1
|
Zhu Y, Li X, Tu X, Risch AC, Wang Z, Ma Q, Jiang M, Zou Y, Wang D, Inbar M, Hawlena D, Zhong Z. Behavioural responses to mammalian grazing expose insect herbivores to elevated risk of avian predation. Proc Biol Sci 2024; 291:20241112. [PMID: 39378991 PMCID: PMC11461062 DOI: 10.1098/rspb.2024.1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Large mammalian herbivores (LMH) are important functional components and drivers of biodiversity and ecosystem functioning in grasslands. Yet their role in regulating food-web dynamics and trophic cascades remains poorly understood. In the temperate grasslands of northern China, we explored whether and how grazing domestic cattle (Bos taurus) alter the predator-prey interactions between a dominant grasshopper (Euchorthippus unicolor) and its avian predator the barn swallow (Hirundo rustica). Using two large manipulative field experiments, we found that in the presence of cattle, grasshoppers increased their jumping frequency threefold, swallows increased foraging visits to these fields sixfold, and grasshopper density was reduced by about 50%. By manipulatively controlling the grasshoppers' ability to jump, we showed that jumping enables grasshoppers to avoid being incidentally consumed or trampled by cattle. However, jumping behaviour increased their consumption rates by swallows 37-fold compared with grasshoppers that were unable to jump. Our findings illustrate how LMH can indirectly alter predator-prey interactions by affecting behaviour of avian predators and herbivorous insects. These non-plant-mediated effects of LMH may influence trophic interactions in other grazing ecosystems and shape community structure and dynamics. We highlight that convoluted multispecies interactions may better explain how LMH control food-web dynamics in grasslands.
Collapse
Affiliation(s)
- Yu Zhu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology & Observation and Research Station for the Typical Steppe Ecosystem of the Ministry of Education, School of Ecology and Environment, Inner Mongolia University, Hohhot010021, People’s Republic of China
- State Key Laboratory of Black Soils Conservation and Utilization & Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station & Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun130102, People’s Republic of China
| | - Xiaofei Li
- College of Resources and Environmental Sciences, Jilin Agricultural University, Changchun130118, People’s Republic of China
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, People’s Republic of China
| | - Anita C. Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf8903, Switzerland
| | - Zhaojun Wang
- School of Environment, Northeast Normal University, Changchun130117, People’s Republic of China
| | - Quanhui Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology & Observation and Research Station for the Typical Steppe Ecosystem of the Ministry of Education, School of Ecology and Environment, Inner Mongolia University, Hohhot010021, People’s Republic of China
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun130024, People’s Republic of China
| | - Ming Jiang
- State Key Laboratory of Black Soils Conservation and Utilization & Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station & Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun130102, People’s Republic of China
| | - Yuanchun Zou
- State Key Laboratory of Black Soils Conservation and Utilization & Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station & Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun130102, People’s Republic of China
| | - Deli Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun130024, People’s Republic of China
| | - Moshe Inbar
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa3498838, Israel
| | - Dror Hawlena
- Department of Ecology Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem91904, Israel
| | - Zhiwei Zhong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, People’s Republic of China
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun130024, People’s Republic of China
- Key Laboratory of Grassland Resources (Inner Mongolia Agricultural University), Ministry of Education, Hohhot010021, People’s Republic of China
| |
Collapse
|
3
|
Zhong Z, Li G, Sanders D, Wang D, Holt RD, Zhang Z. A rodent herbivore reduces its predation risk through ecosystem engineering. Curr Biol 2022; 32:1869-1874.e4. [PMID: 35278348 DOI: 10.1016/j.cub.2022.02.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 11/18/2022]
Abstract
Predator-prey interactions are ubiquitous and powerful forces that structure ecological communities.1-3 Habitat complexity has been shown to be particularly important in regulating the strength of predator-prey interactions.4-6 While it is well established that changes in habitat structure can alter the efficacy of predatory and anti-predatory behaviors,7-9 little is known about the consequences of engineering activity by prey species who modify the external environment to reduce their own predation risk. Using field surveys and manipulative experiments, we evaluated how habitat modification by Brandt's voles (Lasiopodomys brandtii) influences predation risk from a principal avian predator (shrike; Lanius spp.) in a steppe grassland, located in Inner Mongolia, China. We found that voles actively modify habitat structure by cutting down a large, unpalatable bunchgrass species (Achnatherum splendens) in the presence of shrikes, a behavior that disappeared when these avian predators were excluded experimentally. The damage activities of these voless dramatically decreased the volume of unpalatable grasses, which in turn reduced visitations by shrikes and thus mortality rates. Our study shows that herbivorous prey that act as ecosystem engineers can directly reduce their own predation risk by modifying habitat structure. Given the ubiquity of predation risks faced by consumers, and the likely ability of many consumers to alter the habitat structure in which they live, the interplay between predation risk and ecosystem engineering may be an important but unappreciated mechanism at play in natural communities.
Collapse
Affiliation(s)
- Zhiwei Zhong
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science, Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dirk Sanders
- Environment and Sustainability Institute, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Deli Wang
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Institute of Grassland Science, Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, Jilin 130024, China
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management on Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|