1
|
Gray BCT, Champion C, Broadhurst MK, Coleman MA, Benkendorff K. Effects of contaminants and flooding on the physiology of harvested estuarine decapod crustaceans: A global review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125347. [PMID: 39577610 DOI: 10.1016/j.envpol.2024.125347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/19/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Contaminants are transported into estuaries during rainfall events, impacting the physiology of harvested species, and thereby threatening fisheries sustainability. Decapods are among the most economically important groups harvested from estuaries, but are at high risk of contaminant exposure. We conducted a systematic review and meta-analysis evaluating the physiological responses of harvested estuarine decapods to contaminants and flooding. A total of 138 research articles were identified, with global research efforts corresponding to the geographic distribution of crustacean harvesting. From these studies, 305 acute toxicity values for metals, polcyclic aromatic hydrocarbons (PAHs) and pesticide chemical classes were extracted and 341 sublethal effect sizes (log-response ratios; LnRRs) calculated using 91 physiological measures across seven response categories. At sublethal environmentally relevant concentrations, exposure to various metals, pesticide chemical classes and PAHs consistently elicited negative effects on decapod physiology (LnRR range: -0.67 to -0.07). Key physiological processes impacted by contaminant exposure included nutritional condition, osmoregulation, oxidative stress defences, acetylcholinesterase activity, metabolism and growth (LnRR range: -0.73 to -0.10), with a general trend for greater effects later in ontogeny. With new agricultural and industrial chemicals continually being marketed, our meta-analysis highlights the need for regulatory testing on harvested species prior to registration for use in catchment areas. Under future climatic variability, harvested estuarine decapods may be increasingly exposed to contaminants, with implications for fisheries and global food security.
Collapse
Affiliation(s)
- Benjamin C T Gray
- National Marine Science Centre, Southern Cross University, Coffs Harbour, 2450, New South Wales, Australia.
| | - Curtis Champion
- National Marine Science Centre, Southern Cross University, Coffs Harbour, 2450, New South Wales, Australia; Fisheries Research, NSW Department of Primary Industries and Regional Development, National Marine Science Centre, Coffs Harbour, 2450, New South Wales, Australia
| | - Matt K Broadhurst
- Fisheries Research, NSW Department of Primary Industries and Regional Development, National Marine Science Centre, Coffs Harbour, 2450, New South Wales, Australia; School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Melinda A Coleman
- National Marine Science Centre, Southern Cross University, Coffs Harbour, 2450, New South Wales, Australia; Fisheries Research, NSW Department of Primary Industries and Regional Development, National Marine Science Centre, Coffs Harbour, 2450, New South Wales, Australia
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, Coffs Harbour, 2450, New South Wales, Australia
| |
Collapse
|
2
|
Zaller JG, Kruse-Plaß M, Schlechtriemen U, Gruber E, Peer M, Nadeem I, Formayer H, Hutter HP, Landler L. Unexpected air pollutants with potential human health hazards: Nitrification inhibitors, biocides, and persistent organic substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160643. [PMID: 36462651 PMCID: PMC7614393 DOI: 10.1016/j.scitotenv.2022.160643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 04/13/2023]
Abstract
To better understand the influence of land use and meteorological parameters on air pollutants, we deployed passive air samplers in 15 regions with different land use in eastern Austria. The samplers consisted of polyurethane PUF and polyester PEF filter matrices, which were analyzed for 566 substances by gas-chromatography/mass-spectrometry. In a previous article, we highlighted a widespread contamination of ambient air with pesticides that depends on the surrounding land use and meteorological parameters. Here we report that, in addition to agricultural pesticides, eight other substances were frequently detected in ambient air: Nitrapyrin, a nitrification inhibitor used to increase nitrogen use efficiency of fertilizers and banned in Austria since 1993; biocides against insects (DEET and transfluthrin) used mainly outside agriculture; piperonyl butoxide (PBO), a synergist mixed into pesticide formulations; and four industrially used polychlorinated biphenyls (PCBs), long banned worldwide. Concentrations of the detected substances were positively related to air temperature, but only slightly related to agricultural land use in the sampler's vicinity. The city center showed the highest concentrations of biocides, PCBs and PBO, but also medium concentrations of nitrapyrin. Four sites had no air contamination with these substances; including two national parks dominated by grassland or forest, but also two sites with mixed land use. The potential human toxicity of the detected substances based on globally harmonized hazard classifications was high: seven substances had specific organ toxicity, six were cancerogenic, and two were acutely toxic; however, several substances had incomplete information of hazard profiles. Moreover, all substances were acutely and chronically toxic to aquatic life. We recommend that substances of different origins be included in the air pollution monitoring portfolio to comprehensively assess the potential hazards to humans and the environment.
Collapse
Affiliation(s)
- Johann G Zaller
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, 1180 Vienna, Austria.
| | - Maren Kruse-Plaß
- TIEM Integrated Environmental Monitoring, 95615 Marktredwitz, Germany
| | | | - Edith Gruber
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, 1180 Vienna, Austria
| | - Maria Peer
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, 1180 Vienna, Austria
| | - Imran Nadeem
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Water, Atmosphere and Environment, Institute of Meteorology and Climatology, 1180 Vienna, Austria
| | - Herbert Formayer
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Water, Atmosphere and Environment, Institute of Meteorology and Climatology, 1180 Vienna, Austria
| | - Hans-Peter Hutter
- Department of Environmental Health, Center for Public Health, Medical University Vienna, 1090 Vienna, Austria
| | - Lukas Landler
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, 1180 Vienna, Austria
| |
Collapse
|
3
|
Singh DS, Rostant LV, Mohammed A, Jairam AS, Sahatoo JJ, Khan Ali R, Mohammed F. Sublethal levels of organophosphate insecticides alter behaviour in the juveniles of the Neotropical crab, Poppiana dentata (Randall 1840). ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2022.2044389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Delezia S. Singh
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies (Uwi), St. Augustine, Trinidad and Tobago, West Indies
| | - Luke V. Rostant
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies (Uwi), St. Augustine, Trinidad and Tobago, West Indies
| | - Azad Mohammed
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies (Uwi), St. Augustine, Trinidad and Tobago, West Indies
| | - Alyssa S. Jairam
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies (Uwi), St. Augustine, Trinidad and Tobago, West Indies
| | - Jyotsna J. Sahatoo
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies (Uwi), St. Augustine, Trinidad and Tobago, West Indies
| | - Raquel Khan Ali
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies (Uwi), St. Augustine, Trinidad and Tobago, West Indies
| | - Faisal Mohammed
- Department of Chemistry, Faculty of Science and Technology, The University of the West Indies (Uwi), St. Augustine, Trinidad and Tobago, West Indies
| |
Collapse
|
4
|
Tooker JF, Pearsons KA. Newer characters, same story: neonicotinoid insecticides disrupt food webs through direct and indirect effects. CURRENT OPINION IN INSECT SCIENCE 2021; 46:50-56. [PMID: 33667691 DOI: 10.1016/j.cois.2021.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
During the Green Revolution, older classes of insecticides contributed to biodiversity loss by decreasing insect populations and bioaccumulating across food webs. Introduction of Integrated Pest Management (IPM) improved stewardship of insecticides and promised fewer non-target effects. IPM adoption has waned in recent decades, and popularity of newer classes of insecticides, like the neonicotinoids, has surged, posing new and unique threats to insect populations. In this review, we first address how older classes of insecticides can affect trophic interactions, and then consider the influence of neonicotinoids on food webs and the role they may be playing in insect declines. We conclude by discussing challenges posed by current use patterns of neonicotinoids and how their risk can be addressed.
Collapse
Affiliation(s)
- John F Tooker
- Department of Entomology, Merkle Lab, The Pennsylvania State University, University Park, PA, USA.
| | - Kirsten A Pearsons
- Department of Entomology, Merkle Lab, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|