1
|
Gaynor KM, Abrahms B, Manlove KR, Oestreich WK, Smith JA. Anthropogenic impacts at the interface of animal spatial and social behaviour. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220527. [PMID: 39230457 PMCID: PMC11449167 DOI: 10.1098/rstb.2022.0527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 09/05/2024] Open
Abstract
Human disturbance is contributing to widespread, global changes in the distributions and densities of wild animals. These anthropogenic impacts on wildlife arise from multiple bottom-up and top-down pathways, including habitat loss, resource provisioning, climate change, pollution, infrastructure development, hunting and our direct presence. Animal behaviour is an important mechanism linking these disturbances to population outcomes, although these behavioural pathways are often complex and can remain obscured when different aspects of behaviour are studied in isolation from one another. The spatial-social interface provides a lens for understanding how an animal's spatial and social environments interact to determine its spatial and social phenotype (i.e. measurable characteristics of an individual), and how these phenotypes interact and feed back to reshape environments. Here, we review studies of animal behaviour at the spatial-social interface to understand and predict how human disturbance affects animal movement, distribution and intraspecific interactions, with consequences for the conservation of populations and ecosystems. By understanding the spatial-social mechanisms linking human disturbance to conservation outcomes, we can better design management interventions to mitigate undesired consequences of disturbance.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Kaitlyn M Gaynor
- Departments of Zoology and Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kezia R Manlove
- Department of Wildland Resources, Utah State University, Logan, UT 84322, USA
| | | | - Justine A Smith
- Department of Wildlife Fish, and Conservation Biology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Beck KB, Farine DR, Firth JA, Sheldon BC. Variation in local population size predicts social network structure in wild songbirds. J Anim Ecol 2023; 92:2348-2362. [PMID: 37837224 PMCID: PMC10952437 DOI: 10.1111/1365-2656.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
The structure of animal societies is a key determinant of many ecological and evolutionary processes. Yet, we know relatively little about the factors and mechanisms that underpin detailed social structure. Among other factors, social structure can be influenced by habitat configuration. By shaping animal movement decisions, heterogeneity in habitat features, such as vegetation and the availability of resources, can influence the spatiotemporal distribution of individuals and subsequently key socioecological properties such as the local population size and density. Differences in local population size and density can impact opportunities for social associations and may thus drive substantial variation in local social structure. Here, we investigated spatiotemporal variation in population size at 65 distinct locations in a small songbird, the great tit (Parus major) and its effect on social network structure. We first explored the within-location consistency of population size from weekly samples and whether the observed variation in local population size was predicted by the underlying habitat configuration. Next, we created social networks from the birds' foraging associations at each location for each week and examined if local population size affected social structure. We show that population size is highly repeatable within locations across weeks and years and that some of the observed variation in local population size was predicted by the underlying habitat, with locations closer to the forest edge having on average larger population sizes. Furthermore, we show that local population size affected social structure inferred by four global network metrics. Using simple simulations, we then reveal that much of the observed social structure is shaped by social processes. Across different population sizes, the birds' social structure was largely explained by their preference to forage in flocks. In addition, over and above effects of social foraging, social preferences between birds (i.e. social relationships) shaped certain network features such as the extent of realized social connections. Our findings thus suggest that individual social decisions substantially contribute to shaping certain social network features over and above effects of population size alone.
Collapse
Affiliation(s)
- Kristina B. Beck
- Department of Biology, Edward Grey InstituteUniversity of OxfordOxfordUK
| | - Damien R. Farine
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Department of Collective BehaviourMax Planck Institute of Animal BehaviourKonstanzGermany
| | - Josh A. Firth
- Department of Biology, Edward Grey InstituteUniversity of OxfordOxfordUK
| | - Ben C. Sheldon
- Department of Biology, Edward Grey InstituteUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Gupte PR, Albery GF, Gismann J, Sweeny A, Weissing FJ. Novel pathogen introduction triggers rapid evolution in animal social movement strategies. eLife 2023; 12:e81805. [PMID: 37548365 PMCID: PMC10449382 DOI: 10.7554/elife.81805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2023] [Indexed: 08/08/2023] Open
Abstract
Animal sociality emerges from individual decisions on how to balance the costs and benefits of being sociable. Novel pathogens introduced into wildlife populations should increase the costs of sociality, selecting against gregariousness. Using an individual-based model that captures essential features of pathogen transmission among social hosts, we show how novel pathogen introduction provokes the rapid evolutionary emergence and coexistence of distinct social movement strategies. These strategies differ in how they trade the benefits of social information against the risk of infection. Overall, pathogen-risk-adapted populations move more and have fewer associations with other individuals than their pathogen-risk-naive ancestors, reducing disease spread. Host evolution to be less social can be sufficient to cause a pathogen to be eliminated from a population, which is followed by a rapid recovery in social tendency. Our conceptual model is broadly applicable to a wide range of potential host-pathogen introductions and offers initial predictions for the eco-evolutionary consequences of wildlife pathogen spillover scenarios and a template for the development of theory in the ecology and evolution of animals' movement decisions.
Collapse
Affiliation(s)
- Pratik Rajan Gupte
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| | - Gregory F Albery
- Georgetown UniversityWashingtonUnited States
- Wissenschaftskolleg zu BerlinBerlinGermany
| | - Jakob Gismann
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| | - Amy Sweeny
- Institute of Evolutionary Biology, University of EdinburghEdinburghUnited Kingdom
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| |
Collapse
|
4
|
Webber QMR, Albery GF, Farine DR, Pinter-Wollman N, Sharma N, Spiegel O, Vander Wal E, Manlove K. Behavioural ecology at the spatial-social interface. Biol Rev Camb Philos Soc 2023; 98:868-886. [PMID: 36691262 DOI: 10.1111/brv.12934] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Spatial and social behaviour are fundamental aspects of an animal's biology, and their social and spatial environments are indelibly linked through mutual causes and shared consequences. We define the 'spatial-social interface' as intersection of social and spatial aspects of individuals' phenotypes and environments. Behavioural variation at the spatial-social interface has implications for ecological and evolutionary processes including pathogen transmission, population dynamics, and the evolution of social systems. We link spatial and social processes through a foundation of shared theory, vocabulary, and methods. We provide examples and future directions for the integration of spatial and social behaviour and environments. We introduce key concepts and approaches that either implicitly or explicitly integrate social and spatial processes, for example, graph theory, density-dependent habitat selection, and niche specialization. Finally, we discuss how movement ecology helps link the spatial-social interface. Our review integrates social and spatial behavioural ecology and identifies testable hypotheses at the spatial-social interface.
Collapse
Affiliation(s)
- Quinn M R Webber
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Gregory F Albery
- Department of Biology, Georgetown University, 37th and O Streets, Washington, DC, 20007, USA.,Wissenschaftskolleg zu Berlin, Wallotstraße 19, 14193, Berlin, Germany.,Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Damien R Farine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitatsstraße 10, 78464, Constance, Germany.,Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nitika Sharma
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eric Vander Wal
- Department of Biology, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, 5200 Old Main Hill, Logan, UT, 84322, USA
| |
Collapse
|
5
|
Guo G, Zhang Z, Zhang H, Bearup D, Liao J. Contrasting effects of dispersal network heterogeneity on ecosystem stability in rock-paper-scissors games. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1068830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intransitive competition, typically represented by the classic rock-paper-scissors game, provides an endogenous mechanism promoting species coexistence. As well known, species dispersal and interaction in nature might occur on complex patch networks, with species interacting in diverse ways. However, the effects of different interaction modes, combined with spatial heterogeneity in patch connectivities, have not been well integrated into our general understanding of how stable coexistence emerges in cyclic competition. We thus incorporate network heterogeneity into the classic rock-paper-scissors game, in order to compare ecosystem stability under two typical modes of interaction: species compete to fill empty sites, and species seize each other’s colony sites. On lattice-structured regular networks, the two interaction modes produce similar stability patterns through forming conspecific clusters to reduce interspecific competition. However, for heterogeneous networks, the interaction modes have contrasting effects on ecosystem stability. Specifically, if species compete for colony sites, increasing network heterogeneity stabilizes competitive dynamics. When species compete to fill empty sites, an increase in network heterogeneity leads to larger population fluctuations and therefore a higher risk of stochastic extinctions, in stark contrast to current knowledge. Our findings strongly suggest that particular attention should be devoted to testing which mode of interaction is more appropriate for modeling a given system.
Collapse
|
6
|
Gutiérrez EG, Rodríguez-Herrera B, Baeza JA, Isabel Salazar M, Ortega J. Genetic Analyses Reveal High Connectivity among Populations of the Honduran White Bat Ectophylla alba in the Caribbean Lowlands of Central Eastern Costa Rica. ACTA CHIROPTEROLOGICA 2022. [DOI: 10.3161/15081109acc2022.24.1.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Edgar G. Gutiérrez
- Laboratorio de Bioconservación y Manejo, Posgrado en Ciencias Químicobiológicas, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala s/n, Col. Santo Tomás, C.P. 11340,
| | - Bernal Rodríguez-Herrera
- Escuela de Biología y Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, 11501-2060, San Pedro de Montes de Oca, San José, Costa Rica
| | - J. Antonio Baeza
- Departament of Biological Sciences, 132 Long Hall, Clemson University, Clemson, SC 29634, USA
| | - Ma. Isabel Salazar
- Laboratorio de Virología e Inmunovirología, Posgrado en Ciencias Químicobiológicas, Posgrado de Inmunología, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala s
| | - Jorge Ortega
- Laboratorio de Bioconservación y Manejo, Posgrado en Ciencias Químicobiológicas, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala s/n, Col. Santo Tomás, C.P. 11340,
| |
Collapse
|
7
|
Ashby B, Farine DR. Social information use shapes the coevolution of sociality and virulence. Evolution 2022; 76:1153-1169. [PMID: 35420704 PMCID: PMC9322624 DOI: 10.1111/evo.14491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 01/21/2023]
Abstract
Social contacts can facilitate the spread of both survival-related information and infectious diseases, but little is known about how these processes combine to shape host and parasite evolution. Here, we use a theoretical model that captures both infection and information transmission processes to investigate how host sociality (contact effort) and parasite virulence (disease-associated mortality rate) (co)evolve. We show that selection for sociality (and in turn, virulence) depends on both the intrinsic costs and benefits of social information and infection as well as their relative prevalence in the population. Specifically, greater sociality and lower virulence evolve when the risk of infection is either low or high and social information is neither very common nor too rare. Lower sociality and higher virulence evolve when the prevalence patterns are reversed. When infection and social information are both at moderate levels in the population, the direction of selection depends on the relative costs and benefits of being infected or informed. We also show that sociality varies inversely with virulence, and that parasites may be unable to prevent runaway selection for higher contact efforts. Together, these findings provide new insights for our understanding of group living and how apparently opposing ecological processes can influence the evolution of sociality and virulence in a range of ways.
Collapse
Affiliation(s)
- Ben Ashby
- Department of Mathematical SciencesUniversity of BathBathSomersetUK,Department of MathematicsSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Damien R. Farine
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland,Max Planck Institute of Animal BehaviorRadolfzellGermany,Centre for the Advanced Study of Collective BehaviourUniversity of KonstanzKonstanzGermany
| |
Collapse
|
8
|
Medici EP, Mezzini S, Fleming CH, Calabrese JM, Noonan MJ. Movement ecology of vulnerable lowland tapirs between areas of varying human disturbance. MOVEMENT ECOLOGY 2022; 10:14. [PMID: 35287742 PMCID: PMC8919628 DOI: 10.1186/s40462-022-00313-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Animal movement is a key ecological process that is tightly coupled to local environmental conditions. While agriculture, urbanisation, and transportation infrastructure are critical to human socio-economic improvement, these have spurred substantial changes in animal movement across the globe with potential impacts on fitness and survival. Notably, however, human disturbance can have differential effects across species, and responses to human activities are thus largely taxa and context specific. As human disturbance is only expected to worsen over the next decade it is critical to better understand how species respond to human disturbance in order to develop effective, case-specific conservation strategies. METHODS Here, we use an extensive telemetry dataset collected over 22 years to fill a critical knowledge gap in the movement ecology of lowland tapirs (Tapirus terrestris) across areas of varying human disturbance within three biomes in southern Brazil: the Pantanal, Cerrado, and Atlantic Forest. RESULTS From these data we found that the mean home range size across all monitored tapirs was 8.31 km2 (95% CI 6.53-10.42), with no evidence that home range sizes differed between sexes nor age groups. Interestingly, although the Atlantic Forest, Cerrado, and Pantanal vary substantially in habitat composition, levels of human disturbance, and tapir population densities, we found that lowland tapir movement behaviour and space use were consistent across all three biomes. Human disturbance also had no detectable effect on lowland tapir movement. Lowland tapirs living in the most altered habitats we monitored exhibited movement behaviour that was comparable to that of tapirs living in a near pristine environment. CONCLUSIONS Contrary to our expectations, although we observed individual variability in lowland tapir space use and movement, human impacts on the landscape also had no measurable effect on their movement. Lowland tapir movement behaviour thus appears to exhibit very little phenotypic plasticity in response to human disturbance. Crucially, the lack of any detectable response to anthropogenic disturbance suggests that human modified habitats risk being ecological traps for tapirs and this information should be factored into conservation actions and species management aimed towards protecting lowland tapir populations.
Collapse
Affiliation(s)
- E P Medici
- Lowland Tapir Conservation Initiative (LTCI), Instituto de Pesquisas Ecológicas (IPÊ), Rodovia Dom Pedro I, km 47, Nazaré Paulista, São Paulo, 12960-000, Brazil.
- IUCN SSC Tapir Specialist Group (TSG), Campo Grande, Brazil.
- Escola Superior de Conservação Ambiental E Sustentabilidade (ESCAS/IPÊ), Rodovia Dom Pedro I, km 47, Nazaré Paulista, São Paulo, 12960-000, Brazil.
| | - S Mezzini
- The Irving K. Barber Faculty of Science, The University of British Columbia, Okanagan Campus, Kelowna, Canada
| | - C H Fleming
- University of Maryland College Park, College Park, MD, USA
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - J M Calabrese
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
- Helmholtz-Zentrum Dresden Rossendorf (HZDR), Dresden, Germany
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - M J Noonan
- The Irving K. Barber Faculty of Science, The University of British Columbia, Okanagan Campus, Kelowna, Canada
| |
Collapse
|