1
|
Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 2022; 57:107947. [DOI: 10.1016/j.biotechadv.2022.107947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
|
2
|
van Dijk M, Rugbjerg P, Nygård Y, Olsson L. RNA sequencing reveals metabolic and regulatory changes leading to more robust fermentation performance during short-term adaptation of Saccharomyces cerevisiae to lignocellulosic inhibitors. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:201. [PMID: 34654441 PMCID: PMC8518171 DOI: 10.1186/s13068-021-02049-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The limited tolerance of Saccharomyces cerevisiae to inhibitors is a major challenge in second-generation bioethanol production, and our understanding of the molecular mechanisms providing tolerance to inhibitor-rich lignocellulosic hydrolysates is incomplete. Short-term adaptation of the yeast in the presence of dilute hydrolysate can improve its robustness and productivity during subsequent fermentation. RESULTS We utilized RNA sequencing to investigate differential gene expression in the industrial yeast strain CR01 during short-term adaptation, mimicking industrial conditions for cell propagation. In this first transcriptomic study of short-term adaption of S. cerevisiae to lignocellulosic hydrolysate, we found that cultures respond by fine-tuned up- and down-regulation of a subset of general stress response genes. Furthermore, time-resolved RNA sequencing allowed for identification of genes that were differentially expressed at 2 or more sampling points, revealing the importance of oxidative stress response, thiamin and biotin biosynthesis. furan-aldehyde reductases and specific drug:H+ antiporters, as well as the down-regulation of certain transporter genes. CONCLUSIONS These findings provide a better understanding of the molecular mechanisms governing short-term adaptation of S. cerevisiae to lignocellulosic hydrolysate, and suggest new genetic targets for improving fermentation robustness.
Collapse
Affiliation(s)
- Marlous van Dijk
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Peter Rugbjerg
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Yvonne Nygård
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| |
Collapse
|
3
|
Qin X, Lu J, Zhang Y, Wu X, Qiao X, Wang Z, Chu J, Qian J. Engineering
Pichia pastoris
to improve S‐adenosyl‐
l
‐methionine production using systems metabolic strategies. Biotechnol Bioeng 2020; 117:1436-1445. [DOI: 10.1002/bit.27300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/15/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Xiulin Qin
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Junjie Lu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Yin Zhang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Xiaole Wu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Xuefeng Qiao
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Zhipeng Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Ju Chu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| |
Collapse
|
4
|
Hameed A, Hussain SA, Ijaz MU, Umer M. Deletions of the Idh1, Eco1, Rom2, and Taf10 Genes Differently Control the Hyphal Growth, Drug Tolerance, and Virulence of Candida albicans. Folia Biol (Praha) 2020; 66:91-103. [PMID: 33069188 DOI: 10.14712/fb2020066030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The most recent genome-editing system called CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat system with associated protein 9-nuclease) was employed to delete four non-essential genes (i.e., Caeco1, Caidh1, Carom2, and Cataf10) individually to establish their gene functionality annotations in pathogen Candida albicans. The biological roles of these genes were investigated with respect to the cell wall integrity and biogenesis, calcium/calcineurin pathways, susceptibility of mutants towards temperature, drugs and salts. All the mutants showed increased vulnerability compared to the wild-type background strain towards the cell wall-perturbing agents, (antifungal) drugs and salts. All the mutants also exhibited repressed and defective hyphal growth and smaller colony size than control CA14. The cell cycle of all the mutants decreased enormously except for those with Carom2 deletion. The budding index and budding size also increased for all mutants with altered bud shape. The disposition of the mutants towards cell wall-perturbing enzymes disclosed lower survival and more rapid cell wall lysis events than in wild types. The pathogenicity and virulence of the mutants was checked by adhesion assay, and strains lacking rom2 and eco1 were found to possess the least adhesion capacity, which is synonymous to their decreased pathogenicity and virulence.
Collapse
Affiliation(s)
- A Hameed
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P. R. China
- Clinical Research Center, Medical University of Bialystok, Białystok, Poland
| | - S A Hussain
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P. R. China
- Department of Biology, South Texas Center of Emerging Infectious Diseases (STCEID), University of Texas, San Antonio, USA
| | - M U Ijaz
- Key Laboratory of Meat Processing & Quality Control, College of Food Sciences, Nanjing Agriculture University, Jiangsu, P. R. China
| | - M Umer
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Park Road, Islamabad, Pakistan
| |
Collapse
|
5
|
Qin LZ, He YC. Chemoenzymatic Synthesis of Furfuryl Alcohol from Biomass in Tandem Reaction System. Appl Biochem Biotechnol 2019; 190:1289-1303. [PMID: 31754985 DOI: 10.1007/s12010-019-03154-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/23/2019] [Indexed: 01/27/2023]
Abstract
In this study, chemoenzymatic synthesis of furfuryl alcohol from biomass (e.g., corncob, bamboo shoot shell, and rice straw) was attempted by the tandem catalysis with Lewis acid (SnCl4 or solid acid SO42-/SnO2-bentonite) and biocatalyst in one-pot manner. Compared with SnCl4, solid acid SO42-/SnO2-bentonite had higher catalytic activity for converting biomass into furfural, which could be biologically converted into furfuryl alcohol with Escherichia coli CCZU-H15 whole-cell harboring reductase activity. Sequential catalysis of biomass into furfural with SO42-/SnO2-bentonite (3.0 wt%) at 170 °C for 0.5 h and bioreduction of furfural with whole cells at 30 °C for 4.5 h were used for the effective synthesis of furfuryl alcohol in one-pot media. Corncob, bamboo shoot shell, and rice straw (3.0 g, dry weight) could be converted into 65.7, 50.3, and 58.5 mM furfuryl alcohol with the yields of 0.26, 0.25, and 0.23 g furfuryl alcohol/(g xylan in biomass) in 40 mL reaction media. Finally, an efficient process of recycling and reusing of SO42-/SnO2-bentonite catalyst and immobilized whole-cell biocatalyst was developed for the chemoenzymatic synthesis of furfuryl alcohol from biomass in the one-pot reaction system.
Collapse
Affiliation(s)
- Li-Zhen Qin
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, People's Republic of China.,Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Yu-Cai He
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, People's Republic of China. .,Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China. .,State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, People's Republic of China.
| |
Collapse
|
6
|
Xu K, Lee YS, Li J, Li C. Resistance mechanisms and reprogramming of microorganisms for efficient biorefinery under multiple environmental stresses. Synth Syst Biotechnol 2019; 4:92-98. [PMID: 30899819 PMCID: PMC6407310 DOI: 10.1016/j.synbio.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/01/2019] [Accepted: 02/20/2019] [Indexed: 01/14/2023] Open
Abstract
In the fermentation process of biorefinery, industrial strains are normally subjected to adverse environmental stresses, which leads to their slow growth, yield decline, a substantial increase in energy consumption, and other negative consequences, which ultimately seriously hamper the development of biorefinery. How to minimize the impact of stress on microorganisms is of great significance. This review not only reveals the damaging effects of different environmental stresses on microbial strains but also introduces commonly used strategies to improve microbial tolerance, including adaptive evolution, reprogramming of the industrial host based on genetic circuits, global transcription machinery engineering (gTME) and bioprocess integration. Furthermore, by integrating the advantages of these strategies and reducing the cost of system operation, the tolerance of industrial strains, combined with production efficiency and process stability, will be greatly improved, and the development prospects of biorefinery will be more widespread.
Collapse
Affiliation(s)
- Ke Xu
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.,Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Yun Seo Lee
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|