1
|
Najar-Almanzor CE, Velasco-Iglesias KD, Nunez-Ramos R, Uribe-Velázquez T, Solis-Bañuelos M, Fuentes-Carrasco OJ, Chairez I, García-Cayuela T, Carrillo-Nieves D. Microalgae-assisted green bioremediation of food-processing wastewater: A sustainable approach toward a circular economy concept. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118774. [PMID: 37619389 DOI: 10.1016/j.jenvman.2023.118774] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Wastewater disposal is a major environmental issue that pollutes water, causing eutrophication, habitat destruction, and economic impact. In Mexico, food-processing effluents pose a huge environmental threat due to their excessive nutrient content and their large volume discharged every year. Some of the most harmful residues are tequila vinasses, nejayote, and cheese whey. Each liter of tequila generates 13-15 L of vinasses, each kilogram of cheese produces approximately 9 kg of cheese whey, and each kilogram of nixtamalized maize results in the production of 2.5-3.3 L of nejayote. A promising strategy to reduce the contamination derived from wastewater is through microalgae-based wastewater treatment. Microalgae have a high adaptability to hostile environments and they can feed on the nutrients in the effluents to grow. Moreover, to increase the viability, profitability, and value of wastewater treatments, a microalgae biorefinery could be proposed. This review will focus on the circular bioeconomy scheme focused on the simultaneous food-processing wastewater treatment and its use to grow microalgae biomass to produce added-value compounds. This strategy allows for the revalorization of wastewater, decreases contamination of water sources, and produces valuable compounds that promote human health such as phycobiliproteins, carotenoids, omega-3 fatty acids, exopolysaccharides, mycosporine-like amino acids, and as a source of clean energy: biodiesel, biogas, and bioethanol.
Collapse
Affiliation(s)
- Cesar E Najar-Almanzor
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Karla D Velasco-Iglesias
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Regina Nunez-Ramos
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Tlalli Uribe-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Minerva Solis-Bañuelos
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Oscar J Fuentes-Carrasco
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Isaac Chairez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for the Sustainable Manufacturing, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico.
| |
Collapse
|
2
|
Kim S, Ishizawa H, Inoue D, Toyama T, Yu J, Mori K, Ike M, Lee T. Microalgal transformation of food processing byproducts into functional food ingredients. BIORESOURCE TECHNOLOGY 2022; 344:126324. [PMID: 34785335 DOI: 10.1016/j.biortech.2021.126324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of food processing byproducts (FPBs) are generated from food manufacturing industries, the second-largest portion of food waste generation. FPBs may require additional cost for post-treatment otherwise cause environmental contamination. Valorization of FPBs into food ingredients by microalgae cultivation can save a high cost for organic carbon sources and nutrients from medium cost. This study reviews FPBs generation categorized by industry and traditional disposal. In contrast with the low-value production, FPBs utilization as the nutrient-abundant medium for microalgae can lead to high-value production. Due to the complex composition in FPBs, various pretreatment methods have been applied to extract the desired compounds and medium preparation. Using the FPB-based medium resulted in cost reduction and a productivity enhancement in previous literature. Although there are still challenges to overcome to achieve economic viability and environmental sustainability, the microalgal transformation of FPBs is attractive for functional food ingredients production.
Collapse
Affiliation(s)
- Sunah Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hidehiro Ishizawa
- Research Institute of Green Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadashi Toyama
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kazuhiro Mori
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|