1
|
Ferreira AN, Silva TP, Félix CR, Lopes JL, Dos Santos CWV, Dos Santos DMRC, Landell MF, Gomes FS, Pereira HJV. Use of waste frying oil and coconut pulp for the production, isolation, and characterization of a new lipase from Moesziomyces aphidis. Protein Expr Purif 2025; 225:106584. [PMID: 39178976 DOI: 10.1016/j.pep.2024.106584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024]
Abstract
Lipases comprise the third most commercialized group of enzymes worldwide and those of microbial origin are sought for their multiple advantages. Agro-industrial waste can be an alternative culture medium for producing lipases, reducing production costs and the improper disposal of waste frying oil (WFO). This study aimed to produce yeast lipases through submerged fermentation (SF) using domestic edible oil waste as inducer and alternative culture medium. The optimal culture conditions, most effective inducer, and purification method for a new lipase from Moesziomyces aphidis BRT57 were identified. Yeast was cultured in medium containing green coconut pulp and WFO waste for 72 h. The maximum production of lipases in SF occurred in a culture medium containing WFO and yeast extract at 48 and 72 h of incubation, with enzyme activities of 8.88 and 11.39 U mL-1, respectively. The lipase was isolated through ultrafiltration followed by size exclusion chromatography, achieving a 50.46 % recovery rate. To the best of our knowledge, this is the first study to report the production and purification of lipases from M. aphidis, demonstrating the value of frying oil as inducer and alternative medium for SF, contributing to the production of fatty acids for biodiesel from food waste.
Collapse
Affiliation(s)
- Alexsandra Nascimento Ferreira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900, Maceió, Alagoas, Brazil
| | - Tatielle Pereira Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900, Maceió, Alagoas, Brazil
| | - Ciro Ramon Félix
- Institute of Biological and Health Sciences, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900, Maceió, Alagoas, Brazil
| | - Julia Lins Lopes
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900, Maceió, Alagoas, Brazil
| | - Cláudio Wiliam Victor Dos Santos
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900, Maceió, Alagoas, Brazil
| | | | - Melissa Fontes Landell
- Institute of Biological and Health Sciences, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900, Maceió, Alagoas, Brazil
| | - Francis Soares Gomes
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900, Maceió, Alagoas, Brazil
| | - Hugo Juarez Vieira Pereira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), 57072-900, Maceió, Alagoas, Brazil.
| |
Collapse
|
2
|
Donzella S, Fumagalli A, Contente ML, Molinari F, Compagno C. Waste cooking oil and molasses for the sustainable production of extracellular lipase by Saitozyma flava. Biotechnol Appl Biochem 2024; 71:712-720. [PMID: 38409863 DOI: 10.1002/bab.2570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Organic waste valorization is one of the principal goals of the circular economy. Bioprocesses offer a promising approach to achieve this goal by employing microorganisms to convert organic feedstocks into high value products through their metabolic activities. In this study, a fermentation process for yeast cultivation and extracellular lipase production was developed by utilizing food waste. Lipases are versatile enzymes that can be applied in a wide range of industrial fields, from detergent, leather, and biodiesel production to food and beverage manufacturing. Among several oleaginous yeast species screened, Saitozyma flava was found to exhibit the highest secreted lipase activity on pNP-butyrate, pNP-caproate, and pNP-caprylate. The production medium was composed of molasses, a by-product of the sugar industry, which provided nutrients for yeast biomass formation. At the same time, waste cooking oil was employed to induce and enhance extracellular lipase production. After 48 h of process, 20 g/L of yeast biomass and 150 mU/mgdw of lipase activity were achieved, with a productivity of 3 mU/mgdw/h. The purified lipase from S. flava showed optimal performances at temperature 28°C and pH 8.0, exhibiting a specific activity of 62 U/mg when using p-NPC as substrate.
Collapse
Affiliation(s)
- Silvia Donzella
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Andrea Fumagalli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Martina Letizia Contente
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Concetta Compagno
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
3
|
Senusi W, Ahmad MI, Binhweel F, Shalfoh E, Alsaedi S, Shakir MA. Biodiesel production and characteristics from waste frying oils: sources, challenges, and circular economic perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33239-33258. [PMID: 38696017 DOI: 10.1007/s11356-024-33533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/27/2024] [Indexed: 05/31/2024]
Abstract
Biodiesel serves as a viable alternative to traditional diesel due to its non-toxicity, biodegradability, and lower environmental footprint. Among the diverse edible and inedible feedstocks, waste frying oil emerges as a promising and affordable feedstock for biodiesel production. Commonly waste frying oils include those derived from palm, corn, sunflower, soybean, rapeseed, and canola. The primary challenge related to biodiesel production technologies is the high production cost, which poses a significant barrier to its widespread adoption. Thus, refining the production techniques is essential to enhance yield, reduce capital expenditure, and curtail raw material expenses. An examination of the research focusing on feedstock availability, production, hurdles, operational expenditures, and future potential is pivotal for identifying the most economically and technically viable solutions. This paper critically reviews such research by exploring feedstock availability, production techniques, challenges, and costs intrinsic to biodiesel synthesis. It also underscores the economic feasibility of biodiesel production, shedding light on the pivotal factors that influence profitability, especially when leveraging waste frying oils. Through an in-depth understanding of these considerations, optimal production and feedstock choices for biodiesel production can be identified. Addressing cost and production bottlenecks could potentially enhance the economic viability of waste frying oil-based biodiesel, thus fostering both environmental sustainability and more extensive adoption of biodiesel as an environmental-friendly fuel in the future.
Collapse
Affiliation(s)
- Wardah Senusi
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Mardiana Idayu Ahmad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Fozy Binhweel
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Ehsan Shalfoh
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Sami Alsaedi
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Mohammad Aliff Shakir
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
4
|
Simultaneous Production and Immobilization of Lipase Using Pomegranate-Seed Residue: A New Biocatalyst for Hydrolysis Reactions and Structured Lipids Synthesis. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pomegranate-seed residue (PSR) was used in a new strategy for the simultaneous production of Yarrowia lipolytica lipase by submerged fermentation and its immobilization by adsorption. This biocatalyst—the fermented solid residue containing the adsorbed lipase (fermPSR)—was evaluated in hydrolysis reactions and in structured lipid synthesis. In shake flasks, yeast extract and urea were the best nitrogen sources for lipase production with PSR and their simultaneous use increased the lipase production even further. This result was confirmed in a 3.5-liter bioreactor, with lipase activity in an extracellular medium of 40 U/mL. A maximum reaction rate (Vmax) of 49.5 µmol/min/g, a Michaelis–Menten constant (Km) of 207 µmol/L, and a turnover number (Kcat) of 130 s−1 were determined for the new biocatalyst, fermPSR, for the hydrolysis of p-nitrophenyl laurate (p-NPL) into p-nitrophenol. The conversion of p-NPL into p-nitrophenol in subsequent reactions confirmed fermPSR’s potential for industrial hydrolytic reactions. The production of structured lipids from vegetable oil and free fatty acids by fermPSR evidences the versatility of this new biocatalyst.
Collapse
|
5
|
Statistical Optimization for Cost-Effective Production of Yeast-Bacterium Cell-Bound Lipases Using Blended Oily Wastes and Their Potential Applications in Biodiesel Synthesis and Wastewater Bioremediation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oily wastes have been widely used to produce lipases, but there is insufficient knowledge on their use to efficiently produce cell-bound lipases (CBLs). This research aimed to optimize yeast–bacterium CBLs production using blended oily wastes by statistical optimization and their potential applications in biodiesel production and wastewater bioremediation. The co-culture of Magnusiomyces spicifer AW2 and Staphylococcus hominis AUP19 produced CBLs as high as 4709 U/L with cell biomass of 23.4 g/L in a two-fold diluted palm oil mill effluent (POME) added by 2.08% (v/v) waste frying oil, 1.72.0% (w/v) ammonium sulfate, 0.1% (w/v) Gum Arabic as an emulsifier (initial pH at 7.0) within 24 h. The CBLs were successfully applied as whole-cell biocatalysts to produce biodiesel through esterification and transesterification with 76% and 87% yields, respectively. Direct application of CBLs for bioremediation of heat-treated various POME concentrations achieved 73.3% oil and grease removal and 73.6% COD removal within 3 days. This study has shown that the blended oily wastes medium was suitable for low-cost production of yeast–bacterium CBLs and their potential applications in solvent-free biodiesel production and wastewater bioremediation. These strategies may greatly contribute to economical green biofuel production and waste biotreatment.
Collapse
|
6
|
Louhasakul Y, Cheirsilp B. Potential use of industrial by-products as promising feedstock for microbial lipid and lipase production and direct transesterification of wet yeast into biodiesel by lipase and acid catalysts. BIORESOURCE TECHNOLOGY 2022; 348:126742. [PMID: 35065222 DOI: 10.1016/j.biortech.2022.126742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 05/06/2023]
Abstract
This work attempted the conversion of crude glycerol to lipid and lipase by Yarrowia lipolytica and the direct transesterification of wet yeast by its lipase into biodiesel via response surface methodology to enhance the cost-effectiveness of biodiesel production from the lipids. The yeast grew better and accumulated a high amount of lipids on the waste combined with fish waste hydrolysate, but only exhibited high lipase activity on the waste supplemented with surfactants (i.e., gum Arabic, Tween 20, Tween 80). However, the combination of both wastes and Tween 80 further improved growth, lipid productivity, and lipase activity. More importantly, lipase-direct transesterification under optimal conditions (wet cell concentration of 17.97 mg-DCW, methanol loading of 8.21 µL, and hexane loading of 10.26 µL) followed by acid-catalyst transesterification (0.4 M H2SO4), offered high FAME yields (>90%), showing the efficiency of the process when applied for the industrialization of biodiesel production from microbial lipids.
Collapse
Affiliation(s)
- Yasmi Louhasakul
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, Yala 95000, Thailand.
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai 90112, Thailand
| |
Collapse
|
7
|
A Temporal Evolution Perspective of Lipase Production by Yarrowia lipolytica in Solid-State Fermentation. Processes (Basel) 2022. [DOI: 10.3390/pr10020381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lipases are enzymes that, in aqueous or non-aqueous media, act on water-insoluble substrates, mainly catalyzing reactions on carboxyl ester bonds, such as hydrolysis, aminolysis, and (trans)esterification. Yarrowia lipolytica is a non-conventional yeast known for secreting lipases and other bioproducts; therefore, it is of great interest in various industrial fields. The production of lipases can be carried on solid-state fermentation (SSF) that utilizes solid substrates in the absence, or near absence, of free water and presents minimal problems with microbial contamination due to the low water contents in the medium. Moreover, SSF offers high volumetric productivity, targets concentrated compounds, high substrate concentration tolerance, and has less wastewater generation. In this sense, the present work provides a temporal evolution perspective regarding the main aspects of lipase production in SSF by Y. lipolytica, focusing on the most relevant aspects and presenting the potential of such an approach.
Collapse
|
8
|
Abstract
Lipases are versatile enzymes widely used in the pharmaceutical, cosmetic, and food industries. They are green biocatalysts with a high potential for industrial use compared to traditional chemical methods. In recent years, lipases have been used to synthesize a wide variety of molecules of industrial interest, and extraordinary results have been reported. In this sense, this review describes the important role of lipases in the synthesis of phytosterol esters, which have attracted the scientific community’s attention due to their beneficial effects on health. A systematic search for articles and patents published in the last 20 years with the terms “phytosterol AND esters AND lipase” was carried out using the Scopus, Web of Science, Scielo, and Google Scholar databases, and the results showed that Candida rugosa lipases are the most relevant biocatalysts for the production of phytosterol esters, being used in more than 50% of the studies. The optimal temperature and time for the enzymatic synthesis of phytosterol esters mainly ranged from 30 to 101 °C and from 1 to 72 h. The esterification yield was greater than 90% for most analyzed studies. Therefore, this manuscript presents the new technological approaches and the gaps that need to be filled by future studies so that the enzymatic synthesis of phytosterol esters is widely developed.
Collapse
|
9
|
da S. Pereira A, Souza CPL, Moraes L, Fontes-Sant’Ana GC, Amaral PFF. Polymers as Encapsulating Agents and Delivery Vehicles of Enzymes. Polymers (Basel) 2021; 13:polym13234061. [PMID: 34883565 PMCID: PMC8659040 DOI: 10.3390/polym13234061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/15/2023] Open
Abstract
Enzymes are versatile biomolecules with broad applications. Since they are biological molecules, they can be easily destabilized when placed in adverse environmental conditions, such as variations in temperature, pH, or ionic strength. In this sense, the use of protective structures, as polymeric capsules, has been an excellent approach to maintain the catalytic stability of enzymes during their application. Thus, in this review, we report the use of polymeric materials as enzyme encapsulation agents, recent technological developments related to this subject, and characterization methodologies and possible applications of the formed bioactive structures. Our search detected that the most explored methods for enzyme encapsulation are ionotropic gelation, spray drying, freeze-drying, nanoprecipitation, and electrospinning. α-chymotrypsin, lysozyme, and β-galactosidase were the most used enzymes in encapsulations, with chitosan and sodium alginate being the main polymers. Furthermore, most studies reported high encapsulation efficiency, enzyme activity maintenance, and stability improvement at pH, temperature, and storage. Therefore, the information presented here shows a direction for the development of encapsulation systems capable of stabilizing different enzymes and obtaining better performance during application.
Collapse
Affiliation(s)
- Adejanildo da S. Pereira
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (A.d.S.P.); (C.P.L.S.); (L.M.)
| | - Camila P. L. Souza
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (A.d.S.P.); (C.P.L.S.); (L.M.)
| | - Lidiane Moraes
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (A.d.S.P.); (C.P.L.S.); (L.M.)
| | - Gizele C. Fontes-Sant’Ana
- Biochemical Processes Technology Department, Chemistry Institute, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil;
| | - Priscilla F. F. Amaral
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (A.d.S.P.); (C.P.L.S.); (L.M.)
- Correspondence: ; Tel.: +55-21-3938-7623
| |
Collapse
|