1
|
Chitosan/PVA Hetero-Composite Hydrogel Containing Antimicrobials, Perfluorocarbon Nanoemulsions, and Growth Factor-Loaded Nanoparticles as a Multifunctional Dressing for Diabetic Wound Healing: Synthesis, Characterization, and In Vitro/In Vivo Evaluation. Pharmaceutics 2022; 14:pharmaceutics14030537. [PMID: 35335913 PMCID: PMC8951566 DOI: 10.3390/pharmaceutics14030537] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetic foot ulcers remain one of the most difficult-to-treat complications of diabetes and may seriously threaten the life of patients since it frequently results in limb loss due to amputation, suggesting that an effective therapeutic strategy is still urgently needed. In this study, a chitosan-based heterogeneous composite hydrogel encapsulating perfluorocarbon emulsions, epidermal growth factor (EGF)-loaded chitosan nanoparticles, and polyhexamethylene biguanide (PHMB) named PEENPPCH was developed for diabetic wound healing. The PEENPPCH could sustainably release EGF and PHMB in an ion-rich environment to exert antibacterial effects and promote cell growth for wound repair. In addition, the PEENPPCH can provide anti-inflammatory effects functioned by its main constituent of chitosan. Moreover, the PEENPPCH can proactively offer oxygen delivery through the incorporation of perfluorocarbon and, therefore, is able to alleviate hypoxia conditions on diabetic wounds. These functionalities enabled a markedly enhanced wound healing efficacy on diabetic rats treated with the PEENPPCHs, including thorough re-epithelization, a reduced inflammatory response, faster collagen deposition, and advanced collagen maturation resulting in a 95% of wound closure degree after 15 days that was 12.6% (p < 0.05) higher than the value of the group treated with the commercial dressing HeraDerm. Given the aforementioned advantages, together with the known merits of hydrogels, the developed PEENPPCH is anticipated to be a feasible tool for clinical diabetic wound treatment.
Collapse
|
2
|
Lee YH, Sun JH. Multifunctional fluorocarbon photobioreactor system: a novel integrated device for CO 2 segregation, O 2 collection, and enhancement of microalgae growth and bioproductions. Bioprocess Biosyst Eng 2019; 42:1591-1601. [PMID: 31190282 DOI: 10.1007/s00449-019-02156-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/04/2019] [Indexed: 01/12/2023]
Abstract
An enhanced greenhouse effect due to high CO2 emissions has become one of the most concerning issues worldwide. Although plant/algae-mediated approaches have been extensively used for CO2 segregation in the last decades, these methods are generally aimed at environment protection. In contrast, less attention has been given to CO2 manipulation that has regrettably caused a decrease in the commercial availability of the associated technologies. To generate a system for practical use, a synthetic fluorocarbon photobioreactor system (FCPBRS) consisting of a CO2 isolation unit, a gas modulation unit, an O2 collection unit, and a microalgal culture chamber was developed in this study. After injecting a 60%-N2/40%-CO2 gas mixture into the CO2 isolation unit for 10 days, the results showed that the FCPBRS enabled a > 93% CO2 separation efficiency using a fluorocarbon liquid FC-40 as the CO2 adsorbent. In addition, the growth rate of Nannochloropsis oculata was significantly enhanced when cultured with 20 mL min-1 of the FC-40 flow containing 2% CO2 throughout the time course, resulting in 4.7-, 4.6-, and 4.5-fold (P < 0.05 for each) increases in biomass, total lipid, and eicosapentaenoic acid yields, respectively, compared to the aerated group without FC-40. Moreover, approximately 1600 mL of photosynthetic O2 with a ~ 80% collection efficiency was obtained in the O2 collection unit within 10 days of FCPBRS operation. These outcomes indicate that the FCPBRS may provide a feasible means to simultaneously achieve CO2 isolation, O2 collection, and enhanced microalgae bioproductions.
Collapse
Affiliation(s)
- Yu-Hsiang Lee
- Department of Biomedical Sciences and Engineering, National Central University, No. 300, Zhongda Rd., Taoyuan City, 32001, Taiwan, ROC. .,Department of Chemical and Materials Engineering, National Central University, Taoyuan City, Taiwan, ROC.
| | - Jen-Hou Sun
- Department of Biomedical Sciences and Engineering, National Central University, No. 300, Zhongda Rd., Taoyuan City, 32001, Taiwan, ROC
| |
Collapse
|
3
|
Sun XM, Geng LJ, Ren LJ, Ji XJ, Hao N, Chen KQ, Huang H. Influence of oxygen on the biosynthesis of polyunsaturated fatty acids in microalgae. BIORESOURCE TECHNOLOGY 2018; 250:868-876. [PMID: 29174352 DOI: 10.1016/j.biortech.2017.11.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 05/02/2023]
Abstract
As one of the most important environmental factors, oxygen is particularly important for synthesis of n-3 polyunsaturated fatty acids (n-3 PUFA) in microalgae. In general, a higher oxygen supply is beneficial for cell growth but obstructs PUFA synthesis. The generation of reactive oxygen species (ROS) under aerobic conditions, which leads to the peroxidation of lipids and especially PUFA, is an inevitable aspect of life, but is often ignored in fermentation processes. Irritability, microalgal cells are able to activate a number of anti-oxidative defenses, and the lipid profile of many species is reported to be altered under oxidative stress. In this review, the effects of oxygen on the PUFA synthesis, sources of oxidative damage, and anti-oxidative defense systems of microalgae were summarized and discussed. Moreover, this review summarizes the published reports on microalgal biotechnology involving direct/indirect oxygen regulation and new bioreactor designs that enable the improved production of PUFA.
Collapse
Affiliation(s)
- Xiao-Man Sun
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ling-Jun Geng
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Xiao-Jun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ning Hao
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ke-Quan Chen
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
5
|
Using polyethylene glycol as nonionic osmoticum to promote growth and lipid production of marine microalgae Nannochloropsis oculata. Bioprocess Biosyst Eng 2014; 37:1669-77. [DOI: 10.1007/s00449-014-1139-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/26/2014] [Indexed: 11/25/2022]
|