1
|
McLeod AM, Leroux S, Little CL, Massol F, Vander Wal E, Wiersma YF, Gounand I, Loeuille N, Harvey E. Quantifying elemental diversity to study landscape ecosystem function. Trends Ecol Evol 2024:S0169-5347(24)00246-5. [PMID: 39419673 DOI: 10.1016/j.tree.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
The movement, distribution, and relative proportions of essential elements across the landscape should influence the structure and functioning of biological communities. Yet, our basic understanding of the spatial distribution of elements, particularly bioavailable elements, across landscapes is limited. Here, we propose a quantitative framework to study the causes and consequences of spatial patterns of elements. Specifically, we integrate distribution models, dissimilarity metrics, and spatial smoothing to predict how the distribution of bioavailable elements changes with spatial extent. Our community and landscape ecology perspective on elemental diversity highlights the characteristic relationships that emerge among elements in landscapes and that can be measured empirically to help us pinpoint ecosystem control points. This step forward provides a mechanistic link between community and ecosystem processes.
Collapse
Affiliation(s)
- Anne M McLeod
- IGB Leibniz-Institute of Freshwater Ecology and Inland Fisheries in the Forschungsverbund Berlin eV, 12587 Berlin, Germany; School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Shawn Leroux
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada A1B 3X9
| | - Chelsea L Little
- School of Environmental Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - François Massol
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Eric Vander Wal
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada A1B 3X9
| | - Yolanda F Wiersma
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada A1B 3X9
| | - Isabelle Gounand
- Sorbonne Université, Université Paris Cité, Université Paris Est Créteil, CNRS, INRAE, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (UMR7618), 75005 Paris, France
| | - Nicolas Loeuille
- Sorbonne Université, Université Paris Cité, Université Paris Est Créteil, CNRS, INRAE, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris (UMR7618), 75005 Paris, France
| | - Eric Harvey
- Centre de Recherche sur les Interactions Bassins Versants - Écosystèmes Aquatiques (RIVE), Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada G9A 5H7.
| |
Collapse
|
2
|
van Beest FM, Schmidt NM, Stewart L, Hansen LH, Michelsen A, Mosbacher JB, Gilbert H, Le Roux G, Hansson SV. Geochemical landscapes as drivers of wildlife reproductive success: Insights from a high-Arctic ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166567. [PMID: 37633375 DOI: 10.1016/j.scitotenv.2023.166567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The bioavailability of essential and non-essential elements in vegetation is expected to influence the performance of free-ranging terrestrial herbivores. However, attempts to relate the use of geochemical landscapes by animal populations directly to reproductive output are currently lacking. Here we measured concentrations of 14 essential and non-essential elements in soil and vegetation samples collected in the Zackenberg valley, northeast Greenland, and linked these to environmental conditions to spatially predict and map geochemical landscapes. We then used long-term (1996-2021) survey data of muskoxen (Ovibos moschatus) to quantify annual variation in the relative use of essential and non-essential elements in vegetated sites and their relationship to calf recruitment the following year. Results showed that the relative use of the geochemical landscape by muskoxen varied substantially between years and differed among elements. Selection for vegetated sites with higher levels of the essential elements N, Cu, Se, and Mo was positively linked to annual calf recruitment. In contrast, selection for vegetated sites with higher concentrations of the non-essential elements As and Pb was negatively correlated to annual calf recruitment. Based on the concentrations measured in our study, we found no apparent associations between annual calf recruitment and levels of C, Mn, Co, Zn, Cd, Ba, Hg, and C:N ratio in the vegetation. We conclude that the spatial distribution and access to essential and non-essential elements are important drivers of reproductive output in muskoxen, which may also apply to other wildlife populations. The value of geochemical landscapes to assess habitat-performance relationships is likely to increase under future environmental change.
Collapse
Affiliation(s)
- Floris M van Beest
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Arctic Research Centre, Aarhus University, Ole Worms Allé 1, 8000 Aarhus C, Denmark.
| | - Niels Martin Schmidt
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Arctic Research Centre, Aarhus University, Ole Worms Allé 1, 8000 Aarhus C, Denmark
| | - Lærke Stewart
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Gullbringvegen 36, 3800 Bø, Norway
| | - Lars H Hansen
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Arctic Research Centre, Aarhus University, Ole Worms Allé 1, 8000 Aarhus C, Denmark
| | - Anders Michelsen
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | | | - Hugo Gilbert
- Laboratoire Ecologie Fonctionnelle et Environnement (UMR- 5245), CNRS, Université de Toulouse, Avenue de l'Agrobiopole, 31326 Castanet Tolosan, France
| | - Gaël Le Roux
- Laboratoire Ecologie Fonctionnelle et Environnement (UMR- 5245), CNRS, Université de Toulouse, Avenue de l'Agrobiopole, 31326 Castanet Tolosan, France
| | - Sophia V Hansson
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Laboratoire Ecologie Fonctionnelle et Environnement (UMR- 5245), CNRS, Université de Toulouse, Avenue de l'Agrobiopole, 31326 Castanet Tolosan, France
| |
Collapse
|
3
|
Pichon B, Thébault E, Lacroix G, Gounand I. Quality matters: Stoichiometry of resources modulates spatial feedbacks in aquatic-terrestrial meta-ecosystems. Ecol Lett 2023; 26:1700-1713. [PMID: 37458203 DOI: 10.1111/ele.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
Species dispersal and resource spatial flows greatly affect the dynamics of connected ecosystems. So far, research on meta-ecosystems has mainly focused on the quantitative effect of subsidy flows. Yet, resource exchanges at heterotrophic-autotrophic (e.g. aquatic-terrestrial) ecotones display a stoichiometric asymmetry that likely matters for functioning. Here, we joined ecological stoichiometry and the meta-ecosystem framework to understand how subsidy stoichiometry mediates the response of the meta-ecosystem to subsidy flows. Our model results demonstrate that resource flows between ecosystems can induce a positive spatial feedback loop, leading to higher production at the meta-ecosystem scale by relaxing local ecosystem limitations ('spatial complementarity'). Furthermore, we show that spatial flows can also have an unexpected negative impact on production when accentuating the stoichiometric mismatch between local resources and basal species needs. This study paves the way for studies on the interdependency of ecosystems at the landscape extent.
Collapse
Affiliation(s)
- Benoît Pichon
- Institut d'écologie et des sciences de l'environnement (iEES Paris), Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Paris, France
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Elisa Thébault
- Institut d'écologie et des sciences de l'environnement (iEES Paris), Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Paris, France
| | - Gérard Lacroix
- Institut d'écologie et des sciences de l'environnement (iEES Paris), Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Paris, France
- CNRS, UAR 3194 (ENS, CNRS), CEREEP-Ecotron IleDeFrance, Ecole Normale Supérieure, Paris, France
| | - Isabelle Gounand
- Institut d'écologie et des sciences de l'environnement (iEES Paris), Sorbonne Université, CNRS, UPEC, CNRS, IRD, INRA, Paris, France
| |
Collapse
|
4
|
Brown MB, Fennessy JT, Crego RD, Fleming CH, Alves J, Brandlová K, Fennessy S, Ferguson S, Hauptfleisch M, Hejcmanova P, Hoffman R, Leimgruber P, Masiaine S, McQualter K, Mueller T, Muller B, Muneza A, O'Connor D, Olivier AJ, Rabeil T, Seager S, Stacy-Dawes J, van Schalkwyk L, Stabach J. Ranging behaviours across ecological and anthropogenic disturbance gradients: a pan-African perspective of giraffe ( Giraffa spp .) space use. Proc Biol Sci 2023; 290:20230912. [PMID: 37357852 PMCID: PMC10291724 DOI: 10.1098/rspb.2023.0912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/26/2023] [Indexed: 06/27/2023] Open
Abstract
Animal movement behaviours are shaped by diverse factors, including resource availability and human impacts on the landscape. We generated home range estimates and daily movement rate estimates for 149 giraffe (Giraffa spp.) from all four species across Africa to evaluate the effects of environmental productivity and anthropogenic disturbance on space use. Using the continuous time movement modelling framework and a novel application of mixed effects meta-regression, we summarized overall giraffe space use and tested for the effects of resource availability and human impact on 95% autocorrelated kernel density estimate (AKDE) size and daily movement. The mean 95% AKDE was 359.9 km2 and the mean daily movement was 14.2 km, both with marginally significant differences across species. We found significant negative effects of resource availability, and significant positive effects of resource heterogeneity and protected area overlap on 95% AKDE size. There were significant negative effects of overall anthropogenic disturbance and positive effects of the heterogeneity of anthropogenic disturbance on daily movements and 95% AKDE size. Our results provide unique insights into the interactive effects of resource availability and anthropogenic development on the movements of a large-bodied browser and highlight the potential impacts of rapidly changing landscapes on animal space-use patterns.
Collapse
Affiliation(s)
- Michael Butler Brown
- Giraffe Conservation Foundation, PO Box 86099, Eros, Windhoek, Namibia
- Smithsonian National Zoo and Conservation Biology Institute, Conservation Ecology Center, 1500 Remount Rd, Front Royal, VA 22630, USA
| | | | - Ramiro D. Crego
- Smithsonian National Zoo and Conservation Biology Institute, Conservation Ecology Center, 1500 Remount Rd, Front Royal, VA 22630, USA
| | - Christen H. Fleming
- Smithsonian National Zoo and Conservation Biology Institute, Conservation Ecology Center, 1500 Remount Rd, Front Royal, VA 22630, USA
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Joel Alves
- Wildscapes Veterinary & Conservation Services, Hoedspruit, South Africa
| | - Karolina Brandlová
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czechia
| | | | - Sara Ferguson
- Giraffe Conservation Foundation, PO Box 86099, Eros, Windhoek, Namibia
| | - Morgan Hauptfleisch
- Biodiversity Research Centre, Namibia University of Science and Technology, 8 Johann Albrecht Street, Windhoek, Namibia
| | - Pavla Hejcmanova
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czechia
| | - Rigardt Hoffman
- Giraffe Conservation Foundation, PO Box 86099, Eros, Windhoek, Namibia
| | - Peter Leimgruber
- Smithsonian National Zoo and Conservation Biology Institute, Conservation Ecology Center, 1500 Remount Rd, Front Royal, VA 22630, USA
| | - Symon Masiaine
- Conservation Science & Wildlife Health, San Diego Zoo Wildlife Alliance, San Diego, CA, USA
| | - Kylie McQualter
- Centre for Ecosystem Studies, School of Biological Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, 2052, Australia
| | - Thomas Mueller
- Senckenberg Biodiversity and Climate Research Centre and Department of Biological Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ben Muller
- Wildscapes Veterinary & Conservation Services, Hoedspruit, South Africa
| | - Arthur Muneza
- Giraffe Conservation Foundation, PO Box 86099, Eros, Windhoek, Namibia
| | - David O'Connor
- Smithsonian National Zoo and Conservation Biology Institute, Conservation Ecology Center, 1500 Remount Rd, Front Royal, VA 22630, USA
- Senckenberg Biodiversity and Climate Research Centre and Department of Biological Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Adriaan Jacobus Olivier
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | | | | | - Jenna Stacy-Dawes
- Conservation Science & Wildlife Health, San Diego Zoo Wildlife Alliance, San Diego, CA, USA
| | - Louis van Schalkwyk
- Office of the State Veterinarian, Department of Agriculture, Land Reform and Rural Development, Kruger National Park, Skukuza, South Africa
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Jared Stabach
- Smithsonian National Zoo and Conservation Biology Institute, Conservation Ecology Center, 1500 Remount Rd, Front Royal, VA 22630, USA
| |
Collapse
|
5
|
Holmes SM, Dressel S, Morel J, Spitzer R, Ball JP, Ericsson G, Singh NJ, Widemo F, Cromsigt JPGM, Danell K. Increased summer temperature is associated with reduced calf mass of a circumpolar large mammal through direct thermoregulatory and indirect, food quality, pathways. Oecologia 2023; 201:1123-1136. [PMID: 37017733 PMCID: PMC10113315 DOI: 10.1007/s00442-023-05367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/25/2023] [Indexed: 04/06/2023]
Abstract
Climate change represents a growing ecological challenge. The (sub) arctic and boreal regions of the world experience the most rapid warming, presenting an excellent model system for studying how climate change affects mammals. Moose (Alces alces) are a particularly relevant model species with their circumpolar range. Population declines across the southern edge of this range are linked to rising temperatures. Using a long-term dataset (1988-1997, 2017-2019), we examine the relative strength of direct (thermoregulatory costs) and indirect (food quality) pathways linking temperature, precipitation, and the quality of two important food items (birch and fireweed) to variation in moose calf mass in northern Sweden. The direct effects of temperature consistently showed stronger relationships to moose calf mass than did the indirect effects. The proportion of growing season days where the temperature exceeded a 20 °C threshold showed stronger direct negative relationships to moose calf mass than did mean temperature values. Finally, while annual forb (fireweed) quality was more strongly influenced by temperature and precipitation than were perennial (birch) leaves, this did not translate into a stronger relationship to moose calf weight. The only indirect path with supporting evidence suggested that mean growing season temperatures were positively associated with neutral detergent fiber, which was, in turn, negatively associated with calf mass. While indirect impacts of climate change deserve further investigation, it is important to recognize the large direct impacts of temperature on cold-adapted species.
Collapse
Affiliation(s)
- Sheila M Holmes
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden.
| | - Sabrina Dressel
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
- Forest and Nature Conservation Policy Chair Group, Wageningen, The Netherlands
| | - Julien Morel
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Robert Spitzer
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - John P Ball
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Göran Ericsson
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Navinder J Singh
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Fredrik Widemo
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Joris P G M Cromsigt
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Kjell Danell
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| |
Collapse
|
6
|
Dong J, Anderson LJ. Predicted impacts of global change on bottom-up trophic interactions in the plant-ungulate-wolf food chain in boreal forests. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Heckford TR, Leroux SJ, Vander Wal E, Rizzuto M, Balluffi‐Fry J, Richmond IC, Wiersma YF. Ecoregion and community structure influences on the foliar elemental niche of balsam fir ( Abies balsamea (L.) Mill.) and white birch ( Betula papyrifera Marshall). Ecol Evol 2022; 12:e9244. [PMID: 36110871 PMCID: PMC9465200 DOI: 10.1002/ece3.9244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/18/2022] [Accepted: 08/01/2022] [Indexed: 11/14/2022] Open
Abstract
Changes in foliar elemental niche properties, defined by axes of carbon (C), nitrogen (N), and phosphorus (P) concentrations, reflect how species allocate resources under different environmental conditions. For instance, elemental niches may differ in response to large-scale latitudinal temperature and precipitation regimes that occur between ecoregions and small-scale differences in nutrient dynamics based on species co-occurrences at a community level. At a species level, we compared foliar elemental niche hypervolumes for balsam fir (Abies balsamea (L.) Mill.) and white birch (Betula papyrifera Marshall) between a northern and southern ecoregion. At a community level, we grouped our focal species using plot data into conspecific (i.e., only one focal species is present) and heterospecific groups (i.e., both focal species are present) and compared their foliar elemental concentrations under these community conditions across, within, and between these ecoregions. Between ecoregions at the species and community level, we expected niche hypervolumes to be different and driven by regional biophysical effects on foliar N and P concentrations. At the community level, we expected niche hypervolume displacement and expansion patterns for fir and birch, respectively-patterns that reflect their resource strategy. At the species level, foliar elemental niche hypervolumes between ecoregions differed significantly for fir (F = 14.591, p-value = .001) and birch (F = 75.998, p-value = .001) with higher foliar N and P in the northern ecoregion. At the community level, across ecoregions, the foliar elemental niche hypervolume of birch differed significantly between heterospecific and conspecific groups (F = 4.075, p-value = .021) but not for fir. However, both species displayed niche expansion patterns, indicated by niche hypervolume increases of 35.49% for fir and 68.92% for birch. Within the northern ecoregion, heterospecific conditions elicited niche expansion responses, indicated by niche hypervolume increases for fir of 29.04% and birch of 66.48%. In the southern ecoregion, we observed a contraction response for birch (niche hypervolume decreased by 3.66%) and no changes for fir niche hypervolume. Conspecific niche hypervolume comparisons between ecoregions yielded significant differences for fir and birch (F = 7.581, p-value = .005 and F = 8.038, p-value = .001) as did heterospecific comparisons (F = 6.943, p-value = .004, and F = 68.702, p-value = .001, respectively). Our results suggest species may exhibit biogeographical specific elemental niches-driven by biophysical differences such as those used to describe ecoregion characteristics. We also demonstrate how a species resource strategy may inform niche shift patterns in response to different community settings. Our study highlights how biogeographical differences may influence foliar elemental traits and how this may link to concepts of ecosystem and landscape functionality.
Collapse
Affiliation(s)
- Travis R. Heckford
- British Columbia GovernmentMinistry of Forests, Cariboo Natural Resource RegionWilliams LakeBritish ColumbiaCanada
| | - Shawn J. Leroux
- Department of BiologyMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| | - Eric Vander Wal
- Department of BiologyMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| | - Matteo Rizzuto
- Department of BiologyMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| | - Juliana Balluffi‐Fry
- Department of BiologyMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| | - Isabella C. Richmond
- Department of BiologyMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| | - Yolanda F. Wiersma
- Department of BiologyMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| |
Collapse
|
8
|
In defense of elemental currencies: can ecological stoichiometry stand as a framework for terrestrial herbivore nutritional ecology? Oecologia 2022; 199:27-38. [PMID: 35396976 DOI: 10.1007/s00442-022-05160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
Nutritional ecologists aim to predict population or landscape-level effects of food availability, but the tools to extrapolate nutrition from small to large extents are often lacking. The appropriate nutritional ecology currencies should be able to represent consumer responses to food while simultaneously be simple enough to expand such responses to large spatial extents and link them to ecosystem functioning. Ecological stoichiometry (ES), a framework of nutritional ecology, can meet these demands, but it is typically associated with ecosystem ecology and nutrient cycling, and less often used to study wildlife nutrition. Despite the emerging zoogeochemical evidence that animals, and thus their diets, play critical roles in nutrient movement, wildlife nutritional ecology has not fully embraced ES, and ES has not incorporated nutrition in many wildlife studies. Here, we discuss how elemental currencies are "nutritionally, organismally, and ecologically explicit" in the context of terrestrial herbivore nutritional ecology. We add that ES and elemental currencies offer a means to measure resource quality across landscapes and compare nutrient availability among regions. Further, we discuss ES shortcomings and solutions, and list future directions to advance the field. As ecological studies increasingly grow in spatial extent, and attempt to link multiple levels of biological organization, integrating more simple and unifying currencies into nutritional studies, like elements, is necessary for nutritional ecology to predict herbivore occurrences and abundances across regions.
Collapse
|
9
|
Richmond IC, Balluffi-Fry J, Vander Wal E, Leroux SJ, Rizzuto M, Heckford TR, Kennah JL, Riefesel GR, Wiersma YF. Individual snowshoe hares manage risk differently: integrating stoichiometric distribution models and foraging ecology. J Mammal 2021. [DOI: 10.1093/jmammal/gyab130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Herbivores making space use decisions must consider the trade-off between perceived predation risk and forage quality. Herbivores, specifically snowshoe hares (Lepus americanus), must constantly navigate landscapes that vary in predation risk and food quality, providing researchers with the opportunity to explore the factors that govern their foraging decisions. Herein, we tested predictions that intersect the risk allocation hypothesis (RAH) and optimal foraging theory (OFT) in a spatially explicit ecological stoichiometry framework to assess the trade-off between predation risk and forage quality. We used individual and population estimates of snowshoe hare (n = 29) space use derived from biotelemetry across three summers. We evaluated resource forage quality for lowbush blueberry (Vaccinium angustifolium), a common and readily available forage species within our system, using carbon:nitrogen and carbon:phosphorus ratios. We used habitat complexity to proxy perceived predation risk. We analyzed how forage quality of blueberry, perceived predation risk, and their interaction impact the intensity of herbivore space use. We used generalized mixed effects models, structured to enable us to make inferences at the population and individual home range level. We did not find support for RAH and OFT. However, variation in the individual-level reactions norms in our models showed that individual hares have unique responses to forage quality and perceived predation risk. Our finding of individual-level responses indicates that there is fine-scale decision-making by hares, although we did not identify the mechanism. Our approach illustrates spatially explicit empirical support for individual behavioral responses to the food quality–predation risk trade-off.
Collapse
Affiliation(s)
- Isabella C Richmond
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Juliana Balluffi-Fry
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Eric Vander Wal
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Shawn J Leroux
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Matteo Rizzuto
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Travis R Heckford
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Joanie L Kennah
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Gabrielle R Riefesel
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Yolanda F Wiersma
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
10
|
Balluffi-Fry J, Leroux SJ, Wiersma YF, Richmond IC, Heckford TR, Rizzuto M, Kennah JL, Vander Wal E. Integrating plant stoichiometry and feeding experiments: state-dependent forage choice and its implications on body mass. Oecologia 2021; 198:579-591. [PMID: 34743229 DOI: 10.1007/s00442-021-05069-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
Intraspecific feeding choices comprise a large portion of herbivore foraging decisions. Plant resource quality is heterogeneously distributed, affected by nutrient availability and growing conditions. Herbivores navigate landscapes, foraging not only according to food qualities, but also energetic and nutritional demands. We test three non-exclusive foraging hypotheses using the snowshoe hare (Lepus americanus): (1) herbivore feeding choices and body conditions respond to intraspecific plant quality variation; (2) high energetic demands mitigate feeding responses; and (3) feeding responses are inflated when nutritional demands are high. We measured black spruce (Picea mariana) nitrogen, phosphorus and terpene compositions, as indicators of quality, within a snowshoe hare trapping grid and found plant growing conditions to explain spruce quality variation (R2 < 0.36). We then offered two qualities of spruce (H1) from the trapping grid to hares in cafeteria-style experiments and measured their feeding and body condition responses (n = 75). We proxied energetic demands (H2) with ambient temperature and coat insulation (% white coat) and nutritional demands (H3) with the spruce quality (nitrogen and phosphorus content) in home ranges. Hares with the strongest preference for high-quality spruce lost on average 2.2% less weight than hares who ate the least high-quality spruce relative to low-quality spruce. The results supported our energetic predictions as follows: hares in colder temperatures and with less-insulative coats (lower % white) consumed more spruce and were less selective towards high-quality spruce. Collectively, we found variation in plant growing conditions within herbivore home ranges substantial enough to affect herbivore body conditions, but energetic stats mediate plant-herbivore interactions.
Collapse
Affiliation(s)
- Juliana Balluffi-Fry
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada. .,Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada.
| | - Shawn J Leroux
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Yolanda F Wiersma
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Isabella C Richmond
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Travis R Heckford
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Matteo Rizzuto
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Joanie L Kennah
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Eric Vander Wal
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|