1
|
Narayan G, Sen P, Nagotu S, Thummer RP. Biological activity of recombinant human PDX1 protein produced from Escherichia coli. J Biochem Mol Toxicol 2023; 37:e23511. [PMID: 37632262 DOI: 10.1002/jbt.23511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Pancreatic and duodenum homeobox 1 (PDX1) is considered as a pivotal transcription factor that acts as a "master regulator" in pancreatogenesis and maintenance of β-cells. Earlier study has reported that PDX1 also functions as a tumor suppressor in human gastric cancer cells by inhibiting cell growth. Here, we report the bioactivity of the purified human PDX1 fusion protein using various assays like cell migration, proliferation, cell cycle analysis, and gene expression. In cancer cells, recombinant PDX1 protein reduced cell migration and proliferation, and arrested cell growth by inducing apoptosis in gastric cancer cells. In pancreatic ductal cancer cells, the application of the PDX1 protein resulted in the induction of insulin gene expression. The results of these experiments demonstrate the biological activity imparted by recombinant human PDX1 fusion protein on gastric and pancreatic cancer cells and its usefulness as a biological tool to elucidate its function in various cellular processes.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Plaboni Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
2
|
Narayan G, Agrawal A, Sen P, Nagotu S, Thummer RP. Production of Bioactive Human PAX4 Protein from E. coli. Protein J 2023; 42:766-777. [PMID: 37552387 DOI: 10.1007/s10930-023-10143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
Paired box 4 (PAX4) is a pivotal transcription factor involved in pancreatogenesis during embryogenesis, and in adults, it is key for β-cell proliferation and survival. Additionally, PAX4 also functions as a tumor suppressor protein in human melanomas. The present study demonstrates the production of bioactive recombinant human PAX4 transcription factor. At first, the inserts (PAX4 protein-coding sequence having tags at either ends) were cloned in an expression vector to give rise to pET28a(+)-HTN-PAX4 and pET28a(+)-PAX4-NTH genetic constructs, and these were then transformed into Escherichia coli (E. coli) for their expression. The HTN-PAX4 and PAX4-NTH fusion proteins produced were purified with a yield of ~ 3.15 mg and ~ 0.83 mg, respectively, from 1.2 L E. coli culture. Further, the secondary structure retention of the PAX4 fusion proteins and their potential to internalize the mammalian cell and its nucleus was demonstrated. The bioactivity of these fusion proteins was investigated using various assays (cell migration, cell proliferation and cell cycle assays), demonstrating it to function as a tumor suppressor protein. Thus, this macromolecule can prospectively help understand the function of human PAX4 in cellular processes, disease-specific investigations and direct cellular reprogramming.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Plaboni Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Haridhasapavalan KK, Borthakur A, Thummer RP. Direct Cardiac Reprogramming: Current Status and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:1-18. [PMID: 36662416 DOI: 10.1007/5584_2022_760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advances in cellular reprogramming articulated the path for direct cardiac lineage conversion, bypassing the pluripotent state. Direct cardiac reprogramming attracts major attention because of the low or nil regenerative ability of cardiomyocytes, resulting in permanent cell loss in various heart diseases. In the field of cardiology, balancing this loss of cardiomyocytes was highly challenging, even in the modern medical world. Soon after the discovery of cell reprogramming, direct cardiac reprogramming also became a promising alternative for heart regeneration. This review mainly focused on the various direct cardiac reprogramming approaches (integrative and non-integrative) for the derivation of induced autologous cardiomyocytes. It also explains the advancements in cardiac reprogramming over the decade with the pros and cons of each approach. Further, the review highlights the importance of clinically relevant (non-integrative) approaches and their challenges for the prospective applications for personalized medicine. Apart from direct cardiac reprogramming, it also discusses the other strategies for generating cardiomyocytes from different sources. The understanding of these strategies could pave the way for the efficient generation of integration-free functional autologous cardiomyocytes through direct cardiac reprogramming for various biomedical applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Atreyee Borthakur
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
4
|
Haridhasapavalan KK, Sundaravadivelu PK, Joshi N, Das NJ, Mohapatra A, Voorkara U, Kaveeshwar V, Thummer RP. Generation of a recombinant version of a biologically active cell-permeant human HAND2 transcription factor from E. coli. Sci Rep 2022; 12:16129. [PMID: 36167810 PMCID: PMC9515176 DOI: 10.1038/s41598-022-19745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Transcription factor HAND2 has a significant role in vascularization, angiogenesis, and cardiac neural crest development. It is one of the key cardiac factors crucial for the enhanced derivation of functional and mature myocytes from non-myocyte cells. Here, we report the generation of the recombinant human HAND2 fusion protein from the heterologous system. First, we cloned the full-length human HAND2 gene (only protein-coding sequence) after codon optimization along with the fusion tags (for cell penetration, nuclear translocation, and affinity purification) into the expression vector. We then transformed and expressed it in Escherichia coli strain, BL21(DE3). Next, the effect (in terms of expression) of tagging fusion tags with this recombinant protein at two different terminals was also investigated. Using affinity chromatography, we established the one-step homogeneous purification of recombinant human HAND2 fusion protein; and through circular dichroism spectroscopy, we established that this purified protein had retained its secondary structure. We then showed that this purified human protein could transduce the human cells and translocate to its nucleus. The generated recombinant HAND2 fusion protein showed angiogenic potential in the ex vivo chicken embryo model. Following transduction in MEF2C overexpressing cardiomyoblast cells, this purified recombinant protein synergistically activated the α-MHC promoter and induced GFP expression in the α-MHC-eGFP reporter assay. Prospectively, the purified bioactive recombinant HAND2 protein can potentially be a safe and effective molecular tool in the direct cardiac reprogramming process and other biological applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Neha Joshi
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nayan Jyoti Das
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Anshuman Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Udayashree Voorkara
- Department of Obstetrics and Gynaecology, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India
| | - Vishwas Kaveeshwar
- Central Research Laboratory, SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara University, Dharwad, 580009, Karnataka, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
5
|
Deori NM, Infant T, Sundaravadivelu PK, Thummer RP, Nagotu S. Pex30 undergoes phosphorylation and regulates peroxisome number in Saccharomyces cerevisiae. Mol Genet Genomics 2022; 297:573-590. [PMID: 35218395 DOI: 10.1007/s00438-022-01872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
Pex30 is a dysferlin domain-containing protein whose role in peroxisome biogenesis has been studied by several research groups. Notably, recent studies have linked this protein to peroxisomes, endoplasmic reticulum and lipid bodies in Saccharomyces cerevisiae. Phosphoproteome studies of S. cerevisiae have identified several phosphorylation sites in Pex30. In this study we expressed and purified Pex30 from its native host. Analysis of the purified protein by circular dichroism spectroscopy showed that it retained its secondary structure and revealed primarily a helical structure. Further phosphorylation of Pex30 at three residues, Threonine 60, Serine 61 and Serine 511 was identified by mass spectrometry in this study. To understand the importance of this post-translational modification in peroxisome biogenesis, the identified residues were mutated to both non-phosphorylatable (alanine) and phosphomimetic (aspartic acid) variants. Upon analysis of the mutant variants by fluorescence microscopy, no alteration in the localization of the protein to ER and peroxisomes was observed. Interestingly, reduced number of peroxisomes were observed in cells expressing phosphomimetic mutations when cultured in peroxisome-inducing conditions. Our data suggest that phosphorylation and dephosphorylation of Pex30 may promote distinct interactions essential in regulating peroxisome number in a cell.
Collapse
Affiliation(s)
- Nayan Moni Deori
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Terence Infant
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
6
|
Generation of a transducible version of a bioactive recombinant human TBX5 transcription factor from E. Coli. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
7
|
Narayan G, Agrawal A, Joshi N, Gogoi R, Nagotu S, Thummer RP. Protein Production and Purification of a Codon-Optimized Human NGN3 Transcription Factor from E. coli. Protein J 2021; 40:891-906. [PMID: 34550497 DOI: 10.1007/s10930-021-10020-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 12/29/2022]
Abstract
Neurogenin 3 (NGN3) transcription factor is vital for the development of endocrine cells of the intestine and pancreas. NGN3 is also critical for the neural precursor cell determination in the neuroectoderm. Additionally, it is one of the vital transcription factors for deriving human β-cells from specialized somatic cells. In the current study, the production and purification of the human NGN3 protein from Escherichia coli (E. coli) is reported. First, the 642 bp protein-coding nucleotide sequence of the NGN3 gene was codon-optimized to enable enhanced protein expression in E. coli strain BL21(DE3). The codon-optimized NGN3 sequence was fused in-frame to three different fusion tags to enable cell penetration, nuclear translocation, and affinity purification. The gene insert with the fusion tags was subsequently cloned into an expression vector (pET28a( +)) for heterologous expression in BL21(DE3) cells. A suitable genetic construct and the ideal expression conditions were subsequently identified that produced a soluble form of the recombinant NGN3 fusion protein. This NGN3 fusion protein was purified to homogeneity (purity > 90%) under native conditions, and its secondary structure was retained post-purification. This purified protein, when applied to human cells, did not induce cytotoxicity. Further, the cellular uptake and nuclear translocation of the NGN3 fusion protein was demonstrated followed by its biological activity in PANC-1 cells. Prospectively, this recombinant protein can be utilized for various biological applications to investigate its functionality in cell reprogramming, biological processes, and diseases.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Neha Joshi
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Ranadeep Gogoi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, 781101, India.,CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
8
|
Identification of Optimal Expression Parameters and Purification of a Codon-Optimized Human GLIS1 Transcription Factor from Escherichia coli. Mol Biotechnol 2021; 64:42-56. [PMID: 34528219 DOI: 10.1007/s12033-021-00390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
GLIS1 has multiple roles in embryonic development and in deriving induced pluripotent stem cells by aiding signaling pathways and chromatin assembly. An inexpensive and simple method to produce human GLIS1 protein from Escherichia coli (E. coli) is demonstrated in this study. Various parameters such as codon usage bias, E. coli strains, media, induction conditions (such as inducer concentration, cell density, time, and temperature), and genetic constructs were investigated to obtain soluble expression of human GLIS1 protein. Using identified expression conditions and an appropriate genetic construct, the human GLIS1 protein was homogeneously purified (purity > 90%) under native conditions. Importantly, the purified protein has upheld a stable secondary structure, as demonstrated by circular dichroism spectroscopy. To the best of our knowledge, this is the first study to report the ideal expression conditions of human GLIS1 protein in E. coli to achieve soluble expression and purification under native conditions, upholding its stable secondary structure post-purification. The biological activity of the purified GLIS1 fusion protein was further assessed in MDA-MB-231 cells. This biologically active human GLIS1 protein potentiates new avenues to understand its molecular mechanisms in different cellular functions in various cancers and in the generation of induced pluripotent stem cells.
Collapse
|
9
|
Generation of biologically active recombinant human OCT4 protein from E. coli. 3 Biotech 2021; 11:207. [PMID: 33927995 DOI: 10.1007/s13205-021-02758-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
Octamer-binding transcription factor 4 (OCT4) is vital for early embryonic development and is a master regulator of pluripotency in embryonic stem cells. Notably, OCT4 is a key reprogramming factor to derive induced pluripotent stem cells, which have tremendous prospects in regenerative medicine. In the current study, we report heterologous expression and purification of human OCT4 in E. coli to produce pure recombinant protein under native conditions. To achieve this, the 1083 bp coding sequence of the human OCT4 gene was codon-optimized for heterologous expression in E. coli. The codon-optimized sequence was fused with fusion tags, namely a cell-penetrating peptide sequence for intracellular delivery, a nuclear localization sequence for intranuclear delivery, and a His-tag for affinity purification. Subsequently, the codon-optimized sequence and the fusion tags were cloned in the protein expression vector, pET28a(+), and transformed into E. coli strain BL21(DE3) for expression. The recombinant OCT4 protein was purified from the soluble fraction under native conditions using immobilized metal ion affinity chromatography in a facile manner, and its identity was confirmed by Western blotting and mass spectrometry. Furthermore, the secondary structure of the recombinant protein was analyzed using far ultraviolet circular dichroism spectroscopy, which confirmed that the purified fusion protein maintained a secondary structure conformation, and it predominantly composed of α-helices. Next, the recombinant OCT4 protein was applied to human cells, and was found that it was able to enter the cells and translocate to the nucleus. Furthermore, the biological activity of the transduced OCT4 protein was also demonstrated on human cells. This recombinant tool can substitute for genetic and viral forms of OCT4 to enable the derivation of integration-free pluripotent cells. It can also be used to elucidate its biological role in various cellular processes and diseases and for structural and biochemical studies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02758-z.
Collapse
|