1
|
Li W, Cheng L, He X, He G, Liu Y, Sang Z, Wang Y, Shao M, Xiong T, Xu H, Zhao J. Gut fungi of black-necked cranes (Grus nigricollis) respond to dietary changes during wintering. BMC Microbiol 2024; 24:232. [PMID: 38951807 PMCID: PMC11218170 DOI: 10.1186/s12866-024-03396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Migratory birds exhibit heterogeneity in foraging strategies during wintering to cope with environmental and migratory pressures, and gut bacteria respond to changes in host diet. However, less is known about the dynamics of diet and gut fungi during the wintering period in black-necked cranes (Grus nigricollis). RESULTS In this work, we performed amplicon sequencing of the trnL-P6 loop and ITS1 regions to characterize the dietary composition and gut fungal composition of black-necked cranes during wintering. Results indicated that during the wintering period, the plant-based diet of black-necked cranes mainly consisted of families Poaceae, Solanaceae, and Polygonaceae. Among them, the abundance of Solanaceae, Polygonaceae, Fabaceae, and Caryophyllaceae was significantly higher in the late wintering period, which also led to a more even consumption of various food types by black-necked cranes during this period. The diversity of gut fungal communities and the abundance of core fungi were more conserved during the wintering period, primarily dominated by Ascomycota and Basidiomycota. LEfSe analysis (P < 0.05, LDA > 2) found that Pyxidiophora, Pseudopeziza, Sporormiella, Geotrichum, and Papiliotrema were significantly enriched in early winter, Ramularia and Dendryphion were significantly enriched in mid-winter, Barnettozyma was significantly abundant in late winter, and Pleuroascus was significantly abundant in late winter. Finally, mantel test revealed a significant correlation between winter diet and gut fungal. CONCLUSIONS This study revealed the dynamic changes in the food composition and gut fungal community of black-necked cranes during wintering in Dashanbao. In the late wintering period, their response to environmental and migratory pressures was to broaden their diet, increase the intake of non-preferred foods, and promote a more balanced consumption ratio of various foods. Balanced food composition played an important role in stabilizing the structure of the gut fungal community. While gut fungal effectively enhanced the host's food utilization rate, they may also faced potential risks of introducing pathogenic fungi. Additionally, we recongnized the limitations of fecal testing in studying the composition of animal gut fungal, as it cannot effectively distinguished between fungal taxa from food or soil inadvertently ingested and intestines. Future research on functions such as cultivation and metagenomics may further elucidate the role of fungi in the gut ecosystem.
Collapse
Affiliation(s)
- Wenhao Li
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, China
| | - Lijun Cheng
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong, 657000, China
| | - Xin He
- Sichuan Academy of Grassland Sciences, Chengdu, 610000, China
| | - Guiwen He
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong, 657000, China
| | - Yutong Liu
- Sichuan Academy of Grassland Sciences, Chengdu, 610000, China
| | - Zhenglin Sang
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong, 657000, China
| | - Yuanjian Wang
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Zhaotong, Yunnan Province, 657000, China
| | - Mingcui Shao
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Zhaotong, Yunnan Province, 657000, China
| | - Tingsong Xiong
- Management Bureau of Dashanbao Black-Necked Crane National Nature Reserve, Zhaotong, Yunnan Province, 657000, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Yucheng District, Ya'an, Sichuan, 625014, China.
| | - Junsong Zhao
- College of Agronomy and Life Sciences, Zhaotong University, Zhaotong, 657000, China.
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong, 657000, China.
| |
Collapse
|
2
|
Humphries JE, Lanctôt CM, McCallum HI, Newell DA, Grogan LF. Chytridiomycosis causes high amphibian mortality prior to the completion of metamorphosis. ENVIRONMENTAL RESEARCH 2024; 247:118249. [PMID: 38244972 DOI: 10.1016/j.envres.2024.118249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Amphibian populations are undergoing extensive declines globally. The fungal disease chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), is a primary contributor to these declines. The amphibian metamorphic stages (Gosner stages 42-46) are particularly vulnerable to a range of stressors, including Bd. Despite this, studies that explicitly examine host response to chytridiomycosis throughout the metamorphic stages are lacking. We aimed to determine how Bd exposure during the larval stages impacts metamorphic development and infection progression in the endangered Fleay's barred frog (Mixophyes fleayi). We exposed M. fleayi to Bd during pro-metamorphosis (Gosner stages 35-38) and monitored infection dynamics throughout metamorphosis. We took weekly morphological measurements (weight, total body length, snout-vent-length and Gosner stage) and quantified Bd load using qPCR. While we observed minimal impact of Bd infection on animal growth and development, Bd load varied throughout ontogeny, with an infection load plateau during the tadpole stages (Gosner stages 35-41) and temporary infection clearance at Gosner stage 42. Bd load increased exponentially between Gosner stages 42 and 45, with most exposed animals becoming moribund at Gosner stage 45, prior to the completion of metamorphosis. There was variability in infection outcome of exposed individuals, with a subgroup of animals (n = 5/29) apparently clearing their infection while the majority (n = 21/29) became moribund with high infection burdens. This study demonstrates the role that metamorphic restructuring plays in shaping Bd infection dynamics and raises the concern that substantial Bd-associated mortality could be overlooked in the field due to the often cryptic nature of these latter metamorphic stages. We recommend future studies that directly examine the host immune response to Bd infection throughout metamorphosis, incorporating histological and molecular methods to elucidate the mechanisms responsible for the observed trends.
Collapse
Affiliation(s)
- Josephine E Humphries
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland 4222, Australia.
| | - Chantal M Lanctôt
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia; Australian Rivers Institute, Griffith University, Southport, Queensland 4222, Australia
| | - Hamish I McCallum
- Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland 4222, Australia
| | - David A Newell
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales 2480, Australia
| | - Laura F Grogan
- School of Environment and Science, Griffith University, Southport, Queensland 4222, Australia; Centre for Planetary Health and Food Security, Griffith University, Southport, Queensland 4222, Australia
| |
Collapse
|