1
|
Kamal W, Allah AE, Mahmoud R, Farghali AA, Kotp AA, Abdelwahab A. Metal-organic framework-derived nanoflower and nanoflake metal oxides as electrocatalysts for methanol oxidation. RSC Adv 2024; 14:32828-32838. [PMID: 39429937 PMCID: PMC11484592 DOI: 10.1039/d4ra04902k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
The energy crisis is the most urgent issue facing contemporary society and needs to be given top priority. As energy consumption rises, environmental pollution is becoming a serious issue. Direct methanol fuel cells (DMFCs) have emerged as the most promising energy source for a variety of applications such as electric vehicles and portable devices. Unfortunately, the kinetics of methanol oxidation is slow and needs an electrocatalyst to improve the reaction kinetics and the overall fuel cell efficiency. Herein, a straightforward hydrothermal procedure was utilized to prepare copper, nickel, and cobalt-based MOF composites by altering the elemental molar ratios. Cu-MOF (MOFP1), Cu/Ni-MOF (MOFP2), and Cu/Ni/Co-MOF (MOFP3) were prepared after carbonization and characterized using several key techniques such as FTIR, XRD, SEM, and EDX. The SEM analysis reveals that the morphology of MOFP1 is spherical aggregated particles, while that of MOFP2 or MOFP3 is in the form of nanoflakes and nanoflowers. Moreover, upon application of these composites as electrocatalysts for methanol electro-oxidation in an alkaline medium of 1 M NaOH using cyclic voltammetry (CV) and chronoamperometry (CA) tests, the electrochemical performance of MOFP2 in 1 M methanol exhibits the best performance for methanol oxidation with a current density reaching 38.77 mA cm-2 at a scan rate of 60 mV s-1. This can be attributed to the unique porous open flower structure and the synergistic effect between copper, nickel, and 2-aminoterephthalic acid which develop its catalytic activity.
Collapse
Affiliation(s)
- W Kamal
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
| | - Abeer Enaiet Allah
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University 62511 Beni-Suef Egypt
| | - Amna A Kotp
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University 62511 Beni-Suef Egypt
| | - Abdalla Abdelwahab
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
- Department of Chemistry, College of Sciences, University of Ha'il Ha'il 81451 Saudi Arabia
| |
Collapse
|
2
|
Hartono Adji RP, Anshori I, Manurung RV, Taufiqqurrachman, Mahmudin D, Daud P, Kurniadi DP, Pristianto EJ, Rahman AN, Desvasari W, Sulistyaningsih, Mandasari RD, Hiskia, Wiranto G. A comprehensive study on transparent conducting oxides in compact microbial fuel cells: Integrated spectroscopic and electrochemical analyses for monitoring biofilm growth. Biosens Bioelectron 2024; 250:116067. [PMID: 38301542 DOI: 10.1016/j.bios.2024.116067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Microbial fuel cells (MFCs) are an emerging technology that holds promise for renewable energy production and the mitigation of environmental challenges. This research paper introduces a single-compartment MFC reactor that utilizes transparent conducting oxides (TCOs), such as fluorine-doped tin oxide (FTO) and indium tin oxides (ITO), as the working electrodes. The effectiveness of MFCs based on FTO and ITO was evaluated by characterizing the transparent electrode and examining its performance during biofilm cultivation. Additionally, the optical properties of the biofilm grown directly on these electrodes were investigated using LEDs as a light source. The impressive average current density of 200 μA cm-2 over 100 days demonstrates the efficiency of the see-through electrodes in bioenergy extraction. The correlation between spectroscopic and microscopic analyses substantiates the feasibility of employing transparent electrodes for accurate quantification of biofilm thickness, with an initial accuracy of ±10 μm in the initial cycle, ±22 μm in the subsequent cycle, and a maximum of ±31 μm after seven days of growth. This innovative approach holds great potential for advancing our understanding of MFCs and their application in environmentally friendly energy generation and optical-based monitoring.
Collapse
Affiliation(s)
- Raden Priyo Hartono Adji
- Research Center for Telecommunications - The National Research and Innovation Agency (BRIN), Jl. Sangkuriang, KST Cisitu (Samaun Samadikun) 4th Floor, 40135, Bandung, Jawa Barat, Indonesia.
| | - Isa Anshori
- Biomedical Engineering Department, School of Electrical Engineering & Informatics, Bandung Institute of Technology, 40132, Bandung, Indonesia; Research Center for Nanosciences and Nanotechnology (RCNN), Bandung Institute of Technology, 40132, Bandung, Indonesia
| | - Robeth Viktoria Manurung
- Research Center for Electronics - The National Research and Innovation Agency (BRIN), 40135, Bandung, Jawa Barat, Indonesia
| | - Taufiqqurrachman
- Research Center for Telecommunications - The National Research and Innovation Agency (BRIN), Jl. Sangkuriang, KST Cisitu (Samaun Samadikun) 4th Floor, 40135, Bandung, Jawa Barat, Indonesia
| | - D Mahmudin
- Research Center for Telecommunications - The National Research and Innovation Agency (BRIN), Jl. Sangkuriang, KST Cisitu (Samaun Samadikun) 4th Floor, 40135, Bandung, Jawa Barat, Indonesia
| | - Pamungkas Daud
- Research Center for Telecommunications - The National Research and Innovation Agency (BRIN), Jl. Sangkuriang, KST Cisitu (Samaun Samadikun) 4th Floor, 40135, Bandung, Jawa Barat, Indonesia
| | - Deni Permana Kurniadi
- Research Center for Telecommunications - The National Research and Innovation Agency (BRIN), Jl. Sangkuriang, KST Cisitu (Samaun Samadikun) 4th Floor, 40135, Bandung, Jawa Barat, Indonesia
| | - Eko Joni Pristianto
- Research Center for Telecommunications - The National Research and Innovation Agency (BRIN), Jl. Sangkuriang, KST Cisitu (Samaun Samadikun) 4th Floor, 40135, Bandung, Jawa Barat, Indonesia
| | - Arief Nur Rahman
- Research Center for Telecommunications - The National Research and Innovation Agency (BRIN), Jl. Sangkuriang, KST Cisitu (Samaun Samadikun) 4th Floor, 40135, Bandung, Jawa Barat, Indonesia
| | - Winy Desvasari
- Research Center for Telecommunications - The National Research and Innovation Agency (BRIN), Jl. Sangkuriang, KST Cisitu (Samaun Samadikun) 4th Floor, 40135, Bandung, Jawa Barat, Indonesia
| | - Sulistyaningsih
- Research Center for Telecommunications - The National Research and Innovation Agency (BRIN), Jl. Sangkuriang, KST Cisitu (Samaun Samadikun) 4th Floor, 40135, Bandung, Jawa Barat, Indonesia
| | - Raden Deasy Mandasari
- Electrical Engineering Department, Faculty of Technology and Vocational Education, Universitas Pendidikan Indonesia, 40154, Bandung, Indonesia
| | - Hiskia
- Directorate of Intellectual Property Management, Deputy for Research Facilitation and Innovation, The National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Goib Wiranto
- Research Center for Electronics - The National Research and Innovation Agency (BRIN), 40135, Bandung, Jawa Barat, Indonesia
| |
Collapse
|
3
|
Ahmad A, Senaidi AS, Reddy SS. Electrochemical process for petroleum refinery wastewater treatment to produce power and hydrogen using microbial electrolysis cell. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:485-496. [PMID: 37869594 PMCID: PMC10584772 DOI: 10.1007/s40201-023-00874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/09/2023] [Indexed: 10/24/2023]
Abstract
This research aims to assess the microbial electrolysis cell (MEC) fed with petroleum refinery wastewater (PRW) to produce power density and bio-electrochemical hydrogen. The MEC produces a maximum bio-electricity of 21.4 mA and a power density of 1200123.90 W/m2 with a loading of chemical oxygen demand (COD) of 17000 mg/L. Due to catalyzed oxidation of complex compounds in PRW with a maintained microbial biofilm growth was observed after 90 d of operation of MEC. Results showed that the oxidation of organic substances in PRW enhanced the size in the growth of microbial film which further increased the generation of electrons leading to current density of 5890 mA/m2. The COD removal efficiency of MEC was found to be 89.9%. The bio-electricity and hydrogen production of the MEC was estimated to be 24.5 mA and 19.2 L respectively when loaded with PRW having a COD of 17500 mg/L after 130 d. Present experiments demonstrate the efficiency of MEC technology efficiency in treating petroleum wastewater with the help of microbial biofilm.
Collapse
Affiliation(s)
- Anwar Ahmad
- Civil and Environmental Engineering Department, College of Engineering and Architecture, University of Nizwa, PO 33, Nizwa City, 616 Oman
| | - Alaya Said Senaidi
- Civil and Environmental Engineering Department, College of Engineering and Architecture, University of Nizwa, PO 33, Nizwa City, 616 Oman
| | - Sajjala Sreedhar Reddy
- Civil and Environmental Engineering Department, College of Engineering and Architecture, University of Nizwa, PO 33, Nizwa City, 616 Oman
| |
Collapse
|
4
|
Klein EM, Knoll MT, Gescher J. Microbe-Anode Interactions: Comparing the impact of genetic and material engineering approaches to improve the performance of microbial electrochemical systems (MES). Microb Biotechnol 2023; 16:1179-1202. [PMID: 36808480 PMCID: PMC10221544 DOI: 10.1111/1751-7915.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/20/2023] Open
Abstract
Microbial electrochemical systems (MESs) are a highly versatile platform technology with a particular focus on power or energy production. Often, they are used in combination with substrate conversion (e.g., wastewater treatment) and production of value-added compounds via electrode-assisted fermentation. This rapidly evolving field has seen great improvements both technically and biologically, but this interdisciplinarity sometimes hampers overseeing strategies to increase process efficiency. In this review, we first briefly summarize the terminology of the technology and outline the biological background that is essential for understanding and thus improving MES technology. Thereafter, recent research on improvements at the biofilm-electrode interface will be summarized and discussed, distinguishing between biotic and abiotic approaches. The two approaches are then compared, and resulting future directions are discussed. This mini-review therefore provides basic knowledge of MES technology and the underlying microbiology in general and reviews recent improvements at the bacteria-electrode interface.
Collapse
Affiliation(s)
- Edina M. Klein
- Institute of Technical MicrobiologyUniversity of Technology HamburgHamburgGermany
| | - Melanie T. Knoll
- Institute of Technical MicrobiologyUniversity of Technology HamburgHamburgGermany
| | - Johannes Gescher
- Institute of Technical MicrobiologyUniversity of Technology HamburgHamburgGermany
| |
Collapse
|
5
|
Ahmad A, Senaidi AS, Al-Rahbi AS, Al-dawery SK. Biodegradation of petroleum wastewater for the production of bioelectricity using activated sludge biomass. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:133-142. [PMID: 37159729 PMCID: PMC10163198 DOI: 10.1007/s40201-022-00846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/18/2022] [Indexed: 05/11/2023]
Abstract
Objective This research is based on the treatment of petroleum wastewater (PWW) with pretreated activated sludge for the production of electricity and removal of chemical oxygen demand (COD) using microbial fuel cell (MFC). Methods The application of the MFC system which uses activated sludge biomass (ASB) as a substrate resulted in the reduction of COD by 89.5% of the original value. It generated electricity equivalent to 8.18 mA/m2 which can be reused again. This would solve the majority of environmental crises which we are facing today. Results This study discusses the application of ASB to enhance the degradation of PWW for the production of a power density of 1012.95 mW/m2 when a voltage of 0.75 V (voltage) is applied at 30:70% of ASB when MFC is operated in a continuous mode. Microbial biomass growth was catalyzed using activated sludge biomass. The growth of microbes was observed by scanning through an electron microscope. Through oxidation in the MFC system, bioelectricity is generated which is used in the cathode chamber. Furthermore, the MFC operated using ASB in a ratio of 35 with the current density, which decreased to 494.76 mW/m2 at 10% ASB. Application Our experiments demonstrate that the efficiency of the MFC system can generate bioelectricity and treat petroleum wastewater by using activated sludge biomass.
Collapse
Affiliation(s)
- Anwar Ahmad
- Civil and Environmental Engineering Department, College of Engineering and Architecture, University of Nizwa, PO 33, 616 Nizwa, Sultanate of Oman
| | - Alaya Said Senaidi
- Civil and Environmental Engineering Department, College of Engineering and Architecture, University of Nizwa, PO 33, 616 Nizwa, Sultanate of Oman
| | - Amal S. Al-Rahbi
- Chemistry Section-Applied Sciences, Higher College of Technology, University Technology and Applied Sciences, Muscat, Sultanate of Oman
| | - Salam K. Al-dawery
- Chemical Petroleum Engineering Department, College of Engineering and Architecture, University of Nizwa, PO 33, 616 Nizwa, Sultanate of Oman
| |
Collapse
|
6
|
Ouzi ZA, Aber S, Nofouzi K, Khajeh RT, Rezaei A. Carbon paste/LDH/bacteria biohybrid for the modification of the anode electrode of a microbial fuel cell. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Ashmath S, Kwon HJ, Peera SG, Lee TG. Solid-State Synthesis of Cobalt/NCS Electrocatalyst for Oxygen Reduction Reaction in Dual Chamber Microbial Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4369. [PMID: 36558222 PMCID: PMC9788303 DOI: 10.3390/nano12244369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Due to the high cost of presently utilized Pt/C catalysts, a quick and sustainable synthesis of electrocatalysts made of cost-effective and earth-abundant metals is urgently needed. In this work, we demonstrated a mechanochemically synthesized cobalt nanoparticles supported on N and S doped carbons derived from a solid-state-reaction between zinc acetate and 2-amino thiazole as metal, organic ligand in presence of cobalt (Co) metal ions ZnxCox(C3H4N2S). Pyrolysis of the ZnxCox(C3H4N2S) produced, Co/NSC catalyst in which Co nanoparticles are evenly distributed on the nitrogen and sulfur doped carbon support. The Co/NSC catalyst have been characterized with various physical and electrochemical characterization techniques. The Co content in the ZnxCox(C3H4N2S) is carefully adjusted by varying the Co content and the optimized Co/NSC-3 catalyst is subjected to the oxygen reduction reaction in 0.1 M HClO4 electrolyte. The optimized Co/NSC-3 catalyst reveals acceptable ORR activity with the half-wave potential of ~0.63 V vs. RHE in acidic electrolytes. In addition, the Co/NSC-3 catalyst showed excellent stability with no loss in the ORR activity after 10,000 potential cycles. When applied as cathode catalysts in dual chamber microbial fuel cells, the Co/NCS catalyst delivered satisfactory volumetric power density in comparison with Pt/C.
Collapse
Affiliation(s)
| | | | - Shaik Gouse Peera
- Department of Environmental Science, Keimyung University, Daegu 42601, Republic of Korea
| | - Tae Gwan Lee
- Department of Environmental Science, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
8
|
A novel gallium oxide nanoparticles-based sensor for the simultaneous electrochemical detection of Pb 2+, Cd 2+ and Hg 2+ ions in real water samples. Sci Rep 2022; 12:20181. [PMID: 36424461 PMCID: PMC9691749 DOI: 10.1038/s41598-022-24558-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Differential pulse voltammetry (DPV) using gallium oxide nanoparticles/carbon paste electrode (Ga2O3/CPE) was utilized for the simultaneous detection of Pb2+, Cd2+ and Hg2+ ions. Ga2O3NPs were chemically synthesized and fully characterized by Fourier-transform infrared (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Through the assay optimization, electrochemical screening of different nanomaterials was carried out using the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in order to determine the best electrode modifier that will be implemented for the present assay. Consequently, various parameters such as electrode matrix composition, electrolyte, deposition potential, and deposition time were optimized and discussed. Accordingly, the newly developed sensing platform showed a wide dynamic linear range of 0.3-80 µM with detection limits (LODs) of 84, 88 and 130 nM for Pb2+, Cd2+ and Hg2+ ions, respectively. While the corresponding limit of quantification (LOQ) values were 280, 320 and 450 nM. Sensors selectivity was investigated towards different non-targeting metal ions, whereas no obvious cross-reactivity was obtained. Eventually, applications on real samples were performed, while excellent recoveries for the multiple metal ions were successfully achieved.
Collapse
|
9
|
Mahmoud RH, Gomaa OM, Hassan RYA. Bio-electrochemical frameworks governing microbial fuel cell performance: technical bottlenecks and proposed solutions. RSC Adv 2022; 12:5749-5764. [PMID: 35424538 PMCID: PMC8981509 DOI: 10.1039/d1ra08487a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
Microbial fuel cells (MFCs) are recognized as a future technology with a unique ability to exploit metabolic activities of living microorganisms for simultaneous conversion of chemical energy into electrical energy. This technology holds the promise to offer sustained innovations and continuous development towards many different applications and value-added production that extends beyond electricity generation, such as water desalination, wastewater treatment, heavy metal removal, bio-hydrogen production, volatile fatty acid production and biosensors. Despite these advantages, MFCs still face technical challenges in terms of low power and current density, limiting their use to powering only small-scale devices. Description of some of these challenges and their proposed solutions is demanded if MFCs are applied on a large or commercial scale. On the other hand, the slow oxygen reduction process (ORR) in the cathodic compartment is a major roadblock in the commercialization of fuel cells for energy conversion. Thus, the scope of this review article addresses the main technical challenges of MFC operation and provides different practical approaches based on different attempts reported over the years. Sustainable operation requires addressing key MFC-bottleneck issues. Enhancing extracellular electron transfer is the key to elevated MFC performance.![]()
Collapse
Affiliation(s)
- Rehab H. Mahmoud
- Water Pollution Research Department, National Research Centre (NRC), Dokki, Giza, Egypt
| | - Ola M. Gomaa
- Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Nasr City, Cairo, Egypt
| | - Rabeay Y. A. Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt
- Applied Organic Chemistry Department, National Research Centre (NRC), Dokki, 12622 Giza, Egypt
| |
Collapse
|
10
|
El-Raheem HA, Hassan RYA, Khaled R, Farghali A, El-Sherbiny IM. New sensing platform of poly(ester-urethane)urea doped with gold nanoparticles for rapid detection of mercury ions in fish tissue. RSC Adv 2021; 11:31845-31854. [PMID: 35496891 PMCID: PMC9041571 DOI: 10.1039/d1ra03693a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/11/2021] [Indexed: 12/21/2022] Open
Abstract
A new electrochemical sensor has been fabricated based on the in situ synthesis of poly(ester-urethane) urea (PUU) doped with gold nanoparticles (AuNPs), and the obtained composite materials (PUU/AuNPs) were used as a new sensing platform for highly sensitive and selective detection of mercury(II) ions in fish tissue. PUU was synthesized and fully characterized by XRD, TGA, DSC, and FTIR to analyze the chemical structure, thermal stability, and morphological properties. As a polymeric structure, the PUU consists of urethane and urea groups that possess pronounced binding abilities to Hg2+ ions. SEM-EDX was carried out to confirm this kind of interaction. Using ferricyanide as the redox probe, PUU alone exhibited weak electrochemical signals due to its low electrical conductivity. Therefore, a new series of nanocomposites of PUU with different nanostructured materials were applied, and their electrochemical performances were evaluated. Among these materials, the PUU/AuNP-modified electrode showed high voltammetric signals towards Hg2+. Consequently, the parameters affecting the performance of the assay, such as electrode composition, scan rate, and sensing time, as well as the effect of electrolyte and pH were studied and optimized. The sensor showed a linear range of 5 ng mL-1 to 155 ng mL-1 with the regression coefficient R 2 = 0.986, while the calculated values of the limit of detection (LOD) and limit of quantification (LOQ) were 0.235 ng mL-1 and 0.710 ng mL-1, respectively. In terms of cross reactivity testing, the sensor exhibited a high selectivity against heavy metals which are commonly determined in seafood (Cd2+, Pb2+, As3+, Cr3+, Mg2+, and Cu2+). For real applications, total Hg2+ ions in fish tissue were determined with very high recovery and no prior complicated treatments.
Collapse
Affiliation(s)
- Hany Abd El-Raheem
- Center of Materials Sciences, Zewail City of Science and Technology October Gardens, 6th of October City 12578 Giza Egypt
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef Egypt
| | - Rabeay Y A Hassan
- Center of Materials Sciences, Zewail City of Science and Technology October Gardens, 6th of October City 12578 Giza Egypt
- Applied Organic Chemistry Department, National Research Centre (NRC) Dokki 12622 Giza Egypt
| | - Rehab Khaled
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef Egypt
| | - Ibrahim M El-Sherbiny
- Center of Materials Sciences, Zewail City of Science and Technology October Gardens, 6th of October City 12578 Giza Egypt
| |
Collapse
|
11
|
Becerril-Varela K, Serment-Guerrero JH, Manzanares-Leal GL, Ramírez-Durán N, Guerrero-Barajas C. Generation of electrical energy in a microbial fuel cell coupling acetate oxidation to Fe 3+ reduction and isolation of the involved bacteria. World J Microbiol Biotechnol 2021; 37:104. [PMID: 34037857 DOI: 10.1007/s11274-021-03077-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/21/2021] [Indexed: 01/16/2023]
Abstract
An iron reducing enrichment was obtained from sulfate reducing sludge and was evaluated on the capability of reducing Fe3+ coupled to acetate oxidation in a microbial fuel cell (MFC). Three molar ratios for acetate/Fe3+ were evaluated (2/16, 3.4/27 and 6.9/55 mM). The percentages of Fe3+ reduction were in a range of 80-90, 60-70 and 40-50% for the MFCs at closed circuit for the molar ratios of 2/16, 3.4/27 and 6.9/55 mM, respectively. Acetate consumption was in a range of 80-90% in all cases. The results obtained at closed circuit for current density were: 11.37 mA/m2, 4.5 mA/m2 and 7.37 mA/m2 for the molar ratios of 2/16, 3.4/27 and 6.9/55 mM, respectively. Some microorganisms that were isolated and identified in the MFCs were Azospira oryzae, Cupriavidus metallidurans CH34, Enterobacter bugandensis 247BMC, Citrobacter freundii ATCC8090 and Citrobacter murliniae CDC2970-59, these bacteria have been reported as exoelectrogens in MFC and in MFC involving metals removal but not all of them have been reported to utilize acetate as preferred substrate. The results demonstrate that the isolates can utilize acetate as the sole source of carbon and suggest that Fe3+ reduction was carried out by a combination of different mechanisms (direct contact and redox mediators) utilized by the bacteria identified in the MFC. Storage of the energy generated from the 2/16 mM MFC system arranged in a series of three demonstrated that it is possible to utilize the energy to charge a battery.
Collapse
Affiliation(s)
- Karina Becerril-Varela
- Laboratorio de Biotecnología Ambiental, Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, 07340, Mexico City, Mexico
| | - Jorge H Serment-Guerrero
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares, 52750, Mexico City, Mexico
| | - Gauddy Lizeth Manzanares-Leal
- Laboratorio de Investigación en Microbiología Médica y Ambiental, Facultad de Medicina, Universidad Autónoma del Estado de México (UAEM), Paseo Tollocan Esq. Jesús Carranza, 50180, Toluca, Mexico
| | - Ninfa Ramírez-Durán
- Laboratorio de Investigación en Microbiología Médica y Ambiental, Facultad de Medicina, Universidad Autónoma del Estado de México (UAEM), Paseo Tollocan Esq. Jesús Carranza, 50180, Toluca, Mexico
| | - Claudia Guerrero-Barajas
- Laboratorio de Biotecnología Ambiental, Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, 07340, Mexico City, Mexico.
| |
Collapse
|
12
|
Hassan RY, Febbraio F, Andreescu S. Microbial Electrochemical Systems: Principles, Construction and Biosensing Applications. SENSORS (BASEL, SWITZERLAND) 2021; 21:1279. [PMID: 33670122 PMCID: PMC7916843 DOI: 10.3390/s21041279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Microbial electrochemical systems are a fast emerging technology that use microorganisms to harvest the chemical energy from bioorganic materials to produce electrical power. Due to their flexibility and the wide variety of materials that can be used as a source, these devices show promise for applications in many fields including energy, environment and sensing. Microbial electrochemical systems rely on the integration of microbial cells, bioelectrochemistry, material science and electrochemical technologies to achieve effective conversion of the chemical energy stored in organic materials into electrical power. Therefore, the interaction between microorganisms and electrodes and their operation at physiological important potentials are critical for their development. This article provides an overview of the principles and applications of microbial electrochemical systems, their development status and potential for implementation in the biosensing field. It also provides a discussion of the recent developments in the selection of electrode materials to improve electron transfer using nanomaterials along with challenges for achieving practical implementation, and examples of applications in the biosensing field.
Collapse
Affiliation(s)
- Rabeay Y.A. Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt;
- National Research Centre (NRC), Applied Organic Chemistry Department, El Bohouth st., Dokki, Giza 12622, Egypt
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy;
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|