1
|
Win TT, Song KG. Metagenomics and proteomics profiling of extracellular polymeric substances from municipal waste sludge and their application for soil and water bioremediation. CHEMOSPHERE 2023; 339:139767. [PMID: 37562501 DOI: 10.1016/j.chemosphere.2023.139767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
This study assessed the components of anaerobically digested sludge, activated sludge, and microbial and extracellular polymeric substance (EPS) enzymes to identify the mechanisms underlying nitrogen removal and soil regeneration. 16S rRNA gene amplicon-based sequencing was used to determine the microbial community composition and the related National Center for Biotechnology Information (NCBI) protein database was used to construct a conventional library from the observed community. EPS components were identified using gel-free proteomic (Liquid Chromatography with tandem mass spectrometry-LC/MS/MS) methods. Alginate-like EPS from aerobically activated sludge have strong potential for soil aggregation and water-holding capacity, whereas total EPS from anaerobic sludge have significant potential for ammonia removal under salt stress. Fourier transform infrared spectroscopy (FTIR) revealed that both EPS may contain proteins, carbohydrates, humic compounds, uronic acid, and DNA and determined the presence of O-H, N-H, C-N, CO, and C-H functional groups. These results demonstrate that the overall enzyme activity may be inactivated at 30 g L-1 of salinity. An annotation found in Kyoto Encyclopedia of Genes and Genomes (KEGG)- KEGG Automatic Annotation Server (KAAS) revealed that the top two metabolic activities in the EPS generated from the anaerobic sludge were methane and nitrogen metabolism. Therefore, we focused on the nitrogen metabolism reference map 00910. EPS from the anaerobically digested sludge exhibited nitrate reductase, nitrite reductase, and dehydrogenase activities. Assimilatory nitrate reduction, denitrification, nitrification, and anammox removed ammonia biochemically. The influence of microbial extracellular metabolites on water-holding capacity and soil aggregation was also investigated. The KAAS-KEGG annotation server was used to identify the main enzymes in the activated sludge-derived alginate-like extracellular EPS (ALE-EPS) samples. These include hydrolases, oxidoreductases, lyases, ligases, and transporters, which contribute to soil fertility and stability. This study improves our understanding of the overall microbial community structure and the associated biochemical processes, which are related to distinct functional genes or enzymes involved in nitrogen removal and soil aggregation. In contrast to conventional methods, microbial association with proteomics can be used to investigate ecological relationships, establishments, key player species, and microbial responses to environmental changes. Linking the metagenome to off-gel proteomics and bioinformatics solves the problem of analyzing metabolic pathways in complex environmental samples in a cost-effective manner.
Collapse
Affiliation(s)
- Theint Theint Win
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea; Cental Biotechnology Research Department, Yangon Technological University, Insein, 11101, Yangon, Myanmar
| | - Kyung Guen Song
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
2
|
Fornal M, Osińska-Jaroszuk M, Jaszek M, Stefaniuk D, Wiater A, Komaniecka I, Matuszewski Ł, Matuszewska A. A New Exopolysaccharide from a Wood-Decaying Fungus Spongipellis borealis for a Wide Range of Biotechnological Applications. Molecules 2023; 28:6120. [PMID: 37630373 PMCID: PMC10459776 DOI: 10.3390/molecules28166120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are a unique natural resource rich in polysaccharides, proteins, and other components. Polysaccharides are considered one of the most important bioactive components in fungi. Increasing numbers of studies have confirmed that fungal polysaccharides have various biological activities. Given these facts, the main aim of this investigation was to carry out isolation, identification, and structural characterisation of a new polysaccharide (EPS) derived from laboratory-cultured vegetative mycelium of a new Spongipellis borealis strain isolated from the environment. The examination of monosaccharides in the EPS demonstrated that the isolated biopolymer was composed mainly of glucose, galactose, and mannose monomers. The analysis of the methylation of the studied polymer indicated that it contained mainly terminal, →3)-linked, →4)-linked, and →2,4)-linked hexoses. The effect of fungal polysaccharides on S. borealis proteolytic enzymes (pepsin, trypsin, and pycnoporopepsin) and laccase activity was determined for the first time. Incubation of the enzyme preparation and EPS showed an influence of EPS on the stability of these enzymes, compared to the control values (without EPS).
Collapse
Affiliation(s)
- Michał Fornal
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Monika Osińska-Jaroszuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-031 Lublin, Poland; (M.O.-J.); (M.J.); (D.S.)
| | - Magdalena Jaszek
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-031 Lublin, Poland; (M.O.-J.); (M.J.); (D.S.)
| | - Dawid Stefaniuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-031 Lublin, Poland; (M.O.-J.); (M.J.); (D.S.)
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-031 Lublin, Poland;
| | - Iwona Komaniecka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-031 Lublin, Poland;
| | - Łukasz Matuszewski
- Pediatric Orthopedic and Rehabilitation Clinic, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Anna Matuszewska
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-031 Lublin, Poland; (M.O.-J.); (M.J.); (D.S.)
| |
Collapse
|
3
|
Signaling and Detoxification Strategies in Plant-Microbes Symbiosis under Heavy Metal Stress: A Mechanistic Understanding. Microorganisms 2022; 11:microorganisms11010069. [PMID: 36677361 PMCID: PMC9865731 DOI: 10.3390/microorganisms11010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Plants typically interact with a variety of microorganisms, including bacteria, mycorrhizal fungi, and other organisms, in their above- and below-ground parts. In the biosphere, the interactions of plants with diverse microbes enable them to acquire a wide range of symbiotic advantages, resulting in enhanced plant growth and development and stress tolerance to toxic metals (TMs). Recent studies have shown that certain microorganisms can reduce the accumulation of TMs in plants through various mechanisms and can reduce the bioavailability of TMs in soil. However, relevant progress is lacking in summarization. This review mechanistically summarizes the common mediating pathways, detoxification strategies, and homeostatic mechanisms based on the research progress of the joint prevention and control of TMs by arbuscular mycorrhizal fungi (AMF)-plant and Rhizobium-plant interactions. Given the importance of tripartite mutualism in the plant-microbe system, it is necessary to further explore key signaling molecules to understand the role of plant-microbe mutualism in improving plant tolerance under heavy metal stress in the contaminated soil environments. It is hoped that our findings will be useful in studying plant stress tolerance under a broad range of environmental conditions and will help in developing new technologies for ensuring crop health and performance in future.
Collapse
|
4
|
Tang S, Ma Y, Dong X, Zhou H, He Y, Ren D, Wang Q, Yang H, Liu S, Wu L. Enzyme-assisted extraction of fucoidan from Kjellmaniella crassifolia based on kinetic study of enzymatic hydrolysis of algal cellulose. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Szewczuk-Karpisz K, Bajda T, Tomczyk A, Kuśmierz M, Komaniecka I. Immobilization mechanism of Cd2+/HCrO4-/CrO42- ions and carboxin on montmorillonite modified with Rhizobium leguminosarum bv. trifolii exopolysaccharide. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128228. [PMID: 35033916 DOI: 10.1016/j.jhazmat.2022.128228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 05/26/2023]
|
6
|
Sulej J, Jaszek M, Osińska-Jaroszuk M, Matuszewska A, Bancerz R, Janczarek M. Natural microbial polysaccharides as effective factors for modification of the catalytic properties of fungal cellobiose dehydrogenase. Arch Microbiol 2021; 203:4433-4448. [PMID: 34132850 PMCID: PMC8360876 DOI: 10.1007/s00203-021-02424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022]
Abstract
Polysaccharides are biopolymers composed of simple sugars like glucose, galactose, mannose, fructose, etc. The major natural sources for the production of polysaccharides include plants and microorganisms. In the present work, four bacterial and two fungal polysaccharides (PS or EPS) were used for the modification and preservation of Pycnoporus sanguineus cellobiose dehydrogenase (CDH) activity. It was found that the presence of polysaccharide preparations clearly enhanced the stability of cellobiose dehydrogenase compared to the control value (4 °C). The highest stabilization effect was observed for CDH modified with Rh110EPS. Changes in the optimum pH in the samples of CDH incubated with the chosen polysaccharide modifiers were evidenced as well. The most significant effect was observed for Rh24EPS and Cu139PS (pH 3.5). Cyclic voltammetry used for the analysis of electrochemical parameters of modified CDH showed the highest peak values after 30 days of incubation with polysaccharides at 4 °C. In summary, natural polysaccharides seem to be an effective biotechnological tool for the modification of CDH activity to increase the possibilities of its practical applications in many fields of industry.
Collapse
Affiliation(s)
- Justyna Sulej
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Magdalena Jaszek
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Monika Osińska-Jaroszuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Anna Matuszewska
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Renata Bancerz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Monika Janczarek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|
7
|
Moghiseh Z, Rezaee A. Removal of aspirin from aqueous solution using electroactive bacteria induced by alternating current. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25327-25338. [PMID: 33453025 DOI: 10.1007/s11356-020-11365-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
This study aims to improve bacterial laccase enzyme activity (LEA) and dehydrogenase activity (DHA) affecting acetylsalicylic acid (ASA) biodegradation using an alternating current (AC). A microbial consortium was inoculated in an electroactive bioreactor supplied with an AC by a function generator under operating conditions of amplitude (AMPL) = 2-10 peak-to-peak voltage (Vpp), optical fiber splice tray (OFST) = 0.1 V, and sine wave frequency = 10 Hz. The obtained results revealed that at an applied voltage of 8 Vpp and an OFST of 0.1 for 12 h, the maximum bacterial LEA and DHA were 30.6 U/mL and 75.5 micro grTF/cm2.gr biomass; respectively. Cell viability and permeability were equal to 95.7% and 0.3%; respectively, at the voltage of 8 Vpp. Moreover, liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analyses showed that by-products had lower intensity at 8 Vpp compared with that of 2 Vpp voltage. Finally, the results demonstrated an optimum applied voltage of the AC, which could stimulate and promote bacterial LEA and DHA. Therefore, an electroactive bioreactor supplied with an AC can be a novel system for stimulation of enzyme activities in the process of ASA biodegradation.
Collapse
Affiliation(s)
- Zohreh Moghiseh
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Rezaee
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
8
|
Cerrena unicolor Laccases, Genes Expression and Regulation of Activity. Biomolecules 2021; 11:biom11030468. [PMID: 33809926 PMCID: PMC8004220 DOI: 10.3390/biom11030468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022] Open
Abstract
A white rot fungus Cerrena unicolor has been identified as an important source of laccase, unfortunately regulation of this enzyme genes expression is poorly understood. Using 1D and 2D PAGE and LC-MS/MS, laccase isoenzymes were investigated in the liquid filtrate of C. unicolor culture. The level of expression of laccase genes was measured using qPCR. The elevated concentrations of copper and manganese in the medium caused greatest change in genes expression and three laccase transcripts were significantly affected after culture temperature was decreased from 28 to 4 °C or increased to 40 °C. The small differences in the PAGE band intensities of individual laccase proteins were also observed, indicating that given compound affect particular laccase’s transcript. Analyses of laccase-specific activity, at all tested conditions, showed the increased activities as compared to the control, suggesting that enzyme is regulated at the post-translational stage. We observed that the aspartic protease purified from C. unicolor, significantly stimulate laccase activity. Moreover, electrochemical analysis of protease-treated laccase sample had 5 times higher redox peaks. The obtained results indicate that laccases released by C. unicolor are regulated at transcriptional, translational, and at the post-translational steps of gene expression helping fungus adapt to the environmental changes.
Collapse
|
9
|
Aragão MS, Menezes DB, Ramos LC, Oliveira HS, Bharagava RN, Romanholo Ferreira LF, Teixeira JA, Ruzene DS, Silva DP. Mycoremediation of vinasse by surface response methodology and preliminary studies in air-lift bioreactors. CHEMOSPHERE 2020; 244:125432. [PMID: 31812763 DOI: 10.1016/j.chemosphere.2019.125432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
This work evaluated the degradation of sugarcane vinasse with the production of biomass by Pleurotus sajor-caju CCB020, considering the combination of temperature and pH effects, using surface response methodology (RSM). A 22 complete central factorial composite experiment was used to analyze the results. The optimum temperature and pH values were respectively 27 °C and 5.6 for maximum decolorization yield and 20 °C and 6.8 for maximum biomass production. In parallel, scale-up experiments under conditions of 30 °C and initial pH 5.0 were evaluated in two different air-lift bioreactors of 7.0 L. Under these conditions, reductions of 53% and 58% in chemical oxygen demand (COD) and 71% and 58% in biological oxygen demand (BOD) were obtained respectively with the concentric tube type air-lift bioreactor with an increased degassing zone and without an increased degassing zone. Under these conditions, this study concluded that the systematic combination of P. sajor-caju and vinasse can be applied in the biodegradation process of refractory compounds contained in vinasse, concomitant to obtaining biomass and laccase and manganese peroxidase enzymes. Due to the good performance of the air-lift bioreactors, they can be used in scale studies in future industrial vinasse applications, besides it is possible to emphasize that different configurations in the bioreactor can affect the efficiency of the process.
Collapse
Affiliation(s)
- Moniky S Aragão
- Institute of Technology and Research, Murilo Dantas Avenue 300, Campus Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Diego B Menezes
- Institute of Technology and Research, Murilo Dantas Avenue 300, Campus Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Larissa C Ramos
- Northeastern Biotechnology Network - RENORBIO, Federal University of Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Helon S Oliveira
- Institute of Technology and Research, Murilo Dantas Avenue 300, Campus Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Microbiology (DM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Luiz Fernando Romanholo Ferreira
- Institute of Technology and Research, Murilo Dantas Avenue 300, Campus Farolândia, 49032-490, Aracaju, SE, Brazil; Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil.
| | - José A Teixeira
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
| | - Denise S Ruzene
- Northeastern Biotechnology Network - RENORBIO, Federal University of Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Daniel P Silva
- Northeastern Biotechnology Network - RENORBIO, Federal University of Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| |
Collapse
|