1
|
Sun HZ, Wei SY, Xu QM, Shang W, Li Q, Cheng JS, Yuan YJ. Enhancement of polymyxin B1 production by an artificial microbial consortium of Paenibacillus polymyxa and recombinant Corynebacterium glutamicum producing precursor amino acids. Synth Syst Biotechnol 2024; 9:176-185. [PMID: 38348399 PMCID: PMC10859264 DOI: 10.1016/j.synbio.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/24/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
Polymyxin B, produced by Paenibacillus polymyxa, is used as the last line of defense clinically. In this study, exogenous mixture of precursor amino acids increased the level and proportion of polymyxin B1 in the total of polymyxin B analogs of P. polymyxa CJX518-AC (PPAC) from 0.15 g/L and 61.8 % to 0.33 g/L and 79.9 %, respectively. The co-culture of strain PPAC and recombinant Corynebacterium glutamicum-leu01, which produces high levels of threonine, leucine, and isoleucine, increased polymyxin B1 production to 0.64 g/L. When strains PPAC and C. glu-leu01 simultaneously inoculated into an optimized medium with 20 g/L peptone, polymyxin B1 production was increased to 0.97 g/L. Furthermore, the polymyxin B1 production in the co-culture of strains PPAC and C. glu-leu01 increased to 2.21 g/L after optimized inoculation ratios and fermentation medium with 60 g/L peptone. This study provides a new strategy to improve polymyxin B1 production.
Collapse
Affiliation(s)
- Hui-Zhong Sun
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
- Department of Pharmaceutical, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Si-Yu Wei
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
- Department of Pharmaceutical, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin, 300387, PR China
| | - Wei Shang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
- Department of Pharmaceutical, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Qing Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
- Department of Pharmaceutical, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
- Department of Pharmaceutical, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
- Department of Pharmaceutical, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| |
Collapse
|
2
|
Liu H, Hao D, Li Y, Wang X, Chen J. Approaches for the establishment of optimized co-culture system of multiple Trichoderma strains for culture metabolites highly effective in cucumber growth promotion. Front Microbiol 2022; 13:1020077. [PMID: 36238592 PMCID: PMC9551241 DOI: 10.3389/fmicb.2022.1020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
In most cases, co-culture of Trichoderma and other microorganism principally takes advantage of biological control of plant diseases, which is superior to axenic culture. However, the approach to establish the optimal co-culture system of multiple Trichoderma strains was less studied, particularly for high production of microbial metabolites synergistically to promote plant growth and antagonistic activity against pathogens. The inoculation technique, fermentation kinetic modeling and response surface methodology were used to obtain the optimal inoculum sequence, fermentation time and co-culture nutrient formula. It was demonstrated that co-culture metabolites of Trichoderma strains obtained by simultaneous inoculation were more effective than those by sequence inoculation in promoting cucumber seedling growth. Furthermore, the optimal fermentation time was determined at 96–120 h by evaluating fermentation kinetic model, the activities of inhibitory potential of pathogenic Fusarium and cucumber seedling hypocotyl growth. Interestingly, the optimized nutrient formula was set to make co-culture metabolites of Trichoderma strains more effective in the plant growth promotion, which was determined through the assessment of cucumber test-tube plantlet. The components and each concentration in the optimized medium were confirmed at corn flour 16.22 g⋅L–1, potassium hydrogen phosphate 1.13 g⋅L–1, tryptophan 0.154 g⋅L–1, seaweed residue 30 g⋅L–1, ferrous sulfate heptahydrate 1 g⋅L–1 and ammonium sulfate 1.5 g⋅L–1. The hypocotyl length increased in the treatment with co-culture metabolites from the optimal medium by 2.3-fold compared with control. Thus, the results provide an optimal co-culture system of Trichoderma multiple strains aiming to produce high activity of metabolites in plant growth promotion.
Collapse
Affiliation(s)
- Hongyi Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Dazhi Hao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Yaqian Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhua Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jie Chen,
| |
Collapse
|
4
|
Terasawat A, Phoolphundh S. Simultaneous Biological Pretreatment and Saccharification of Rice Straw by Ligninolytic Enzymes from Panus neostrigosus I9 and Commercial Cellulase. J Fungi (Basel) 2021; 7:853. [PMID: 34682275 PMCID: PMC8537424 DOI: 10.3390/jof7100853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
The utilization of rice straw for biofuel production is limited by its composition. The pretreatment process is required to improve the enzymatic accessibility of polysaccharides in the biomass prior to enzymatic saccharification. In this study, simultaneous biological pretreatment and saccharification (SPS) of rice straw starting from laccase production by Panus neostrigosus I9 was operated in a 2-L fermenter. It was found that fungal physiology was strongly influenced by the agitation, and that the highest laccase production was obtained at an agitation speed of 750 rpm (209.96 ± 0.34 U/L). The dilution rate of 0.05 h-1 was set in continuous fermentation which resulted in laccase activity of 678.49 ± 20.39 U/L, approximately three times higher than that in batch culture. Response surface methodology (RSM) was applied to achieve the condition for maximum percentage of delignification. The maximum percentage of delignification of 45.55% was accomplished after pretreatment of rice straw with laccase enzyme 39.40 U/g rice straw at 43.70 °C for 11.19 h. Reducing sugar of 3.85 ± 0.15 g/L was obtained from the digested rice straw in a SPS reactor, while non-pretreated rice straw gave only 1.13 ± 0.10 g/L within 12 h of incubation. The results indicated that simultaneous biological pretreatment and saccharification (SPS) of rice straw by laccase helped to improve the accessibility of cellulose by cellulolytic enzymes.
Collapse
Affiliation(s)
| | - Sivawan Phoolphundh
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, 126 Pracha-Uthid Road, Bang Mod, Thungkru, Bangkok 10140, Thailand;
| |
Collapse
|
7
|
Unni S, Prabhu AA, Pandey R, Hande R, Veeranki VD. Artificial neural network‐genetic algorithm (ANN‐GA) based medium optimization for the production of human interferon gamma (hIFN‐γ) inKluyveromyces lactiscell factory. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Silpa Unni
- Biochemical Engineering LaboratoryDepartment of Biosciences and BioengineeringIndian Institute of Technology GuwahatiGuwahati 781039AssamIndia
| | - Ashish A. Prabhu
- Biochemical Engineering LaboratoryDepartment of Biosciences and BioengineeringIndian Institute of Technology GuwahatiGuwahati 781039AssamIndia
| | - Rajat Pandey
- Biochemical Engineering LaboratoryDepartment of Biosciences and BioengineeringIndian Institute of Technology GuwahatiGuwahati 781039AssamIndia
| | - Rohit Hande
- Biochemical Engineering LaboratoryDepartment of Biosciences and BioengineeringIndian Institute of Technology GuwahatiGuwahati 781039AssamIndia
| | - Venkata Dasu Veeranki
- Biochemical Engineering LaboratoryDepartment of Biosciences and BioengineeringIndian Institute of Technology GuwahatiGuwahati 781039AssamIndia
| |
Collapse
|
8
|
Laccase production in bioreactor scale under saline condition by the marine-derived basidiomycete Peniophora sp. CBMAI 1063. Fungal Biol 2018; 122:302-309. [PMID: 29665956 DOI: 10.1016/j.funbio.2018.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 11/21/2022]
Abstract
Laccase production in saline conditions is still poorly studied. The aim of the present study was to investigate the production of laccase in two different types of bioreactors by the marine-derived basidiomycete Peniophora sp. CBMAI 1063. The highest laccase activity and productivity were obtained in the Stirred Tank (ST) bioreactor, while the highest biomass concentration in Air-lift (AL) bioreactor. The main laccase produced was purified by ion exchange and size exclusion chromatography and appeared to be monomeric with molecular weight of approximately 55 kDa. The optimum oxidation activity was obtained at pH 5.0. The thermal stability of the enzyme ranged from 30 to 50 °C (120 min). The Far-UV Circular Dichroism revealed the presence of high β-sheet and low α-helical conformation in the protein structure. Additional experiments carried out in flask scale showed that the marine-derived fungus was able to produce laccase only in the presence of artificial seawater and copper sulfate. Results from the present study confirmed the fungal adaptation to marine conditions and its potential for being used in saline environments and/or processes.
Collapse
|