1
|
Garcia Mendez DF, Rengifo Herrera JA, Sanabria J, Wist J. Analysis of the Metabolic Response of Planktonic Cells and Biofilms of Klebsiella pneumoniae to Sublethal Disinfection with Sodium Hypochlorite Measured by NMR. Microorganisms 2022; 10:1323. [PMID: 35889041 PMCID: PMC9323045 DOI: 10.3390/microorganisms10071323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is a pathogenic agent able to form biofilms on water storage tanks and pipe walls. This opportunistic pathogen can generate a thick layer as one of its essential virulence factors, enabling the bacteria to survive disinfection processes and thus develop drug resistance. Understanding the metabolic differences between biofilm and planktonic cells of the K. pneumoniae response to NaClO is key to developing strategies to control its spread. In this study, we performed an NMR metabolic profile analysis to compare the response to a sublethal concentration of sodium hypochlorite of biofilm and planktonic cells of K. pneumoniae cultured inside silicone tubing. Metabolic profiles revealed changes in the metabolism of planktonic cells after a contact time of 10 min with 7 mg L-1 of sodium hypochlorite. A decrease in the production of metabolites such as lactate, acetate, ethanol, and succinate in this cell type was observed, thus indicating a disruption of glucose intake. In contrast, the biofilms displayed a high metabolic heterogeneity, and the treatment did not affect their metabolic signature.
Collapse
Affiliation(s)
- David Felipe Garcia Mendez
- Chemistry Department, Universidad del Valle—Sede Meléndez, Cali 13 # 100-00, Colombia; (D.F.G.M.); (J.W.)
- Australian National Phenome Center, Murdoch University, Perth, WA 6150, Australia
| | - Julián Andrés Rengifo Herrera
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. J.J. Ronco” (CINDECA), Departamento de Química, Facultad de Ciencias Exactas, UNLP-CCT La Plata, CONICET, 47 No. 257, La Plata 1900, Argentina;
| | - Janeth Sanabria
- Australian National Phenome Center, Murdoch University, Perth, WA 6150, Australia
- Environmental Microbiology and Biotechnology Laboratory, Engineering Faculty, Engineering School of Environmental & Natural Resources, Universidad del Valle—Meléndez Campus, Cali 13 # 100-00, Colombia
| | - Julien Wist
- Chemistry Department, Universidad del Valle—Sede Meléndez, Cali 13 # 100-00, Colombia; (D.F.G.M.); (J.W.)
- Australian National Phenome Center, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
2
|
Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0346-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
3
|
Kim MY, Kim C, Ainala SK, Bae H, Jeon BH, Park S, Kim JR. Metabolic shift of Klebsiella pneumoniae L17 by electrode-based electron transfer using glycerol in a microbial fuel cell. Bioelectrochemistry 2019; 125:1-7. [DOI: 10.1016/j.bioelechem.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
|
4
|
Zhang L, Bao W, Wei R, Fu S, Gong H. Inactivating NADH:quinone oxidoreductases affects the growth and metabolism of Klebsiella pneumoniae. Biotechnol Appl Biochem 2018; 65:857-864. [PMID: 30063071 DOI: 10.1002/bab.1684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/22/2018] [Indexed: 11/10/2022]
Abstract
NADH:quinone oxidoreductases (NQOs) act as the electron entry sites in bacterial respiration and oxidize intracellular NADH that is essential for the synthesis of numerous molecules. Klebsiella pneumoniae contains three NQOs (NDH-1, NDH-2, and NQR). The effects of inactivating these NQOs, separately and together, on cell metabolism were investigated under different culture conditions. Defective growth was evident in NDH-1-NDH-2 double and NDH-1-NDH-2-NQR triple deficient mutants, which was probably due to damage to the respiratory chain. The results also showed that K. pneumoniae can flexibly use NQOs to maintain normal growth in single NQO-deficient mutants. And more interestingly, under aerobic conditions, inactivating NDH-1 resulted in a high intracellular NADH:NAD+ ratio, which was proven to be beneficial for 2,3-butanediol production. Compared with the parent strain, 2,3-butanediol production by the NDH-1-deficient mutant was increased by 46% and 62% in glycerol- and glucose-based media, respectively. Thus, our findings provide a practical strategy for metabolic engineering of respiratory chains to promote the biosynthesis of 2,3-butanediol in K. pneumoniae.
Collapse
Affiliation(s)
- Lijuan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Wenjing Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Renquan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shuilin Fu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Heng Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Huo Y, Zhan Y, Wang Q, Li S, Yang S, Nomura CT, Wang C, Chen S. Acetolactate synthase (AlsS) in Bacillus licheniformis WX-02: enzymatic properties and efficient functions for acetoin/butanediol and L-valine biosynthesis. Bioprocess Biosyst Eng 2017; 41:87-96. [PMID: 29026998 DOI: 10.1007/s00449-017-1847-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/23/2017] [Indexed: 11/25/2022]
Abstract
Acetolactate synthase catalyzes two molecules of pyruvates to form α-acetolactate, which is further converted to acetoin and 2,3-butanediol. In this study, by heterologous expression in Escherichia coli, the enzymatic properties of acetolactate synthase (AlsS) from Bacillus licheniformis WX-02 were characterized. Its K m and k cat for pyruvate were 3.96 mM and 514/s, respectively. It has the optimal activity at pH 6.5, 37 °C and was feedback inhibited by L-valine, L-leucine and L-isoleucine. Furthermore, the alsS-deficient strain could not produce acetoin, 2,3-butanediol, and L-valine, while the complementary strain was able to restore these capacities. The alsS overexpressing strain produced higher amounts of acetoin/2,3-butanediol (57.06 g/L) and L-valine (2.68 mM), which were 10.90 and 92.80% higher than those of the control strain, respectively. This is the first report regarding the in-depth understanding of AlsS enzymatic properties and its functions in B. licheniformis, and overexpression of AlsS can effectively improve acetoin/2,3-butanediol and L-valine production in B. licheniformis. We envision that this AlsS can also be applied in the improvement of acetoin/2,3-butanediol and L-valine production in other microbes.
Collapse
Affiliation(s)
- Yanli Huo
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yangyang Zhan
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Qin Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Shunyi Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Shihui Yang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Christopher T Nomura
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
- Department of Chemistry, The State University of New York College of Environmental Science and Forestry (SUNY ESF), Syracuse, NY, 13210, USA
| | - Changjun Wang
- Tobacco Research Institute of Hubei Province, Wuhan, 430062, People's Republic of China.
| | - Shouwen Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China.
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
6
|
Okonkwo CC, Ujor V, Ezeji TC. Investigation of relationship between 2,3-butanediol toxicity and production during growth of Paenibacillus polymyxa. N Biotechnol 2017; 34:23-31. [DOI: 10.1016/j.nbt.2016.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 10/06/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
|
7
|
Jeong D, Yang J, Lee S, Kim B, Um Y, Kim Y, Ha KS, Lee J. Deletion of the budBAC operon in Klebsiella pneumoniae to understand the physiological role of 2,3-butanediol biosynthesis. Prep Biochem Biotechnol 2016; 46:410-9. [DOI: 10.1080/10826068.2015.1045603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Daun Jeong
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| | - Jeongmo Yang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| | - Soojin Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| | - Borim Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| | - Youngsoon Um
- Korea Clean Energy Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Youngrok Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Kyoung-Su Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| |
Collapse
|
8
|
Kim C, Ainala SK, Oh YK, Jeon BH, Park S, Kim JR. Metabolic flux change in Klebsiella pneumoniae L17 by anaerobic respiration in microbial fuel cell. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-015-0777-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Cho S, Kim T, Woo HM, Lee J, Kim Y, Um Y. Enhanced 2,3-Butanediol Production by Optimizing Fermentation Conditions and Engineering Klebsiella oxytoca M1 through Overexpression of Acetoin Reductase. PLoS One 2015; 10:e0138109. [PMID: 26368397 PMCID: PMC4569360 DOI: 10.1371/journal.pone.0138109] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 08/26/2015] [Indexed: 12/28/2022] Open
Abstract
Microbial production of 2,3-butanediol (2,3-BDO) has been attracting increasing interest because of its high value and various industrial applications. In this study, high production of 2,3-BDO using a previously isolated bacterium Klebsiella oxytoca M1 was carried out by optimizing fermentation conditions and overexpressing acetoin reductase (AR). Supplying complex nitrogen sources and using NaOH as a neutralizing agent were found to enhance specific production and yield of 2,3-BDO. In fed-batch fermentations, 2,3-BDO production increased with the agitation speed (109.6 g/L at 300 rpm vs. 118.5 g/L at 400 rpm) along with significantly reduced formation of by-product, but the yield at 400 rpm was lower than that at 300 rpm (0.40 g/g vs. 0.34 g/g) due to acetoin accumulation at 400 rpm. Because AR catalyzing both acetoin reduction and 2,3-BDO oxidation in K. oxytoca M1 revealed more than 8-fold higher reduction activity than oxidation activity, the engineered K. oxytoca M1 overexpressing the budC encoding AR was used in fed-batch fermentation. Finally, acetoin accumulation was significantly reduced by 43% and enhancement of 2,3-BDO concentration (142.5 g/L), yield (0.42 g/g) and productivity (1.47 g/L/h) was achieved compared to performance with the parent strain. This is by far the highest titer of 2,3-BDO achieved by K. oxytoca strains. This notable result could be obtained by finding favorable fermentation conditions for 2,3-BDO production as well as by utilizing the distinct characteristic of AR in K. oxytoca M1 revealing the nature of reductase.
Collapse
Affiliation(s)
- Sukhyeong Cho
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Taeyeon Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Interdisciplinary Program in Agriculture Biotechnology, College of Agriculture and Life science, Seoul National University, Seoul, Republic of Korea
| | - Han Min Woo
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Clean Energy and Chemical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Yunje Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Clean Energy and Chemical Engineering, Korea University of Science and Technology, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
10
|
Comparative whole genome transcriptome and metabolome analyses of five Klebsiella pneumonia strains. Bioprocess Biosyst Eng 2015; 38:2201-19. [DOI: 10.1007/s00449-015-1459-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/09/2015] [Indexed: 10/23/2022]
|
11
|
Shin SH, Roh H, Kim J, Cho S, Um Y, Lee J, Ryu YW, Chong H, Yang KS. Complete genome sequence of Klebsiella oxytoca M1, isolated from Manripo area of South Korea. J Biotechnol 2015; 198:1-2. [PMID: 25660421 DOI: 10.1016/j.jbiotec.2015.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 11/29/2022]
Abstract
Here we report the full genome sequence of Klesiella oxytoca M1, isolated from Manripo area of South Korea. The strain K. oxytoca M1 is able to produce either 2,3-butanediol or acetoin selectively by controlling the pH and temperature.
Collapse
Affiliation(s)
- Sang Heum Shin
- Macrogen Inc., Gasan-dong, Seoul 153-781, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Hanseong Roh
- Macrogen Inc., Gasan-dong, Seoul 153-781, Republic of Korea
| | - Juhyeok Kim
- Macrogen Inc., Gasan-dong, Seoul 153-781, Republic of Korea
| | - Sukhyeong Cho
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Republic of Korea
| | - Yeon-Woo Ryu
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Hyonyong Chong
- Macrogen Inc., Gasan-dong, Seoul 153-781, Republic of Korea
| | - Kap-Seok Yang
- Macrogen Inc., Gasan-dong, Seoul 153-781, Republic of Korea.
| |
Collapse
|
12
|
The influence of budA deletion on glucose metabolism related in 2,3-butanediol production by Klebsiella pneumoniae. Enzyme Microb Technol 2015; 73-74:1-8. [PMID: 26002498 DOI: 10.1016/j.enzmictec.2015.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 11/27/2022]
Abstract
Klebsiella pneumoniae (K. pneumoniae), which is a promising microorganism for industrial bulk production of 2,3-butanediol (2,3-BDO), naturally converts glucose to 2,3-BDO. The 2,3-BDO biosynthesis from glucose is composed of three steps; α-acetolactate biosynthesis by α-acetolactate synthase (budB); acetoin biosynthesis by α-acetolactate decarboxylase (budA); and 2,3-BDO biosynthesis by acetoin reductase (budC). In an effort to understand the influence of blocked 2,3-BDO pathway on K. pneumoniae glucose metabolism by budA deletion, we constructed K. pneumoniaeΔwabGΔbudA (SGSB106). Carbon flux distribution analysis, transcriptome analysis and extracellular amino acid concentration analysis were carried out to understand the effects of the budA deletion, and K. pneumoniaeΔwabG (SGSB100) was used as a control strain. Approximately 50.3% decrease in CO2 emission; and approximately 3.8-fold increase in amino acid production was observed in SGSB106. In addition to, among the amino acids, valine production significantly increased, suggesting that the branched-chain amino acid biosynthesis (BACC) in SGSB106 was activated by deletion of budA. Furthermore, whole genome transcriptome analysis of SGSB106 and SGSB100, correlates with the results from carbon distribution and amino acids concentration analyses.
Collapse
|
13
|
Kim B, Lee S, Jeong D, Yang J, Oh MK, Lee J. Redistribution of carbon flux toward 2,3-butanediol production in Klebsiella pneumoniae by metabolic engineering. PLoS One 2014; 9:e105322. [PMID: 25329548 PMCID: PMC4203659 DOI: 10.1371/journal.pone.0105322] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/17/2014] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae KCTC2242 has high potential in the production of a high-value chemical, 2,3-butanediol (2,3-BDO). However, accumulation of metabolites such as lactate during cell growth prevent large-scale production of 2,3-BDO. Consequently, we engineered K. pneumoniae to redistribute its carbon flux toward 2,3-BDO production. The ldhA gene deletion and gene overexpression (budA and budB) were conducted to block a pathway that competitively consumes reduced nicotinamide adenine dinucleotide and to redirect carbon flux toward 2,3-BDO biosynthesis, respectively. These steps allowed efficient glucose conversion to 2,3-BDO under slightly acidic conditions (pH 5.5). The engineered strain SGSB105 showed a 40% increase in 2,3-BDO production from glucose compared with that of the host strain, SGSB100. Genes closely related to 2,3-BDO biosynthesis were observed at the gene transcription level by cultivating the SGSB100, SGSB103, SGSB104, and SGSB105 strains under identical growth conditions. Transcription levels for budA, budB, and budC increased approximately 10% during the log phase of cell growth relative to that of SGSB100. Transcription levels of 2,3-BDO genes in SGSB105 remained high during the log and stationary phases. Thus, the carbon flux was redirected toward 2,3-BDO production. Data on batch culture and gene transcription provide insight into improving the metabolic network for 2,3-BDO biosynthesis for industrial applications.
Collapse
Affiliation(s)
- Borim Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| | - Soojin Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| | - Daun Jeong
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| | - Jeongmo Yang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| |
Collapse
|