1
|
Battiston CSZ, Ficanha AMM, Oro CED, Dallago RM, Mignoni ML. In Situ Calb Enzyme Immobilization in Mesoporous Material Type MCM-48 Synthesis Using Ionic Solid [C 14MI]Cl as Structure-Directing Agent. Appl Biochem Biotechnol 2022; 194:748-761. [PMID: 34524635 DOI: 10.1007/s12010-021-03648-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/03/2021] [Indexed: 01/06/2023]
Abstract
MCM-48 mesoporous support was synthesized with the ionic solid 1-tetradecyl-3-methylimidazolium chloride ([C14MI]Cl) as a structure-directing agent for in situ immobilization of Candida antarctica B (CALB). The MCM-48[C14MI]Cl support showed characteristics of mesoporous material of interest, with a pore size of 20.30 and 73.41 A for the support without and with the enzyme, respectively. The elongation of the carbonic chain of the ionic solid directly influenced the increase in the specific area and pore volume of the material. In addition, the decrease in the specific area and pore volume for support with the enzyme showed the effectiveness of immobilization in situ. It was possible to obtain the ideal levels for the best activities of esterification of the enzyme with optimization of a mathematical model. The optimized variables were 0.31 g of enzyme and 3.35% of ionic solid with a maximum esterification activity of 392.92 U/g and 688% of yield. The support showed residual activity above 50% when stored under refrigeration for 75 days. At 60 and 80 °C, the enzyme immobilized on the support retained more than 80 and 40% of its residual activity, respectively. In addition, the support presented the possibility of reuse for up to 10 cycles with residual activity of approximately 50%. The support synthesized in the present study presents a great industrial opportunity for the immobilization and use of the CALB enzyme.
Collapse
Affiliation(s)
- Catia S Zanchett Battiston
- IFRS - Erechim, Erechim, RS, 99713-028, Brazil
- Department of Food and Chemical Engineering, URI - Erechim, 1621, Sete de Setembro Av., Erechim, RS, 99709-910, Brazil
| | - Aline M Moreira Ficanha
- Department of Food and Chemical Engineering, URI - Erechim, 1621, Sete de Setembro Av., Erechim, RS, 99709-910, Brazil
- Department of Engineering, Centro de Ensino Riograndense, Marau, RS, CEP 99150000, Brazil
| | - Carolina E Demaman Oro
- Department of Food and Chemical Engineering, URI - Erechim, 1621, Sete de Setembro Av., Erechim, RS, 99709-910, Brazil
| | - Rogério Marcos Dallago
- Department of Food and Chemical Engineering, URI - Erechim, 1621, Sete de Setembro Av., Erechim, RS, 99709-910, Brazil
| | - Marcelo Luis Mignoni
- Department of Food and Chemical Engineering, URI - Erechim, 1621, Sete de Setembro Av., Erechim, RS, 99709-910, Brazil.
| |
Collapse
|
2
|
Han Y, Zhang X, Zheng L. Engineering actively magnetic crosslinked inclusion bodies of Candida antarctica lipase B: An efficient and stable biocatalyst for enzyme-catalyzed reactions. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|