1
|
Cherif M, Brose U, Hirt MR, Ryser R, Silve V, Albert G, Arnott R, Berti E, Cirtwill A, Dyer A, Gauzens B, Gupta A, Ho HC, Portalier SMJ, Wain D, Wootton K. The environment to the rescue: can physics help predict predator-prey interactions? Biol Rev Camb Philos Soc 2024. [PMID: 38855988 DOI: 10.1111/brv.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Understanding the factors that determine the occurrence and strength of ecological interactions under specific abiotic and biotic conditions is fundamental since many aspects of ecological community stability and ecosystem functioning depend on patterns of interactions among species. Current approaches to mapping food webs are mostly based on traits, expert knowledge, experiments, and/or statistical inference. However, they do not offer clear mechanisms explaining how trophic interactions are affected by the interplay between organism characteristics and aspects of the physical environment, such as temperature, light intensity or viscosity. Hence, they cannot yet predict accurately how local food webs will respond to anthropogenic pressures, notably to climate change and species invasions. Herein, we propose a framework that synthesises recent developments in food-web theory, integrating body size and metabolism with the physical properties of ecosystems. We advocate for combination of the movement paradigm with a modular definition of the predation sequence, because movement is central to predator-prey interactions, and a generic, modular model is needed to describe all the possible variation in predator-prey interactions. Pending sufficient empirical and theoretical knowledge, our framework will help predict the food-web impacts of well-studied physical factors, such as temperature and oxygen availability, as well as less commonly considered variables such as wind, turbidity or electrical conductivity. An improved predictive capability will facilitate a better understanding of ecosystem responses to a changing world.
Collapse
Affiliation(s)
- Mehdi Cherif
- Aquatic Ecosystems and Global Change Research Unit, National Research Institute for Agriculture Food and the Environment, 50 avenue de Verdun, Cestas Cedex, 33612, France
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Myriam R Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Violette Silve
- Aquatic Ecosystems and Global Change Research Unit, National Research Institute for Agriculture Food and the Environment, 50 avenue de Verdun, Cestas Cedex, 33612, France
| | - Georg Albert
- Department of Forest Nature Conservation, Georg-August-Universität, Büsgenweg 3, Göttingen, 37077, Germany
| | - Russell Arnott
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, Cambridgeshire, CB2 1LR, UK
| | - Emilio Berti
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Alyssa Cirtwill
- Spatial Foodweb Ecology Group, Research Centre for Ecological Change (REC), Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 4 (Yliopistonkatu 3), Helsinki, 00014, Finland
| | - Alexander Dyer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Anhubav Gupta
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Hsi-Cheng Ho
- Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 106, Taiwan
| | - Sébastien M J Portalier
- Department of Mathematics and Statistics, University of Ottawa, STEM Complex, room 342, 150 Louis-Pasteur Pvt, Ottawa, Ontario, K1N 6N5, Canada
| | - Danielle Wain
- 7 Lakes Alliance, Belgrade Lakes, 137 Main St, Belgrade Lakes, ME, 04918, USA
| | - Kate Wootton
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| |
Collapse
|
2
|
Young KB, Saalfeld DT, Brandt C, Smith KR, Spivey TJ, Stantorf CJ. Interspecific killing of wolverines by one wolf pack. Ecol Evol 2023; 13:e10758. [PMID: 38077510 PMCID: PMC10701184 DOI: 10.1002/ece3.10758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 10/16/2024] Open
Abstract
Interactions between different species of predators are not uncommon, yet they are generally understudied in North America. Across their range, gray wolves (Canis lupus) and wolverines (Gulo gulo) occupy similar habitats and dietary niches. However, due to the elusiveness and relatively low density of these two species, interactions between them are not well documented. Here, we describe three instances of a single wolf pack killing a wolverine in the span of 13 months. None of the wolverines killed by wolves were consumed, suggesting that food was not the primary motivation behind the killings. Alternatively, defense of a food resource, territoriality, interspecific competitive killing, or some combination of those behaviors appear to be the cause of these actions. Documentation of these occurrences improves our understanding of wolf and wolverine ecology, interspecific predator interactions, and potential future changes to this aspect of community ecology.
Collapse
Affiliation(s)
- Kiana B. Young
- Division of Wildlife ConservationAlaska Department of Fish and GameAnchorageAlaskaUSA
| | - David T. Saalfeld
- Division of Wildlife ConservationAlaska Department of Fish and GameAnchorageAlaskaUSA
| | - Colette Brandt
- 673 CES/CEIEC ConservationUnited States Air Force, Joint Base Elmendorf‐RichardsonJBERAlaskaUSA
| | - Kyle R. Smith
- Division of Wildlife ConservationAlaska Department of Fish and GameAnchorageAlaskaUSA
| | - Timothy J. Spivey
- Division of Wildlife ConservationAlaska Department of Fish and GameAnchorageAlaskaUSA
| | - Cory J. Stantorf
- Division of Wildlife ConservationAlaska Department of Fish and GameAnchorageAlaskaUSA
| |
Collapse
|
3
|
Poirier M, Gauthier G, Domine F, Fauteux D. Lemming winter habitat: the quest for warm and soft snow. Oecologia 2023:10.1007/s00442-023-05385-y. [PMID: 37351629 DOI: 10.1007/s00442-023-05385-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/08/2023] [Indexed: 06/24/2023]
Abstract
During the cold arctic winter, small mammals like lemmings seek refuge inside the snowpack to keep warm and they dig tunnels in the basal snow layer, usually formed of a soft depth hoar, to find vegetation on which they feed. The snowpack, however, is a heterogenous medium and lemmings should use habitats where snow properties favor their survival and winter reproduction. We determined the impact of snow physical properties on lemming habitat use and reproduction in winter by sampling their winter nests for 13 years and snow properties for 6 years across 4 different habitats (mesic, riparian, shrubland, and wetland) on Bylot Island in the Canadian High Arctic. We found that lemmings use riparian habitat most intensively because snow accumulates more rapidly, the snowpack is the deepest and temperature of the basal snow layer is the highest in this habitat. However, in the deepest snowpacks, the basal depth hoar layer was denser and less developed than in habitats with shallower snowpacks, and those conditions were negatively related to lemming reproduction in winter. Shrubland appeared a habitat of moderate quality for lemmings as it favored a soft basal snow layer and a deep snowpack compared with mesic and wetland, but snow conditions in this habitat critically depend on weather conditions at the beginning of the winter. With climate change, a hardening of the basal layer of the snowpack and a delay in snow accumulation are expected, which could negatively affect the winter habitat of lemmings and be detrimental to their populations.
Collapse
Affiliation(s)
- Mathilde Poirier
- Centre d'Études Nordiques, Université Laval, Pavillon Abitibi-Price, 2405, rue de la Terrasse, Québec, QC, Canada.
- Department of Biology, Université Laval, 1045 av. de la Médecine, Québec, QC, Canada.
- Takuvik Joint International Laboratory, Université Laval (Canada) and CNRS-INSU (France), 1045 av. de la Médecine, Québec, QC, Canada.
| | - Gilles Gauthier
- Centre d'Études Nordiques, Université Laval, Pavillon Abitibi-Price, 2405, rue de la Terrasse, Québec, QC, Canada
- Department of Biology, Université Laval, 1045 av. de la Médecine, Québec, QC, Canada
| | - Florent Domine
- Centre d'Études Nordiques, Université Laval, Pavillon Abitibi-Price, 2405, rue de la Terrasse, Québec, QC, Canada
- Takuvik Joint International Laboratory, Université Laval (Canada) and CNRS-INSU (France), 1045 av. de la Médecine, Québec, QC, Canada
- Department of Chemistry, Université Laval, 1045 av. de la Médecine, Québec, QC, Canada
| | - Dominique Fauteux
- Centre d'Études Nordiques, Université Laval, Pavillon Abitibi-Price, 2405, rue de la Terrasse, Québec, QC, Canada
- Centre for Arctic Knowledge and Exploration, Canadian Museum of Nature, Station D, P.O. Box 3443, Ottawa, ON, Canada
| |
Collapse
|
4
|
Wolverines (Gulo gulo) in the Arctic: Revisiting distribution and identifying research and conservation priorities amid rapid environmental change. Polar Biol 2022; 45:1465-1482. [PMID: 36090964 PMCID: PMC9440465 DOI: 10.1007/s00300-022-03079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022]
Abstract
Wolverines (Gulo gulo) occupy most of the globe’s Arctic tundra. Given the rapidly warming climate and expanding human activity in this biome, understanding wolverine ecology, and therefore the species’ vulnerability to such changes, is increasingly important for developing research priorities and effective management strategies. Here, we review and synthesize knowledge of wolverines in the Arctic using both Western science sources and available Indigenous Knowledge (IK) to improve our understanding of wolverine ecology in the Arctic and better predict the species’ susceptibility to change. To accomplish this, we update the pan-Arctic distribution map of wolverines to account for recent observations and then discuss resulting inference and uncertainties. We use these patterns to contextualize and discuss potential underlying drivers of distribution and population dynamics, drawing upon knowledge of food habits, habitat associations, and harvest, as well as studies of wolverine ecology elsewhere. We then identify four broad areas to prioritize conservation and research efforts: (1) Monitoring trends in population abundance, demographics, and distribution and the drivers thereof, (2) Evaluating and predicting wolverines’ responses to ongoing climate change, particularly the consequences of reduced snow and sea ice, and shifts in prey availability, (3) Understanding wolverines’ response to human development, including the possible impact of wintertime over-snow travel and seismic testing to reproductive denning, as well as vulnerability to hunting and trapping associated with increased human access, and (4) Ensuring that current and future harvest are sustainable.
Collapse
|
5
|
Reinking AK, Højlund Pedersen S, Elder K, Boelman NT, Glass TW, Oates BA, Bergen S, Roberts S, Prugh LR, Brinkman TJ, Coughenour MB, Feltner JA, Barker KJ, Bentzen TW, Pedersen ÅØ, Schmidt NM, Liston GE. Collaborative wildlife–snow science: Integrating wildlife and snow expertise to improve research and management. Ecosphere 2022. [DOI: 10.1002/ecs2.4094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Adele K. Reinking
- Cooperative Institute for Research in the Atmosphere Colorado State University Fort Collins Colorado USA
| | - Stine Højlund Pedersen
- Cooperative Institute for Research in the Atmosphere Colorado State University Fort Collins Colorado USA
- Department of Biological Sciences University of Alaska Anchorage Anchorage Alaska USA
| | - Kelly Elder
- US Forest Service Rocky Mountain Research Station Fort Collins Colorado USA
| | - Natalie T. Boelman
- Lamont‐Doherty Earth Observatory Columbia University Palisades New York USA
| | - Thomas W. Glass
- Wildlife Conservation Society Fairbanks Alaska USA
- Department of Biology and Wildlife University of Alaska Fairbanks Fairbanks Alaska USA
| | - Brendan A. Oates
- Washington Department of Fish and Wildlife Ellensburg Washington USA
| | - Scott Bergen
- Idaho Department of Fish and Game Pocatello Idaho USA
| | - Shane Roberts
- Idaho Department of Fish and Game Pocatello Idaho USA
| | - Laura R. Prugh
- School of Environmental and Forest Sciences University of Washington Seattle Washington USA
| | - Todd J. Brinkman
- Institute of Arctic Biology University of Alaska Fairbanks Fairbanks Alaska USA
| | - Michael B. Coughenour
- Natural Resource Ecology Laboratory Colorado State University Fort Collins Colorado USA
| | | | - Kristin J. Barker
- Department of Environmental Science, Policy, and Management University of California Berkeley Berkeley California USA
| | | | | | - Niels M. Schmidt
- Department of Bioscience and Arctic Research Centre Aarhus University Aarhus Denmark
| | - Glen E. Liston
- Cooperative Institute for Research in the Atmosphere Colorado State University Fort Collins Colorado USA
| |
Collapse
|