight dietary protein:carbohydrate ratios (P:C = 1:16, 1:8, 1:4, 1:2, 1:1, 2:1, 4:1, 8:1) in Drosophila melanogaster. Different life-history traits were maximized in different regions in the two-dimensional temperature-nutrient space. The optimal temperature and P:C ratio identified for adult lifespan (13 °C and 1:16) were lower than those for early-life female fecundity (28 °C and 4:1). Similar divergence in thermal and nutritional optima was found between body mass at adult emergence (18 °C and P:C 1:1) and the rate of pre-adult development (28 °C and P:C 4:1). Pre-adult survival was maximized over a broad range of temperature (18-28 °C) and P:C ratio (1:8-8:1). These results indicate that the occurrence of life-history trade-offs is regulated by both temperature and dietary P:C ratio. The estimated measure of fitness was maximized at 23 °C and P:C 2:1. Based on the shape of the response surface constructed for this estimated fitness, we characterized the fundamental thermal and nutritional niche for D. melanogaster with unprecedented detail.
Collapse
Affiliation(s)
- Keonhee E Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Taehwan Jang
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kwang Pum Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Zhang P, van Leeuwen CHA, Bogers D, Poelman M, Xu J, Bakker ES. Ectothermic omnivores increase herbivory in response to rising temperature. OIKOS 2020. [DOI: 10.1111/oik.07082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Peiyu Zhang
- Dept of Aquatic Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Inst. of Hydrobiology, Chinese Academy of Sciences Wuhan PR China
| | | | - Dagmar Bogers
- Dept of Aquatic Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
| | - Marjolein Poelman
- Dept of Aquatic Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Inst. of Hydrobiology, Chinese Academy of Sciences Wuhan PR China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology Qingdao PR China
| | - Elisabeth S. Bakker
- Dept of Aquatic Ecology, Netherlands Inst. of Ecology (NIOO‐KNAW) Wageningen the Netherlands
| |
Collapse
|
12
|
Boukal DS, Bideault A, Carreira BM, Sentis A. Species interactions under climate change: connecting kinetic effects of temperature on individuals to community dynamics. CURRENT OPINION IN INSECT SCIENCE 2019; 35:88-95. [PMID: 31445412 DOI: 10.1016/j.cois.2019.06.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Human-induced climate change, dominated by warming trends, poses a major threat to global biodiversity and ecosystem functioning. Species interactions relay the direct and indirect effects of climate warming on individuals to communities, and detailed understanding across these levels is crucial to predict ecological consequences of climate change. We provide a conceptual framework that links temperature effects on insect physiology and behaviour to altered species interactions and community dynamics. We highlight key features of this framework with recent studies investigating the impacts of warming climate on insects and other ectotherms and identify methodological, taxonomic and geographic biases. While the effects of increased constant temperatures are now well understood, future studies should focus on temperature variation, interactions with other stressors and cross-system comparisons.
Collapse
Affiliation(s)
- David S Boukal
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology and Soil and Water Research Infrastructure, Branišovská 1760, 37005 České Budějovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Azenor Bideault
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec J1K 2R1, Canada; Centre for Biodiversity Theory and Modelling, Station d'Ecologie Expérimentale du Centre National de la Recherche Scientifique (CNRS), 2 Route du CNRS, 09200 Moulis, France
| | - Bruno M Carreira
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology and Soil and Water Research Infrastructure, Branišovská 1760, 37005 České Budějovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Arnaud Sentis
- IRSTEA, Aix Marseille Univ., UMR RECOVER, 3275 route Cézanne, 13182 Aix-en-Provence, France
| |
Collapse
|
13
|
Kutz TC, Sgrò CM, Mirth CK. Interacting with change: Diet mediates how larvae respond to their thermal environment. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13414] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Teresa C. Kutz
- School of Biological Sciences Monash University Melbourne Vic. Australia
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Melbourne Vic. Australia
| | - Christen K. Mirth
- School of Biological Sciences Monash University Melbourne Vic. Australia
| |
Collapse
|
14
|
Guo S, Hou R, Garber PA, Raubenheimer D, Righini N, Ji W, Jay O, He S, Wu F, Li F, Li B. Nutrient‐specific compensation for seasonal cold stress in a free‐ranging temperate colobine monkey. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13134] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Song‐Tao Guo
- Shaanxi Key Laboratory for Animal ConservationNorthwest University Xi’an China
| | - Rong Hou
- Shaanxi Key Laboratory for Animal ConservationNorthwest University Xi’an China
| | - Paul A. Garber
- Department of AnthropologyUniversity of Illinois at Urbana‐Champaign Urbana Illinois
| | - David Raubenheimer
- The Charles Perkins Centre and School of Life and Environmental SciencesUniversity of Sydney Sydney NSW Australia
| | - Nicoletta Righini
- Department of AnthropologyUniversity of Illinois at Urbana‐Champaign Urbana Illinois
- Laboratorio de Ecología FuncionalInstituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES‐UNAM) Morelia Michoacan Mexico
| | - Wei‐Hong Ji
- Human and Wildlife Interactions Research GroupInstitute of Natural Mathematical SciencesMassey University Albany, Auckland New Zealand
| | - Ollie Jay
- The Charles Perkins Centre and School of Life and Environmental SciencesUniversity of Sydney Sydney NSW Australia
| | - Shu‐Jun He
- Shaanxi Key Laboratory for Animal ConservationNorthwest University Xi’an China
| | - Fan Wu
- Shaanxi Key Laboratory for Animal ConservationNorthwest University Xi’an China
| | - Fang‐Fang Li
- Shaanxi Key Laboratory for Animal ConservationNorthwest University Xi’an China
| | - Bao‐Guo Li
- Shaanxi Key Laboratory for Animal ConservationNorthwest University Xi’an China
- Xi’an Branch of Chinese Academy of Sciences Xi’an China
| |
Collapse
|