1
|
Jin Q, Wang Y, Zhang K, Li G, Chen Y, Hong Y, Cheng H, Deng D. Morphological and life-history trait plasticity of two Daphnia species induced by fish kairomones. Ecol Evol 2024; 14:e11422. [PMID: 38846709 PMCID: PMC11154820 DOI: 10.1002/ece3.11422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/15/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
Daphnia can avoid predation by sensing fish kairomones and producing inducible defenses by altering the phenotype. In this study, the results showed that the morphological and life-history strategies of two Daphnia species (Daphnia pulex and Daphnia sinensis) exposed to Aristichthys nobilis kairomones. In the presence of fish kairomones, the two Daphnia species exhibited significantly smaller body length at maturity, smaller body length of offspring at the 10th instar, and longer relative tail spine of offspring. Nevertheless, other morphological and life-history traits of the two Daphnia species differed. D. pulex showed a significantly longer relative tail spine length and earlier age at maturity after exposure to fish kairomones. The total offspring number of D. sinensis exposed to fish kairomones was significantly higher than that of the control group, whereas that of D. pulex was significantly lower. These results suggest that the two Daphnia species have different inducible defense strategies (e.g., morphological and life-history traits) during prolonged exposure to A. nobilis kairomones, and their offspring also develop morphological defenses to avoid predation. It will provide reference for further exploring the adaptive evolution of Daphnia morphology and life-history traits in the presence of planktivorous fish.
Collapse
Affiliation(s)
- Qide Jin
- School of Life SciencesHuaibei Normal UniversityHuaibeiAnhuiChina
| | - Yeping Wang
- School of Life SciencesHuaibei Normal UniversityHuaibeiAnhuiChina
| | - Kun Zhang
- School of Life SciencesHuaibei Normal UniversityHuaibeiAnhuiChina
| | - Guoqing Li
- School of Life SciencesHuaibei Normal UniversityHuaibeiAnhuiChina
| | - Yanan Chen
- School of Life SciencesHuaibei Normal UniversityHuaibeiAnhuiChina
| | - Yujuan Hong
- School of Life SciencesHuaibei Normal UniversityHuaibeiAnhuiChina
| | - Hanxue Cheng
- School of Life SciencesHuaibei Normal UniversityHuaibeiAnhuiChina
| | - Daogui Deng
- School of Life SciencesHuaibei Normal UniversityHuaibeiAnhuiChina
| |
Collapse
|
2
|
Baludo MY, Octorina P, Beckerman A, Straile D. Antipredator responses of three Daphnia species within the D. longispina species complex to two invertebrate predators. Ecol Evol 2024; 14:e10841. [PMID: 38205375 PMCID: PMC10776305 DOI: 10.1002/ece3.10841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Prey communities in natural environments face a diverse array of predators with distinct hunting techniques. However, most studies have focused only on the interactions between a single prey species and one or more predators and typically only one of many induced defense traits, which limits our understanding of the broader effects of predators on prey communities. In this study, we conducted a common garden experiment using five clones each of three Daphnia species (D. cucullata, D. galeata, and D. longispina) from the D. longispina species complex to investigate the plasticity of predator-induced defenses in response to two predators in a community ecology setting. Five clones from each species were subjected to predator kairomones from two closely related invertebrate predators that are common in several European lakes, Bythotrephes longimanus or Leptodora kindtii for a duration of 10 days, and the morphological traits of body size, head size, spina size, and the presence of spinules on the ventral and dorsal carapace margins were measured. We show that among the species within this species complex there are different antipredator reactions to the invertebrate predators. The induced responses exhibited were species, trait, and predator-specific. Notably, D. galeata and D. cucullata developed distinctive helmets as defensive mechanisms, while microdefenses were induced in D. galeata and D. longispina, but not in D. cucullata. This demonstrates that the expression of micro- and macrodefenses across species was unrelated, highlighting the possible independent evolution of microstructures as defensive modules in Daphnia's antipredator strategies. This study is the first to document both micro- and macrodefensive phenotypic plasticity in three co-occurring Daphnia species within the D. longispina species complex. The differences in inducible defenses may have a substantial impact on how these three species cohabit with Bythotrephes and Leptodora.
Collapse
Affiliation(s)
| | - Pelita Octorina
- Limnologisches InstitutUniversität KonstanzKonstanzGermany
- Department AquacultureMuhammadiyah University of SukabumiSukabumiIndonesia
| | - Andrew Beckerman
- School of Biosciences, Ecology and Evolutionary BiologyUniversity of SheffieldSheffieldUK
| | | |
Collapse
|
3
|
Diller JGP, Hüftlein F, Lücker D, Feldhaar H, Laforsch C. Allelochemical run-off from the invasive terrestrial plant Impatiens glandulifera decreases defensibility in Daphnia. Sci Rep 2023; 13:1207. [PMID: 36681694 PMCID: PMC9867768 DOI: 10.1038/s41598-023-27667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Invasive species are a major threat for native ecosystems and organisms living within. They are reducing the biodiversity in invaded ecosystems, by outcompeting native species with e. g. novel substances. Invasive terrestrial plants can release allelochemicals, thereby reducing biodiversity due to the suppression of growth of native plants in invaded habitats. Aside from negative effects on plants, allelochemicals can affect other organisms such as mycorrhiza fungi and invertebrates in terrestrial ecosystems. When invasive plants grow in riparian zones, it is very likely that terrestrial borne allelochemicals can leach into the aquatic ecosystem. There, the often highly reactive compounds may not only elicit toxic effects to aquatic organisms, but they may also interfere with biotic interactions. Here we show that the allelochemical 2-methoxy-1,4-naphthoquinone (2-MNQ), produced by the ubiquitously occurring invasive terrestrial plant Impatiens glandulifera, interferes with the ability of Daphnia to defend itself against predators with morphological defences. Daphnia magna and Daphnia longicephala responded with morphological defences induced by chemical cues released by their corresponding predators, Triops cancriformis or Notonecta sp. However, predator cues in combination with 2-MNQ led to a reduction in the morphological defensive traits, body- and tail-spine length, in D. magna. In D. longicephala all tested inducible defensive traits were not significantly affected by 2-MNQ but indicate similar patterns, highlighting the importance to study different species to assess the risks for aquatic ecosystems. Since it is essential for Daphnia to adapt defences to the current predation risk, a maladaptation in defensive traits when simultaneously exposed to allelochemicals released by I. glandulifera, may therefore have knock-on effects on population dynamics across multiple trophic levels, as Daphnia is a key species in lentic ecosystems.
Collapse
Affiliation(s)
- Jens Georg Peter Diller
- Animal Ecology I, Universitaetsstraße 30, 95447, Bayreuth, Germany
- BayCEER, Universitaetsstraße 30, 95447, Bayreuth, Germany
| | - Frederic Hüftlein
- Animal Ecology I, Universitaetsstraße 30, 95447, Bayreuth, Germany
- BayCEER, Universitaetsstraße 30, 95447, Bayreuth, Germany
| | - Darleen Lücker
- Animal Ecology I, Universitaetsstraße 30, 95447, Bayreuth, Germany
| | - Heike Feldhaar
- Animal Ecology I, Universitaetsstraße 30, 95447, Bayreuth, Germany.
- BayCEER, Universitaetsstraße 30, 95447, Bayreuth, Germany.
| | - Christian Laforsch
- Animal Ecology I, Universitaetsstraße 30, 95447, Bayreuth, Germany.
- BayCEER, Universitaetsstraße 30, 95447, Bayreuth, Germany.
| |
Collapse
|
4
|
Kotov AA, Taylor DJ. Daphnia japonica sp. nov. (Crustacea: Cladocera) an eastern Palearctic montane species with mitochondrial discordance. PeerJ 2022; 10:e14113. [PMID: 36213509 PMCID: PMC9541614 DOI: 10.7717/peerj.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/02/2022] [Indexed: 01/21/2023] Open
Abstract
The Daphnia longispina complex (Crustacea: Cladocera) contains several keystone freshwater species such as D. longispina O.F. Müller (D. rosea Sars is a junior synonym), D. galeata Sars, D. cucullata Sars, and D. dentifera Forbes. The complex is common throughout the Holarctic, but there are several geographic regions where local forms have been assigned to European species names based on a superficial morphological resemblance. Here we examine the species status of a form that was previously assigned to D. rosea from a montane bog pond on Honshu, Japan. We used two nuclear non-coding loci (nDNA), mitochondrial sequences (the ND2 protein-coding region) and morphology for evidence. The mitochondrial gene evidence supported the existence of a divergent lineage that is more closely related to D. galeata than to D. dentifera. However, morphology and the nuclear DNA data indicated a lineage that is most closely related to D. dentifera. As our evidence supported the existence of a cohesive divergent lineage, we described a new species, Daphnia japonica sp. nov. Recognition of local and subalpine diversity in this group is critical as ongoing anthropogenic disturbance has been associated with introductions, local extirpations, and hybridization.
Collapse
Affiliation(s)
- Alexey A. Kotov
- Laboratory of Aquatic Ecology and Invasions, A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
| | - Derek J. Taylor
- Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
5
|
Optimal Method for Biomass Estimation in a Cladoceran Species, Daphnia Magna (Straus, 1820): Evaluating Length–Weight Regression Equations and Deriving Estimation Equations Using Body Length, Width and Lateral Area. SUSTAINABILITY 2022. [DOI: 10.3390/su14159216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Assessing the biomass of zooplankton compensates for the difference between number of individuals and the accumulated body weight of the community, which helps assess aquatic ecosystem food web functions. Daphnia are crustaceans that play an intermediate role in biological interactions within food webs. The morphology and body specification of Daphnia differ during growth; hence, it is essential to apply species-specific equations to estimate biomass. We evaluated the length–weight regression equations used previously to estimate Daphnia magna biomass and conducted regression analyses using various body specifications and biomass measurements taken directly using devices such as a microbalance and microscopic camera. Biomass estimated using an equation from the Environmental Protection Agency was significantly different from the direct measurement: average biomass was lower, indicating that the equation possibly underestimated actual biomass. The biomass of D. magna had a higher multiple R2 value when length was compared with width and area, and a linear regression equation was the most suitable equation for biomass estimation. Because body specifications and biomass are affected by various environmental factors, the development of accurate species-specific biomass estimation equations will contribute to obtaining fundamental data with which the biological responses of zooplankton to aquatic ecosystem changes can be assessed.
Collapse
|
6
|
Kim YS, Yun HS, Lee JH, Kim HS, Yoon HS. Environmental Factors Associated with the Eukaryotic Microbial Community and Microalgal Groups in the Mountain Marshes of South Korea. Pol J Microbiol 2021; 70:215-233. [PMID: 34349812 PMCID: PMC8326984 DOI: 10.33073/pjm-2021-019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/25/2021] [Accepted: 04/11/2021] [Indexed: 11/24/2022] Open
Abstract
The diversity indices of eukaryotic microalgal groups in the Jeonglyeongchi, Waegok, and Wangdeungjae marshes of Mount Jiri, Korea, were measured using Illumina MiSeq and culture-based analyses. Waegok marsh had the highest species richness, with a Chao1 value of 828.00, and the highest levels of species diversity, with Shannon and Simpson index values of 6.36 and 0.94, respectively, while Wangdeungjae marsh had the lowest values at 2.97 and 0.75, respectively. The predominant species in all communities were Phagocata sibirica (Jeonglyeongchi, 68.64%), Aedes albopictus (Waegok, 34.77%), Chaetonotus cf. (Waegok, 24.43%), Eimeria sp. (Wangdeungjae, 26.17%), and Eumonhystera cf. (Wangdeungjae, 22.27%). Relative abundances of the microalgal groups Bacillariophyta (diatoms) and Chlorophyta (green algae) in each marsh were respectively: Jeonglyeongchi 1.38% and 0.49%, Waegok 7.0% and 0.3%, and Wangdeungjae 10.41% and 4.72%. Illumina MiSeq analyses revealed 34 types of diatoms and 13 types of green algae. Only one diatom (Nitzschia dissipata) and five green algae (Neochloris sp., Chlamydomonas sp., Chlorococcum sp., Chlorella vulgaris, Scenedesmus sp.) were identified by a culture-based analysis. Thus, Illumina MiSeq analysis can be considered an efficient tool for analyzing microbial communities. Overall, our results described the environmental factors associated with geographically isolated mountain marshes and their respective microbial and microalgal communities.
Collapse
Affiliation(s)
- Young-Saeng Kim
- Research Institute of Ulleung-do and Dok-do, Kyungpook National University, Daegu, South Korea
| | - Hyun-Sik Yun
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Jea Hack Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Han-Soon Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Ho-Sung Yoon
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea.,School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
7
|
Lu N, Sun Y, Wei J, Gu L, Zhang L, Yang Z, Huang Y. Toxic Microcystis aeruginosa alters the resource allocation in Daphnia mitsukuri responding to fish predation cues. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116918. [PMID: 33743270 DOI: 10.1016/j.envpol.2021.116918] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Many prey organisms adaptively respond to predation risk by inducible defenses with underlying tradeoffs in resource allocation. Cyanobacterial blooms expose zooplankton to poor food conditions, affecting the herbivores' fitness. Given the interferences on resources allocation and life history traits, poor-quality cyanobacteria are predicted to affect the adaptive predator-induced responses in zooplankton. Here, we exposed two clones (i.e., clones SH and ZJ) of the cladoceran Daphnia mitsukuri to different combinations of fish predation cues and diets containing toxic Microcystis aeruginosa (0%-30%). D. mitsukuri matured at a small size and had elongated relative tail spine as adaptive responses to fish cues. Despite the comparable tail spine defense, fish cue-induced changes in growth and reproduction in the clone SH were more pronounced than those in the clone ZJ under no M. aeruginosa. Animals accumulated microcystin in the whole body with increasing abundance of M. aeruginosa. However, the inducible enhanced tail spine allometry was not affected, resulting in unchanged tail spine defense by Daphnia under all M. aeruginosa treatments. By contrast, M. aeruginosa remarkably decreased the adaptive maturation size and the offspring number in all animals. However, the inducible reproductive effort tended to increase or remain unchanged depending on clones associated with the constant or decreased responses of the somatic growth effort under increasing M. aeruginosa. Our results suggested that toxic M. aeruginosa did not alter the resource allocation to antipredator morphological defense but affected the somatic growth and reproduction in D. mitsukuri under fish cues. The present study highlights the different effects of toxic cyanobacteria on adaptive predator-induced responses in zooplankton, promoting the understanding for the morphological defense-mediated predator-prey interactions in eutrophic environments.
Collapse
Affiliation(s)
- Na Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Junjun Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
8
|
de Meo I, Østbye K, Kahilainen KK, Hayden B, Fagertun CHH, Poléo ABS. Predator community and resource use jointly modulate the inducible defense response in body height of crucian carp. Ecol Evol 2021; 11:2072-2085. [PMID: 33717443 PMCID: PMC7920785 DOI: 10.1002/ece3.7176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/23/2022] Open
Abstract
Phenotypic plasticity can be expressed as changes in body shape in response to environmental variability. Crucian carp (Carassius carassius), a widespread cyprinid, displays remarkable plasticity in body morphology and increases body depth when exposed to cues from predators, suggesting the triggering of an antipredator defense mechanism. However, these morphological changes could also be related to resource use and foraging behavior, as an indirect effect of predator presence. In order to determine whether phenotypic plasticity in crucian carp is driven by a direct or indirect response to predation threat, we compared twelve fish communities inhabiting small lakes in southeast Norway grouped by four categories of predation regimes: no predator fish, or brown trout (Salmo trutta), perch (Perca fluviatilis), or pike (Esox lucius) as main piscivores. We predicted the body shape of crucian carp to be associated with the species composition of predator communities and that the presence of efficient piscivores would result in a deeper body shape. We use stable isotope analyses to test whether this variation in body shape was related to a shift in individual resource use-that is, littoral rather than pelagic resource use would favor the development of a specific body shape-or other environmental characteristics. The results showed that increasingly efficient predator communities induced progressively deeper body shape, larger body size, and lower population densities. Predator maximum gape size and individual trophic position were the best variables explaining crucian carp variation in body depth among predation categories, while littoral resource use did not have a clear effect. The gradient in predation pressure also corresponded to a shift in lake productivity. These results indicate that crucian carp have a fine-tuned morphological defense mechanism against predation risk, triggered by the combined effect of predator presence and resource availability.
Collapse
Affiliation(s)
- Ilaria de Meo
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| | - Kjartan Østbye
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| | | | - Brian Hayden
- Biology DepartmentCanadian Rivers InstituteUniversity of New BrunswickFrederictonNBCanada
| | - Christian H. H. Fagertun
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| | - Antonio B. S. Poléo
- Department of Forestry and Wildlife ManagementInland Norway University of Applied SciencesKoppangNorway
| |
Collapse
|
9
|
Li X, Rollo CD. Radiation induces stress and transgenerational impacts in the cricket, Acheta domesticus. Int J Radiat Biol 2021; 98:1098-1105. [PMID: 33428853 DOI: 10.1080/09553002.2021.1872816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Radiation exposure of crickets during their fourth juvenile molt inflicted ionizing radiation damage and altered growth rate, adult size at sexual maturity. High levels of ionizing radiation also impacted the subsequent generation, likely via heritable epigenetic mechanisms. Using radiation as a proxy for external stress, we aim to understand the transgenerational impacts of stress on non-irradiated offspring. METHODS AND MATERIALS We assess the impacts of ionizing radiation on maturation mass and growth rate in F0 male and female house crickets (Acheta domesticus). We also assessed trans-generational impacts of irradiation on growth rate and maturation mass on non-irradiated offspring of irradiated parents compared to non-irradiated controls. RESULTS Early-life exposure to high levels of ionizing radiation-induced lower growth rate and maturation mass compared to controls (p < .0001). Non-irradiated male F1 offspring of irradiated parents demonstrated significantly lower mass at maturation (p = .0012) and significantly faster time of maturation (p < .0001) compared to F1 non-irradiated controls. CONCLUSION Our results show that a single early-life exposure to ionizing radiation can alter male offspring development through accelerated maturation and reduced maturation mass.
Collapse
Affiliation(s)
- Xiaobing Li
- Department of Biology, McMaster University, Hamilton, Canada
| | - C D Rollo
- Department of Biology, McMaster University, Hamilton, Canada
| |
Collapse
|
10
|
Eshun‐Wilson F, Wolf R, Andersen T, Hessen DO, Sperfeld E. UV radiation affects antipredatory defense traits in Daphnia pulex. Ecol Evol 2020; 10:14082-14097. [PMID: 33732430 PMCID: PMC7771149 DOI: 10.1002/ece3.6999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 11/06/2022] Open
Abstract
In aquatic environments, prey perceive predator threats by chemical cues called kairomones, which can induce changes in their morphology, life histories, and behavior. Predator-induced defenses have allowed for prey, such as Daphnia pulex, to avert capture by common invertebrate predators, such as Chaoborus sp. larvae. However, the influence of additional stressors, such as ultraviolet radiation (UVR), on the Daphnia-Chaoborus interaction is not settled as UVR may for instance deactivate the kairomone. In laboratory experiments, we investigated the combined effect of kairomones and UVR at ecologically relevant levels on induced morphological defenses of two D. pulex clones. We found that kairomones were not deactivated by UVR exposure. Instead, UVR exposure suppressed induced morphological defense traits of D. pulex juveniles under predation threat by generally decreasing the number of neckteeth and especially by decreasing the size of the pedestal beneath the neckteeth. UVR exposure also decreased the body length, body width, and tail spine length of juveniles, likely additionally increasing the vulnerability to Chaoborus predation. Our results suggest potential detrimental effects on fitness and survival of D. pulex subject to UVR stress, with consequences on community composition and food web structure in clear and shallow water bodies.
Collapse
Affiliation(s)
| | - Raoul Wolf
- Norwegian Institute for Water Research (NIVA)OsloNorway
| | - Tom Andersen
- Department of BioscienceUniversity of OsloOsloNorway
| | - Dag O. Hessen
- Department of BioscienceUniversity of OsloOsloNorway
| | - Erik Sperfeld
- Animal EcologyZoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| |
Collapse
|
11
|
Moreira RA, Rocha O, Pinto TJDS, da Silva LCM, Goulart BV, Montagner CC, Espindola ELG. Life-History Traits Response to Effects of Fish Predation (Kairomones), Fipronil and 2,4-D on Neotropical Cladoceran Ceriodaphnia silvestrii. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:298-309. [PMID: 32860087 DOI: 10.1007/s00244-020-00754-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Aquatic environments are constantly exposed to a cocktail of contaminants mainly due to human activities. As polluted ecosystems may simultaneously present other multiple natural stressors, the objective of the present study was to evaluate joint effect of stressors (natural and anthropogenic) on life history traits of the Neotropical cladoceran, Ceriodaphnia silvestrii. For this purpose, the effects of water conditioned with predator kairomones (fish) and environmental concentrations (sublethal) of two pesticides widely used in sugarcane monoculture in Brazil, the insecticide Regent® 800 WG (active ingredient-a.i. fipronil) and the herbicide DMA® 806 BR (a.i. 2,4-D) were evaluated using chronic toxicity testing, isolated and in mixture, for this cladoceran species. The environmental risks of pesticides for tropical freshwater biota were also estimated from the risk quotient MEC/PNEC. Among the characteristics of the life history of C. silvestrii evaluated after 8 days of exposure, compared with the mean value of control, the age of primiparous females was not affected by any evaluated treatment. However, species average survival decreased in the treatment of kairomones mixed with fipronil (FK) and in the treatment with a mixture of fipronil, 2,4-D, and kairomones (MFKD). The body length of maternal females was shorter than in the control after exposure in treatments with only kairomones (K) and FK. Fecundity of this cladoceran was reduced when exposed to FK and MFKD treatments, and the intrinsic rate of population increase significantly decreased for organisms exposed to treatment with fipronil (F) and to mixtures of fipronil and 2,4-D (MFD), MFDK, and FK. The results indicated that the combination of anthropogenic and natural stressors causes changes in C. silvestrii life history traits, which can contribute to the decline in populations, and our preliminary risk assessment results are a matter of concern regarding biota conservation.
Collapse
Affiliation(s)
- Raquel Aparecida Moreira
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São-carlense, 400 - Pq. Arnold Schimidt, São Carlos, 13560-970, Brazil.
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rodovia Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| | - Thandy Junio da Silva Pinto
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São-carlense, 400 - Pq. Arnold Schimidt, São Carlos, 13560-970, Brazil
| | - Laís Conceição Menezes da Silva
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São-carlense, 400 - Pq. Arnold Schimidt, São Carlos, 13560-970, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, 13083-970, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, 13083-970, Brazil
| | - Evaldo Luiz Gaeta Espindola
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São-carlense, 400 - Pq. Arnold Schimidt, São Carlos, 13560-970, Brazil
| |
Collapse
|
12
|
Abstract
Phenotypic plasticity in defensive traits is an appropriate mechanism to cope with the variable hazard of a frequently changing predator spectrum. In the animal kingdom these so-called inducible defences cover the entire taxonomic range from protozoans to vertebrates. The inducible defensive traits range from behaviour, morphology, and life-history adaptations to the activation of specific immune systems in vertebrates. Inducible defences in prey species play important roles in the dynamics and functioning of food webs. Freshwater zooplankton show the most prominent examples of inducible defences triggered by chemical cues, so-called kairomones, released by predatory invertebrates and fish. The objective of this review is to highlight recent progress in research on inducible defences in freshwater zooplankton concerning behaviour, morphology, and life-history, as well as difficulties of studies conducted in a multipredator set up. Furthermore, we outline costs associated with the defences and discuss difficulties as well as the progress made in characterizing defence-inducing cues. Finally, we aim to indicate further possible routes in this field of research and provide a comprehensive table of inducible defences with respect to both prey and predator species.
Collapse
|