1
|
Liu H, Yu H, Gao R, Ge F, Zhao R, Lu X, Wang T, Liu H, Yang C, Xia Y, Xun L. A Zero-Valent Sulfur Transporter Helps Podophyllotoxin Uptake into Bacterial Cells in the Presence of CTAB. Antioxidants (Basel) 2023; 13:27. [PMID: 38247452 PMCID: PMC10812762 DOI: 10.3390/antiox13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Podophyllotoxin (PTOX) is naturally produced by the plant Podophyllum species. Some of its derivatives are anticancer drugs, which are produced mainly by using chemical semi-synthesis methods. Recombinant bacteria have great potential in large-scale production of the derivatives of PTOX. In addition to introducing the correct enzymes, the transportation of PTOX into the cells is an important factor, which limits its modification in the bacteria. Here, we improved the cellular uptake of PTOX into Escherichia coli with the help of the zero-valent sulfur transporter YedE1E2 in the presence of cetyltrimethylammonium bromide (CTAB). CTAB promoted the uptake of PTOX, but induced the production of reactive oxygen species. A protein complex (YedE1E2) of YedE1 and YedE2 enabled E. coli cells to resist CTAB by reducing reactive oxygen species, and YedE1E2 was a hypothetical transporter. Further investigation showed that YedE1E2 facilitated the uptake of extracellular zero-valent sulfur across the cytoplasmic membrane and the formation of glutathione persulfide (GSSH) inside the cells. The increased GSSH minimized oxidative stress. Our results indicate that YedE1E2 is a zero-valent sulfur transporter and it also facilitates CTAB-assisted uptake of PTOX by recombinant bacteria.
Collapse
Affiliation(s)
- Honglei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Huiyuan Yu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Rui Gao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fulin Ge
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Rui Zhao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Xia Lu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Tianqi Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (H.L.); (H.Y.); (R.G.); (F.G.); (R.Z.); (X.L.); (T.W.); (H.L.); (C.Y.)
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| |
Collapse
|
2
|
Morales-Sánchez V, Fe Andrés M, Díaz CE, González-Coloma A. Factors Affecting the Metabolite Productions in Endophytes: Biotechnological Approaches for Production of Metabolites. Curr Med Chem 2019; 27:1855-1873. [PMID: 31241432 DOI: 10.2174/0929867326666190626154421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/30/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
Abstract
Since 1980, many species and different strains from endophytic genera of Phomopsis, Fusarium, Pestaliopsis and Aspergillus have been studied because of their ability to produce medicinal compounds found in their host plants. Some of these medicinal agents such as Taxol, Brefeldine A, Camptothecin and Podophyllotoxin are being produced in large-scale after an optimization process. However, the potential of fungal endophytes to produce host-like medicinal compounds remains largely unexplored.
Collapse
Affiliation(s)
| | - Maria Fe Andrés
- Instituto de Ciencias Agrarias, CSIC, Serrano 115-dpdo, Madrid 28006, Spain
| | - Carmen Elisa Díaz
- Instituto de Productos naturales y Agrobiologia, CSIC. Avda. Astrofísico F. Sanchez, 3. 38206 La Laguna, Tenertife, Spain
| | | |
Collapse
|
3
|
Zhao W, Li HM, Wan DJ, Tang YJ. Manipulation of heterogeneity product in 4′-demethylepipodophyllotoxin biotransformation process by using yeast extract as nitrogen source. Appl Microbiol Biotechnol 2011; 93:107-15. [DOI: 10.1007/s00253-011-3424-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/26/2011] [Accepted: 05/29/2011] [Indexed: 11/30/2022]
|
4
|
Novel tandem biotransformation process for the biosynthesis of a novel compound, 4-(2,3,5,6-tetramethylpyrazine-1)-4'-demethylepipodophyllotoxin. Appl Environ Microbiol 2011; 77:3023-34. [PMID: 21398491 DOI: 10.1128/aem.03047-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
According to the structure of podophyllotoxin and its structure-function relationship, a novel tandem biotransformation process was developed for the directional modification of the podophyllotoxin structure to directionally synthesize a novel compound, 4-(2,3,5,6-tetramethylpyrazine-1)-4'-demethylepipodophyllotoxin (4-TMP-DMEP). In this novel tandem biotransformation process, the starting substrate of podophyllotoxin was biotransformed into 4'-demethylepipodophyllotoxin (product 1) with the demethylation of the methoxyl group at the 4' position by Gibberella fujikuroi SH-f13, which was screened out from Shennongjia prime forest humus soil (Hubei, China). 4'-Demethylepipodophyllotoxin (product 1) was then biotransformed into 4'-demethylpodophyllotoxone (product 2) with the oxidation of the hydroxyl group at the 4 position by Alternaria alternata S-f6, which was screened out from the gathered Dysosma versipellis plants in the Wuhan Botanical Garden, Chinese Academy of Sciences. Finally, 4'-demethylpodophyllotoxone (product 2) and ligustrazine were linked with a transamination reaction to synthesize the target product 4-TMP-DMEP (product 3) by Alternaria alternata S-f6. Compared with podophyllotoxin (i.e., a 50% effective concentration [EC(50)] of 529 μM), the EC(50) of 4-TMP-DMEP against the tumor cell line BGC-823 (i.e., 0.11 μM) was significantly reduced by 5,199 times. Simultaneously, the EC(50) of 4-TMP-DMEP against the normal human proximal tubular epithelial cell line HK-2 (i.e., 0.40 μM) was 66 times higher than that of podophyllotoxin (i.e., 0.006 μM). Furthermore, compared with podophyllotoxin (i.e., log P = 0.34), the water solubility of 4-TMP-DMEP (i.e., log P = 0.66) was significantly enhanced by 94%. For the first time, the novel compound 4-TMP-DMEP with superior antitumor activity was directionally synthesized from podophyllotoxin by the novel tandem biotransformation process developed in this work.
Collapse
|
5
|
Yousefzadi M, Sharifi M, Behmanesh M, Moyano E, Bonfill M, Cusido RM, Palazon J. Podophyllotoxin: Current approaches to its biotechnological production and future challenges. Eng Life Sci 2010. [DOI: 10.1002/elsc.201000027] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|