1
|
Liang W, Flint K, Yao Y, Wu J, Wang L, Doonan C, Huang J. Enhanced Bioactivity of Enzyme/MOF Biocomposite via Host Framework Engineering. J Am Chem Soc 2023; 145:20365-20374. [PMID: 37671920 DOI: 10.1021/jacs.3c05488] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
This study reports the successful development of a sustainable synthesis protocol for a phase-pure metal azolate framework (MAF-6) and its application in enzyme immobilization. An esterase@MAF-6 biocomposite was synthesized, and its catalytic performance was compared with that of esterase@ZIF-8 and esterase@ZIF-90 in transesterification reactions. Esterase@MAF-6, with its large pore aperture, showed superior enzymatic performance compared to esterase@ZIF-8 and esterase@ZIF-90 in catalyzing transesterification reactions using both n-propanol and benzyl alcohol as reactants. The hydrophobic nature of the MAF-6 platform was shown to activate the immobilized esterase into its open-lid conformation, which exhibited a 1.5- and 4-times enzymatic activity as compared to free esterase in catalyzing transesterification reaction using n-propanol and benzyl alcohol, respectively. The present work offers insights into the potential of MAF-6 as a promising matrix for enzyme immobilization and highlights the need to explore MOF matrices with expanded pore apertures to broaden their practical applications in biocatalysis.
Collapse
Affiliation(s)
- Weibin Liang
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2008, Australia
| | - Kate Flint
- School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Yuchen Yao
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2008, Australia
| | - Jiacheng Wu
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2008, Australia
| | - Lizhuo Wang
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2008, Australia
| | - Christian Doonan
- School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2008, Australia
| |
Collapse
|
2
|
Enhancement of bioactives, functional and nutraceutical attributes of banana peels and de-oiled groundnut cake through submerged fermentation employing Calocybe indica. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
3
|
Singh R, Dien BS, Singh V. Solvent‐free enzymatic esterification of free fatty acids with glycerol for biodiesel application: Optimized using the Taguchi experimental method. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ramkrishna Singh
- Center for Advanced Bioenergy and Bioproducts Innovation (CABBI) University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Department of Agricultural and Biological Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Bruce S. Dien
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research Bioenergy Research Unit, 1815 N University Peoria Illinois USA
| | - Vijay Singh
- Center for Advanced Bioenergy and Bioproducts Innovation (CABBI) University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Department of Agricultural and Biological Engineering University of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
4
|
Remonatto D, Fantatto RR, Pietro RCLR, Monti R, Oliveira JV, de Paula AV, Bassan JC. Enzymatic synthesis of geranyl acetate in batch and fed-batch reactors and evaluation of its larvicidal activity against Rhipicephalus (Boophilus) microplus. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Sánchez‐Muñoz GK, Ortega‐Rojas MA, Chavelas‐Hernández L, Razo‐Hernández RS, Valdéz‐Camacho JR, Escalante J. Solvent‐Free Lipase‐Catalyzed Transesterification of Alcohols with Methyl Esters Under Vacuum‐Assisted Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202202643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Grecia K. Sánchez‐Muñoz
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Marina A. Ortega‐Rojas
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Leticia Chavelas‐Hernández
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Rodrigo S. Razo‐Hernández
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigación en Dinámica Celular Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Jonathan R. Valdéz‐Camacho
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| | - Jaime Escalante
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas Universidad Autónoma del Estado de Morelos Av. Universidad No. 1001, Col. Chamilpa C.P. 62210 Cuernavaca Morelos México
| |
Collapse
|
6
|
Badoei-Dalfard A, Tahami A, Karami Z. Lipase immobilization on glutaraldehyde activated graphene oxide/chitosan/cellulose acetate electrospun nanofibrous membranes and its application on the synthesis of benzyl acetate. Colloids Surf B Biointerfaces 2021; 209:112151. [PMID: 34687974 DOI: 10.1016/j.colsurfb.2021.112151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
In this research, lipase Km12 was immobilized on the glutaraldehyde-activated graphene oxide/chitosan/cellulose acetate nanofibers (GO/Chit/CA NFs) prepared by the electrospinning method. This immobilized lipase exhibited a higher activity value than the free lipase in the acidic pH region. This enzyme showed a 10 °C shift in the maximum temperature activity. Results displayed that the Vmax value of NFs-lipase was 0.64 µmol/min, while it was gained 0.405 µmol/min for the free lipase. The activity of NFs-lipase was reserved 100% after 10 min maintaining at 60 °C, in which the free lipase only kept 75% of its original activity. Moreover, a 20% enhancement in the lipase activity was observed for NFs-lipase after 180 min of incubation at 60 °C, compared to the free enzyme. Reusability studies exhibited that the immobilized lipase well-kept 80% of its original activity after 10 cycles of reusing. Results displayed that 14% of the protein was leaked from NFs-lipase at the same condition. Transesterification results indicated that the free lipase exhibited 65% and 85% conversation level of benzyl acetate after 12 and 24 h of incubation. Besides, the immobilized lipase showed 80% and 95% conversation level at the same condition. These results indicated the high performance of free and immobilized lipase in the production of benzyl acetate for applications in the perfume and cosmetic industries.
Collapse
Affiliation(s)
- Arastoo Badoei-Dalfard
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Arefeh Tahami
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Zahra Karami
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
7
|
Ling FWM, Abdulbari HA, Chin SY. Microfluidic Chips for Formulation of Silica Nanoparticles and Enzyme Immobilization. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fiona W. M. Ling
- Universiti Malaysia Pahang, Lebuhraya Tun Razak Centre for Research in Advanced Fluid & Processes (Fluid Centre) 26300 Gambang Kuantan Pahang Malaysia
- Universiti Malaysia Pahang, Lebuhraya Tun Razak Department of Chemical Engineering College of Engineering 26300 Gambang Kuantan Pahang Malaysia
| | - Hayder A. Abdulbari
- Universiti Malaysia Pahang, Lebuhraya Tun Razak Centre for Research in Advanced Fluid & Processes (Fluid Centre) 26300 Gambang Kuantan Pahang Malaysia
- Universiti Malaysia Pahang, Lebuhraya Tun Razak Department of Chemical Engineering College of Engineering 26300 Gambang Kuantan Pahang Malaysia
| | - Sim-Yee Chin
- Universiti Malaysia Pahang, Lebuhraya Tun Razak Centre for Research in Advanced Fluid & Processes (Fluid Centre) 26300 Gambang Kuantan Pahang Malaysia
- Universiti Malaysia Pahang, Lebuhraya Tun Razak Department of Chemical Engineering College of Engineering 26300 Gambang Kuantan Pahang Malaysia
| |
Collapse
|
8
|
Kovalenko GA, Perminova LV. Heterogeneous Biocatalytic Processes of the Low-Temperature Synthesis of Esters: Selecting an Organic Solvent. CATALYSIS IN INDUSTRY 2021. [DOI: 10.1134/s2070050421010074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Piazza SP, Puton BM, Dallago RM, de Oliveira D, Cansian RL, Mignoni M, Paroul N. Production of benzyl cinnamate by a low-cost immobilized lipase and evaluation of its antioxidant activity and toxicity. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00586. [PMID: 33489787 PMCID: PMC7809389 DOI: 10.1016/j.btre.2021.e00586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/03/2020] [Accepted: 12/31/2020] [Indexed: 11/17/2022]
Abstract
In this work was optimized the production of benzyl cinnamate by enzymatic catalysis using the immobilized lipase NS88011 and to evaluate its biological properties. The optimized condition for this system was 1:3 (acid:alcohol) molar ratio, 59 °C, biocatalyst concentration 4.4 mg.mL-1 for 32 h, with a yield of 97.6 %. The enzyme stability study showed that the enzyme remains active and yields above 60 % until the 13th cycle (416 h), presenting a promising half-life. In the determination of the antioxidant activity of the ester, an inhibitory concentration necessary to inhibit 50 % of the free radical 2,2-diphenyl-1-picryl-hydrazyl DPPH (IC50) of 149.8 mg.mL-1 was observed. For acute toxicity against bioindicator Artemia salina, lethal doses (LD50) of 0.07 and 436.7 μg.mL-1 were obtained for the ester and cinnamic acid, showing that benzyl cinnamate had higher toxicity, indicating potential cytotoxic activity against human tumors.
Collapse
Affiliation(s)
- Suelen Paloma Piazza
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Av. sete de setembro, 1621, 99709-910, Erechim, RS, Brazil
| | - Bruna Maria Puton
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Av. sete de setembro, 1621, 99709-910, Erechim, RS, Brazil
| | - Rogério Marcos Dallago
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Av. sete de setembro, 1621, 99709-910, Erechim, RS, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina-UFSC, Campus Universitário, Bairro Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Rogério Luis Cansian
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Av. sete de setembro, 1621, 99709-910, Erechim, RS, Brazil
| | - Marcelo Mignoni
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Av. sete de setembro, 1621, 99709-910, Erechim, RS, Brazil
| | - Natalia Paroul
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões-URI Erechim, Av. sete de setembro, 1621, 99709-910, Erechim, RS, Brazil
| |
Collapse
|
10
|
Enzymatic Synthesis of Lipophilic Esters of Phenolic Compounds, Evaluation of Their Antioxidant Activity and Effect on the Oxidative Stability of Selected Oils. Biomolecules 2021; 11:biom11020314. [PMID: 33669574 PMCID: PMC7922254 DOI: 10.3390/biom11020314] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of the study was to compare the effect of the substituent and its position in the aromatic ring on the antioxidant activity of hexanoic acid esters obtained in reactions catalyzed by immobilized lipase B from Candida antarctica. 4-Hydroxybenzyl hexanoate, 2-hydroxybenzyl hexanoate, 4-methoxybenzyl hexanoate, and vanillyl hexanoate were obtained with conversion yields of 50 to 80%. The antioxidant activity of synthesized esters, their alcohol precursors and BHT (Butylated HydroxyToluene) was compared with DPPH (2,2-diphenyl-1-picrylhydrazyl), CUPRAC (cupric ion reducing antioxidant capacity), and CBA (crocin bleaching assay) methods. Furthermore, it was investigated whether the presence of vanillyl hexanoate in a concentration of 0.01 and 0.1% affected the oxidative stability of sunflower and rapeseed oils in the Rancimat test. It was observed that the antioxidant activity of hexanoic acid esters depends on the presence and position of the hydroxyl group in the aromatic ring. The highest activities were found for vanillyl alcohol, vanillyl hexanoate, and BHT. The addition of the ester and BHT significantly extended the induction times of the tested oils, and these compounds exhibited similar activity. Vanillyl hexanoate increased the induction time from 4.49 to 5.28 h and from 2.73 to 3.12 h in the case of rapeseed and sunflower oils, respectively.
Collapse
|
11
|
Cordeiro EDS, Henriques RO, Deucher EM, de Oliveira D, Lerin LA, Furigo A. Optimization, kinetic, and scaling-up of solvent-free lipase-catalyzed synthesis of ethylene glycol oleate emollient ester. Biotechnol Appl Biochem 2020; 68:1469-1478. [PMID: 33135247 DOI: 10.1002/bab.2067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/27/2020] [Indexed: 11/09/2022]
Abstract
The use of enzymatic catalysts is an alternative to chemical catalysts as they can help to obtain products with less environmental impact, considered sustainable within the concept of green chemistry. The optimization, kinetic, lipase reuse, and scale-up of enzymatic production of ethylene glycol oleate in the batch mode were carried out using the NS 88011 lipase in a solvent-free system. For the optimization step, a 23 Central Composite Design was used and the optimized condition for the ethylene glycol oleate production, with conversions above 99%, was at 70 °C, 600 rpm, substrates molar ratio of 1:2, 1 wt% of NS 88011 in 32 H of reaction. Kinetic tests were also carried out with different amounts of enzyme, and it showed that by decreasing the amount of the enzyme, the conversion also decreases. The lipase reuse showed good conversions until the second cycle of use, after which it had a progressive reduction reaching 83% in the fourth cycle of use. The scale-up (ninefold increase) showed promising results, with conversion above 99%, achieving conversions similar to small-scale reactions. Therefore, this work proposed an environmentally safe route to produce an emollient ester using a low-cost biocatalyst in a solvent-free system.
Collapse
Affiliation(s)
- Eloise de Sousa Cordeiro
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Rosana Oliveira Henriques
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Eduardo Monteiro Deucher
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | | | - Agenor Furigo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| |
Collapse
|
12
|
Dos Santos MMO, Gama RS, de Carvalho Tavares IM, Santos PH, Gonçalves MS, de Carvalho MS, de Barros Vilas Boas EV, de Oliveira JR, Mendes AA, Franco M. Application of lipase immobilized on a hydrophobic support for the synthesis of aromatic esters. Biotechnol Appl Biochem 2020; 68:538-546. [PMID: 32438471 DOI: 10.1002/bab.1959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
The present study aimed at preparing three biocatalysts via physical adsorption of lipases from Candida rugosa (CRL), Mucor javanicus, and Candida sp. on a hydrophobic and mesoporous support (Diaion HP-20). These biocatalysts were later applied to the synthesis of aromatic esters of apple peel and citrus (hexyl butyrate), apple and rose (geranyl butyrate), and apricot and pineapple (propyl butyrate). Scanning electron microscopy and gel electrophoresis confirmed a selective adsorption of lipases on Diaion, thus endorsing simultaneous immobilization and purification. Gibbs free energy (∆G) evinced the spontaneity of the process (-17.9 kJ/mol ≤ ∆G ≤ -5.1 kJ/mol). Maximum immobilized protein concentration of 30 mg/g support by CRL. This biocatalyst was the most active in olive oil hydrolysis (hydrolytic activity of 126.0 ± 2.0 U/g) and in the synthesis of aromatic esters. Maximum conversion yield of 89.1% was attained after 150 Min for the synthesis of hexyl butyrate, followed by the synthesis of geranyl butyrate (87.3% after 240 Min) and propyl butyrate (80.0% after 150 Min). CRL immobilized on Diaion retained around 93% of its original activity after six consecutive cycles of 150 Min for the synthesis of hexyl butyrate.
Collapse
Affiliation(s)
| | | | | | - Pedro Henrique Santos
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Márcia Soares Gonçalves
- Department of Exact Sciences and Natural, State University of Southwest Bahia, Itapetinga, Brazil
| | | | | | | | | | - Marcelo Franco
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Brazil
| |
Collapse
|
13
|
Enzymatic synthesis of benzyl benzoate using different acyl donors: Comparison of solvent-free reaction techniques. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Zhang H, Li X, Bai W, Liang Y. P(GMA‐HEMA)/SiO
2
Nanofilm Constructed Macroporous Monolith for Immobilization of Pseudomonas Fluorescens Lipase. ChemistrySelect 2020. [DOI: 10.1002/slct.202000246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hui Zhang
- Department of Chemistry, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 PR China
| | - Xiaoying Li
- Department of Chemistry, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 PR China
| | - Wenjing Bai
- Department of Chemistry, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 PR China
| | - Yunxiao Liang
- Department of Chemistry, School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 PR China
| |
Collapse
|
15
|
Chiarelli Perdomo I, Letizia Contente M, Pinto A, Romano D, Fernandes P, Molinari F. Continuous preparation of flavour‐active acetate esters by direct biocatalytic esterification. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Igor Chiarelli Perdomo
- Department of Food, Environmental and Nutritional Sciences (DeFENS) University of Milan Milano Italy
| | - Martina Letizia Contente
- Department of Food, Environmental and Nutritional Sciences (DeFENS) University of Milan Milano Italy
- School of Chemistry University of Nottingham University Park Nottingham UK
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS) University of Milan Milano Italy
| | - Diego Romano
- Department of Food, Environmental and Nutritional Sciences (DeFENS) University of Milan Milano Italy
| | - Pedro Fernandes
- Department of Bioengineering and IBB Institute for Bioengineering and Biosciences Instituto Superior Técnico Universidade de Lisboa Lisboa Portugal
- Faculty of Engineering and DREAMS Universidade Lusófona de Humanidades e Tecnologias Lisboa Portugal
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences (DeFENS) University of Milan Milano Italy
| |
Collapse
|
16
|
Melchiors MS, Vieira TY, Pereira LPS, Carciofi BAM, de Araújo PHH, Oliveira DD, Sayer C. Epoxidation of ( R)-(+)-Limonene to 1,2-Limonene Oxide Mediated by Low-Cost Immobilized Candida antarctica Lipase Fraction B. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marina S. Melchiors
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil
| | - Thayne Y. Vieira
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil
| | - Luiz P. S. Pereira
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil
| | - Bruno A. M. Carciofi
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil
| | - Pedro H. H. de Araújo
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil
| | - Claudia Sayer
- Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
17
|
Benzyl propionate synthesis by fed-batch esterification using commercial immobilized and lyophilized Cal B lipase. Bioprocess Biosyst Eng 2019; 42:1625-1634. [DOI: 10.1007/s00449-019-02159-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/06/2019] [Indexed: 02/01/2023]
|
18
|
Zhang C, Liu Y, Sun Y. Lipase immobilized to a short alkyl chain-containing zwitterionic polymer grafted on silica nanoparticles: Moderate activation and significant increase of thermal stability. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
de Oliveira Romera C, de Oliveira D, Sayer C, de Araújo PHH. Enzymatic Synthesis of a Diene Ester Monomer Derived from Renewable Resource. Appl Biochem Biotechnol 2019; 189:745-759. [PMID: 31111376 DOI: 10.1007/s12010-019-03043-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/10/2019] [Indexed: 11/28/2022]
Abstract
The total or partial substitution of fossil raw materials by biobased materials from renewable resources is one of the great challenges of our society. In this context, the reaction under mild condition as enzyme-catalyzed esterification was applied to investigate the esterification of the biobased 10-undecenoic acid with 2-hydroxyethyl methacrylate (HEMA) to obtain a new diene ester monomer. The environmentally friendly enzymatic reaction presented up to 100% of conversion; moreover, the production of possible by-products was minimized controlling reaction time and amount of enzyme. Furthermore, the presence of chloroform was evaluated during the enzymatic reactions and despite high conversions with higher enzyme concentration, the solvent-free system showed fast kinetics even with 1.13 U/g substrates. In addition, the commercial immobilized lipases Novozym 435 and NS 88011 could be applied for up to 10 cycles keeping conversions about 90%. The scale-up of the reaction was possible and a purification procedure was applied in order to isolate the diene ester monomer 2-(10-undecenoyloxy)ethyl methacrylate, preserving its double bonds, which could allow a potential use of this product in the synthesis of new renewable polymers through techniques as metathesis, thiol-ene, or free-radical polymerization.
Collapse
Affiliation(s)
- Cristian de Oliveira Romera
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC, 88040-900, Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC, 88040-900, Brazil.
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC, 88040-900, Brazil
| | - Pedro Henrique Hermes de Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, PO Box 476, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
20
|
Facin BR, Melchiors MS, Valério A, Oliveira JV, Oliveira DD. Driving Immobilized Lipases as Biocatalysts: 10 Years State of the Art and Future Prospects. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00448] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bruno R. Facin
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Marina S. Melchiors
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Alexsandra Valério
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - J. Vladimir Oliveira
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, UFSC, P.O. Box 476, 88040-900, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
21
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|