1
|
Lei C, Sun W, Wang K, Weng R, Kan X, Li R. Artificial intelligence-assisted diagnosis of early gastric cancer: present practice and future prospects. Ann Med 2025; 57:2461679. [PMID: 39928093 PMCID: PMC11812113 DOI: 10.1080/07853890.2025.2461679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
Gastric cancer (GC) occupies the first few places in the world among tumors in terms of incidence and mortality, causing serious harm to human health, and at the same time, its treatment greatly consumes the health care resources of all countries in the world. The diagnosis of GC is usually based on histopathologic examination, and it is very important to be able to detect and identify cancerous lesions at an early stage, but some endoscopists' lack of diagnostic experience and fatigue at work lead to a certain rate of under diagnosis. The rapid and striking development of Artificial intelligence (AI) has helped to enhance the ability to extract abnormal information from endoscopic images to some extent, and more and more researchers are applying AI technology to the diagnosis of GC. This initiative has not only improved the detection rate of early gastric cancer (EGC), but also significantly improved the survival rate of patients after treatment. This article reviews the results of various AI-assisted diagnoses of EGC in recent years, including the identification of EGC, the determination of differentiation type and invasion depth, and the identification of borders. Although AI has a better application prospect in the early diagnosis of ECG, there are still major challenges, and the prospects and limitations of AI application need to be further discussed.
Collapse
Affiliation(s)
- Changda Lei
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Wenqiang Sun
- Suzhou Medical College, Soochow University, Suzhou, China
- Department of Neonatology, Children’s Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Ruixia Weng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Xiuji Kan
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Shen Y, Gao XJ, Zhang XX, Zhao JM, Hu FF, Han JL, Tian WY, Yang M, Wang YF, Lv JL, Zhan Q, An FM. Endoscopists and endoscopic assistants' qualifications, but not their biopsy rates, improve gastric precancerous lesions detection rate. World J Gastrointest Endosc 2025; 17:104097. [PMID: 40291134 PMCID: PMC12019122 DOI: 10.4253/wjge.v17.i4.104097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/27/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Detecting gastric precancerous lesions (GPLs) is critical for the early diagnosis and treatment of gastric cancer. Endoscopy combined with tissue examination is an important method for detecting GPLs. However, negative biopsy results often increase patients' risks, economic burdens, and lead to additional healthcare costs. Improving the detection rate of GPLs and reducing the rate of negative biopsies is currently a key focus in endoscopic quality control. AIM To explore the relationships between the endoscopist biopsy rate (EBR), qualifications of endoscopists and endoscopic assistants, and detection rate of GPLs. METHODS EBR, endoscopists, and endoscopic assistants were divided into four groups: Low, moderate, high, and very high levels. Multivariable logistic regression analysis was used to analyze the relationships between EBR and the qualifications of endoscopists with respect to the detection rate of positive lesions. Pearson and Spearman correlation analyses were used to evaluate the correlation between EBR, endoscopist or endoscopic assistant qualifications, and the detection rate of positive lesions. RESULTS Compared with those in the low EBR group, the odds ratio (OR) values for detecting positive lesions in the moderate, high, and very high EBR groups were 1.12 [95% confidence interval (CI): 1.06-1.19, P < 0.001], 1.22 (95%CI: 1.14-1.31, P < 0.001), and 1.38 (95%CI: 1.29-1.47, P < 0.001), respectively. EBR was positively correlated with the detection rate of gastric precancerous conditions (atrophic gastritis/intestinal metaplasia) (ρ = 0.465, P = 0.004). In contrast, the qualifications of the endoscopists were positively correlated with GPLs detection (ρ = 0.448, P = 0.005). Compared to endoscopists with low qualification levels, those with moderate, high, and very high qualification levels endoscopists demonstrated increased detection rates of GPLs by 13% (OR = 1.13, 95%CI: 0.98-1.31), 20% (OR = 1.20, 95%CI: 1.03-1.39), and 32% (OR = 1.32, 95%CI: 1.15-1.52), respectively. Further analysis revealed that the qualifications of endoscopists were positively correlated with the detection rates of GPLs in the cardia (ρ = 0.350, P = 0.034), angularis (ρ = 0.396, P = 0.015) and gastric body (ρ = 0.453, P = 0.005) but not in the antrum (ρ = 0.292, P = 0.079). Moreover, the experience of endoscopic assistants was positively correlated with the detection rate of precancerous lesions by endoscopists with low or moderate qualifications (ρ = 0.427, P = 0.015). CONCLUSION Endoscopists and endoscopic assistants with high/very high qualifications, but not EBR, can improve the detection rate of GPLs. These results provide reliable evidence for the development of gastroscopic quality control indicators.
Collapse
Affiliation(s)
- Yao Shen
- Department of Gastroenterology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, National Clinical Research Center for Digestive Diseases (Xi’an) Jiangsu Branch, Wuxi 214023, Jiangsu Province, China
| | - Xiao-Juan Gao
- Department of Gastroenterology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, National Clinical Research Center for Digestive Diseases (Xi’an) Jiangsu Branch, Wuxi 214023, Jiangsu Province, China
| | - Xiao-Xue Zhang
- Department of Gastroenterology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, National Clinical Research Center for Digestive Diseases (Xi’an) Jiangsu Branch, Wuxi 214023, Jiangsu Province, China
| | - Jia-Min Zhao
- Department of Gastroenterology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, National Clinical Research Center for Digestive Diseases (Xi’an) Jiangsu Branch, Wuxi 214023, Jiangsu Province, China
| | - Fei-Fan Hu
- Department of Gastroenterology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, National Clinical Research Center for Digestive Diseases (Xi’an) Jiangsu Branch, Wuxi 214023, Jiangsu Province, China
| | - Jing-Lue Han
- Department of Gastroenterology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, National Clinical Research Center for Digestive Diseases (Xi’an) Jiangsu Branch, Wuxi 214023, Jiangsu Province, China
| | - Wen-Ying Tian
- Department of Gastroenterology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, National Clinical Research Center for Digestive Diseases (Xi’an) Jiangsu Branch, Wuxi 214023, Jiangsu Province, China
| | - Mei Yang
- Department of Gastroenterology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, National Clinical Research Center for Digestive Diseases (Xi’an) Jiangsu Branch, Wuxi 214023, Jiangsu Province, China
| | - Yun-Fei Wang
- Department of Gastroenterology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, National Clinical Research Center for Digestive Diseases (Xi’an) Jiangsu Branch, Wuxi 214023, Jiangsu Province, China
| | - Jia-Le Lv
- Department of Gastroenterology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, National Clinical Research Center for Digestive Diseases (Xi’an) Jiangsu Branch, Wuxi 214023, Jiangsu Province, China
| | - Qiang Zhan
- Department of Gastroenterology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, National Clinical Research Center for Digestive Diseases (Xi’an) Jiangsu Branch, Wuxi 214023, Jiangsu Province, China
| | - Fang-Mei An
- Department of Gastroenterology, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, National Clinical Research Center for Digestive Diseases (Xi’an) Jiangsu Branch, Wuxi 214023, Jiangsu Province, China
| |
Collapse
|
3
|
Nathani P, Sharma P. Role of Artificial Intelligence in the Detection and Management of Premalignant and Malignant Lesions of the Esophagus and Stomach. Gastrointest Endosc Clin N Am 2025; 35:319-353. [PMID: 40021232 DOI: 10.1016/j.giec.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
The advent of artificial intelligence (AI) and deep learning algorithms, particularly convolutional neural networks, promises to address pitfalls, bridging the care for patients at high risk with improved detection (computer-aided detection [CADe]) and characterization (computer-aided diagnosis [CADx]) of lesions. This review describes the available artificial intelligence (AI) technology and the current data on AI tools for screening esophageal squamous cell cancer, Barret's esophagus-related neoplasia, and gastric cancer. These tools outperformed endoscopists in many situations. Recent randomized controlled trials have demonstrated the successful application of AI tools in clinical practice with improved outcomes.
Collapse
Affiliation(s)
- Piyush Nathani
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA.
| | - Prateek Sharma
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA; Kansas City Veteran Affairs Medical Center, Kansas City, MO, USA
| |
Collapse
|
4
|
Li R, Li J, Wang Y, Liu X, Xu W, Sun R, Xue B, Zhang X, Ai Y, Du Y, Jiang J. The artificial intelligence revolution in gastric cancer management: clinical applications. Cancer Cell Int 2025; 25:111. [PMID: 40119433 PMCID: PMC11929235 DOI: 10.1186/s12935-025-03756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/18/2025] [Indexed: 03/24/2025] Open
Abstract
Nowadays, gastric cancer has become a significant issue in the global cancer burden, and its impact cannot be ignored. The rapid development of artificial intelligence technology is attempting to address this situation, aiming to change the clinical management landscape of gastric cancer fundamentally. In this transformative change, machine learning and deep learning, as two core technologies, play a pivotal role, bringing unprecedented innovations and breakthroughs in the diagnosis, treatment, and prognosis evaluation of gastric cancer. This article comprehensively reviews the latest research status and application of artificial intelligence algorithms in gastric cancer, covering multiple dimensions such as image recognition, pathological analysis, personalized treatment, and prognosis risk assessment. These applications not only significantly improve the sensitivity of gastric cancer risk monitoring, the accuracy of diagnosis, and the precision of survival prognosis but also provide robust data support and a scientific basis for clinical decision-making. The integration of artificial intelligence, from optimizing the diagnosis process and enhancing diagnostic efficiency to promoting the practice of precision medicine, demonstrates its promising prospects for reshaping the treatment model of gastric cancer. Although most of the current AI-based models have not been widely used in clinical practice, with the continuous deepening and expansion of precision medicine, we have reason to believe that a new era of AI-driven gastric cancer care is approaching.
Collapse
Affiliation(s)
- Runze Li
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Jingfan Li
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Yuman Wang
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Xiaoyu Liu
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Weichao Xu
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China
| | - Runxue Sun
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China
| | - Binqing Xue
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Xinqian Zhang
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China
| | - Yikun Ai
- North China University of Science and Technology, Tanshan 063000, China
| | - Yanru Du
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China.
- Hebei Provincial Key Laboratory of Integrated Traditional and Western Medicine Research on Gastroenterology, Hebei, 050011, China.
- Hebei Key Laboratory of Turbidity and Toxicology, Hebei, 050011, China.
| | - Jianming Jiang
- Hebei University of Traditional Chinese Medicine, Hebei, 050011, China.
- Hebei Hospital of Traditional Chinese Medicine, Hebei, 050011, China.
| |
Collapse
|
5
|
Ebigbo A, Messmann H, Lee SH. Artificial Intelligence Applications in Image-Based Diagnosis of Early Esophageal and Gastric Neoplasms. Gastroenterology 2025:S0016-5085(25)00471-8. [PMID: 40043857 DOI: 10.1053/j.gastro.2025.01.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 04/03/2025]
Abstract
Artificial intelligence (AI) holds the potential to transform the management of upper gastrointestinal (GI) conditions, such as Barrett's esophagus, esophageal squamous cell cancer, and early gastric cancer. Advancements in deep learning and convolutional neural networks offer improved diagnostic accuracy and reduced diagnostic variability across different clinical settings, particularly where human error or fatigue may impair diagnostic precision. Deep learning models have shown the potential to improve early cancer detection and lesion characterization, predict invasion depth, and delineate lesion margins with remarkable accuracy, all contributing to effective treatment planning. Several challenges, however, limit the broad application of AI in GI endoscopy, particularly in the upper GI tract. Subtle lesion morphology and restricted diversity in training datasets, which are often sourced from specialized centers, may constrain the generalizability of AI models in various clinical settings. Furthermore, the "black box" nature of some AI systems can impede explainability and clinician trust. To address these issues, efforts are underway to incorporate multimodal data, such as combining endoscopic and histopathologic imaging, to bolster model robustness and transparency. In the future, AI promises substantial advancements in automated real-time endoscopic guidance, personalized risk assessment, and optimized biopsy decision making. As it evolves, it would substantially impact not only early diagnosis and prognosis, but also the cost-effectiveness of managing upper GI diseases, ultimately leading to improved patient outcomes and more efficient health care delivery.
Collapse
Affiliation(s)
- Alanna Ebigbo
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany.
| | - Helmut Messmann
- Department of Gastroenterology, University Hospital Augsburg, Augsburg, Germany.
| | - Sung Hak Lee
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Seoul St. Mary's Hospital, Seoul, South Korea.
| |
Collapse
|
6
|
Chen M, Wang Y, Wang Q, Shi J, Wang H, Ye Z, Xue P, Qiao Y. Impact of human and artificial intelligence collaboration on workload reduction in medical image interpretation. NPJ Digit Med 2024; 7:349. [PMID: 39616244 PMCID: PMC11608314 DOI: 10.1038/s41746-024-01328-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/04/2024] [Indexed: 01/04/2025] Open
Abstract
Clinicians face increasing workloads in medical imaging interpretation, and artificial intelligence (AI) offers potential relief. This meta-analysis evaluates the impact of human-AI collaboration on image interpretation workload. Four databases were searched for studies comparing reading time or quantity for image-based disease detection before and after AI integration. The Quality Assessment of Studies of Diagnostic Accuracy was modified to assess risk of bias. Workload reduction and relative diagnostic performance were pooled using random-effects model. Thirty-six studies were included. AI concurrent assistance reduced reading time by 27.20% (95% confidence interval, 18.22%-36.18%). The reading quantity decreased by 44.47% (40.68%-48.26%) and 61.72% (47.92%-75.52%) when AI served as the second reader and pre-screening, respectively. Overall relative sensitivity and specificity are 1.12 (1.09, 1.14) and 1.00 (1.00, 1.01), respectively. Despite these promising results, caution is warranted due to significant heterogeneity and uneven study quality.
Collapse
Affiliation(s)
- Mingyang Chen
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuting Wang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiankun Wang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyi Shi
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huike Wang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zichen Ye
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Xue
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Youlin Qiao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Reyes-Placencia D, Cantú-Germano E, Latorre G, Espino A, Fernández-Esparrach G, Moreira L. Gastric Epithelial Polyps: Current Diagnosis, Management, and Endoscopic Frontiers. Cancers (Basel) 2024; 16:3771. [PMID: 39594726 PMCID: PMC11591925 DOI: 10.3390/cancers16223771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Polyps are defined as luminal lesions that project into the mucosal surface of the gastrointestinal tract and are characterized according to their morphological and histological features [...].
Collapse
Affiliation(s)
- Diego Reyes-Placencia
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8320165, Chile
| | - Elisa Cantú-Germano
- Department of Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), CIBEREHD, 08036 Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Gonzalo Latorre
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8320165, Chile
| | - Alberto Espino
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8320165, Chile
| | - Glòria Fernández-Esparrach
- Department of Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), CIBEREHD, 08036 Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Leticia Moreira
- Department of Gastroenterology, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), CIBEREHD, 08036 Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
8
|
Kikuchi R, Okamoto K, Ozawa T, Shibata J, Ishihara S, Tada T. Endoscopic Artificial Intelligence for Image Analysis in Gastrointestinal Neoplasms. Digestion 2024; 105:419-435. [PMID: 39068926 DOI: 10.1159/000540251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Artificial intelligence (AI) using deep learning systems has recently been utilized in various medical fields. In the field of gastroenterology, AI is primarily implemented in image recognition and utilized in the realm of gastrointestinal (GI) endoscopy. In GI endoscopy, computer-aided detection/diagnosis (CAD) systems assist endoscopists in GI neoplasm detection or differentiation of cancerous or noncancerous lesions. Several AI systems for colorectal polyps have already been applied in colonoscopy clinical practices. In esophagogastroduodenoscopy, a few CAD systems for upper GI neoplasms have been launched in Asian countries. The usefulness of these CAD systems in GI endoscopy has been gradually elucidated. SUMMARY In this review, we outline recent articles on several studies of endoscopic AI systems for GI neoplasms, focusing on esophageal squamous cell carcinoma (ESCC), esophageal adenocarcinoma (EAC), gastric cancer (GC), and colorectal polyps. In ESCC and EAC, computer-aided detection (CADe) systems were mainly developed, and a recent meta-analysis study showed sensitivities of 91.2% and 93.1% and specificities of 80% and 86.9%, respectively. In GC, a recent meta-analysis study on CADe systems demonstrated that their sensitivity and specificity were as high as 90%. A randomized controlled trial (RCT) also showed that the use of the CADe system reduced the miss rate. Regarding computer-aided diagnosis (CADx) systems for GC, although RCTs have not yet been conducted, most studies have demonstrated expert-level performance. In colorectal polyps, multiple RCTs have shown the usefulness of the CADe system for improving the polyp detection rate, and several CADx systems have been shown to have high accuracy in colorectal polyp differentiation. KEY MESSAGES Most analyses of endoscopic AI systems suggested that their performance was better than that of nonexpert endoscopists and equivalent to that of expert endoscopists. Thus, endoscopic AI systems may be useful for reducing the risk of overlooking lesions and improving the diagnostic ability of endoscopists.
Collapse
Affiliation(s)
- Ryosuke Kikuchi
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Okamoto
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ozawa
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Junichi Shibata
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Tada
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Saitama, Japan
- AI Medical Service Inc., Tokyo, Japan
| |
Collapse
|
9
|
Bangolo A, Wadhwani N, Nagesh VK, Dey S, Tran HHV, Aguilar IK, Auda A, Sidiqui A, Menon A, Daoud D, Liu J, Pulipaka SP, George B, Furman F, Khan N, Plumptre A, Sekhon I, Lo A, Weissman S. Impact of artificial intelligence in the management of esophageal, gastric and colorectal malignancies. Artif Intell Gastrointest Endosc 2024; 5:90704. [DOI: 10.37126/aige.v5.i2.90704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 05/11/2024] Open
Abstract
The incidence of gastrointestinal malignancies has increased over the past decade at an alarming rate. Colorectal and gastric cancers are the third and fifth most commonly diagnosed cancers worldwide but are cited as the second and third leading causes of mortality. Early institution of appropriate therapy from timely diagnosis can optimize patient outcomes. Artificial intelligence (AI)-assisted diagnostic, prognostic, and therapeutic tools can assist in expeditious diagnosis, treatment planning/response prediction, and post-surgical prognostication. AI can intercept neoplastic lesions in their primordial stages, accurately flag suspicious and/or inconspicuous lesions with greater accuracy on radiologic, histopathological, and/or endoscopic analyses, and eliminate over-dependence on clinicians. AI-based models have shown to be on par, and sometimes even outperformed experienced gastroenterologists and radiologists. Convolutional neural networks (state-of-the-art deep learning models) are powerful computational models, invaluable to the field of precision oncology. These models not only reliably classify images, but also accurately predict response to chemotherapy, tumor recurrence, metastasis, and survival rates post-treatment. In this systematic review, we analyze the available evidence about the diagnostic, prognostic, and therapeutic utility of artificial intelligence in gastrointestinal oncology.
Collapse
Affiliation(s)
- Ayrton Bangolo
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nikita Wadhwani
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Vignesh K Nagesh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shraboni Dey
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Hadrian Hoang-Vu Tran
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Izage Kianifar Aguilar
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Auda Auda
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aman Sidiqui
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aiswarya Menon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Deborah Daoud
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - James Liu
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sai Priyanka Pulipaka
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Blessy George
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Flor Furman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nareeman Khan
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Adewale Plumptre
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Imranjot Sekhon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Abraham Lo
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Simcha Weissman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| |
Collapse
|
10
|
Lee GP, Kim YJ, Park DK, Kim YJ, Han SK, Kim KG. Gastro-BaseNet: A Specialized Pre-Trained Model for Enhanced Gastroscopic Data Classification and Diagnosis of Gastric Cancer and Ulcer. Diagnostics (Basel) 2023; 14:75. [PMID: 38201385 PMCID: PMC10795822 DOI: 10.3390/diagnostics14010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Most of the development of gastric disease prediction models has utilized pre-trained models from natural data, such as ImageNet, which lack knowledge of medical domains. This study proposes Gastro-BaseNet, a classification model trained using gastroscopic image data for abnormal gastric lesions. To prove performance, we compared transfer-learning based on two pre-trained models (Gastro-BaseNet and ImageNet) and two training methods (freeze and fine-tune modes). The effectiveness was verified in terms of classification at the image-level and patient-level, as well as the localization performance of lesions. The development of Gastro-BaseNet had demonstrated superior transfer learning performance compared to random weight settings in ImageNet. When developing a model for predicting the diagnosis of gastric cancer and gastric ulcers, the transfer-learned model based on Gastro-BaseNet outperformed that based on ImageNet. Furthermore, the model's performance was highest when fine-tuning the entire layer in the fine-tune mode. Additionally, the trained model was based on Gastro-BaseNet, which showed higher localization performance, which confirmed its accurate detection and classification of lesions in specific locations. This study represents a notable advancement in the development of image analysis models within the medical field, resulting in improved diagnostic predictive accuracy and aiding in making more informed clinical decisions in gastrointestinal endoscopy.
Collapse
Affiliation(s)
- Gi Pyo Lee
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21565, Republic of Korea;
| | - Young Jae Kim
- Department of Biomedical Engineering, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea;
| | - Dong Kyun Park
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea; (D.K.P.); (Y.J.K.)
| | - Yoon Jae Kim
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea; (D.K.P.); (Y.J.K.)
| | - Su Kyeong Han
- Health IT Research Center, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea;
| | - Kwang Gi Kim
- Department of Biomedical Engineering, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea;
| |
Collapse
|
11
|
Wang Z, Liu Y, Niu X. Application of artificial intelligence for improving early detection and prediction of therapeutic outcomes for gastric cancer in the era of precision oncology. Semin Cancer Biol 2023; 93:83-96. [PMID: 37116818 DOI: 10.1016/j.semcancer.2023.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
Gastric cancer is a leading contributor to cancer incidence and mortality globally. Recently, artificial intelligence approaches, particularly machine learning and deep learning, are rapidly reshaping the full spectrum of clinical management for gastric cancer. Machine learning is formed from computers running repeated iterative models for progressively improving performance on a particular task. Deep learning is a subtype of machine learning on the basis of multilayered neural networks inspired by the human brain. This review summarizes the application of artificial intelligence algorithms to multi-dimensional data including clinical and follow-up information, conventional images (endoscope, histopathology, and computed tomography (CT)), molecular biomarkers, etc. to improve the risk surveillance of gastric cancer with established risk factors; the accuracy of diagnosis, and survival prediction among established gastric cancer patients; and the prediction of treatment outcomes for assisting clinical decision making. Therefore, artificial intelligence makes a profound impact on almost all aspects of gastric cancer from improving diagnosis to precision medicine. Despite this, most established artificial intelligence-based models are in a research-based format and often have limited value in real-world clinical practice. With the increasing adoption of artificial intelligence in clinical use, we anticipate the arrival of artificial intelligence-powered gastric cancer care.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, Liaoning, China
| | - Yang Liu
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, Liaoning, China.
| | - Xing Niu
- China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
12
|
Dong Z, Wang J, Li Y, Deng Y, Zhou W, Zeng X, Gong D, Liu J, Pan J, Shang R, Xu Y, Xu M, Zhang L, Zhang M, Tao X, Zhu Y, Du H, Lu Z, Yao L, Wu L, Yu H. Explainable artificial intelligence incorporated with domain knowledge diagnosing early gastric neoplasms under white light endoscopy. NPJ Digit Med 2023; 6:64. [PMID: 37045949 PMCID: PMC10097818 DOI: 10.1038/s41746-023-00813-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
White light endoscopy is the most pivotal tool for detecting early gastric neoplasms. Previous artificial intelligence (AI) systems were primarily unexplainable, affecting their clinical credibility and acceptability. We aimed to develop an explainable AI named ENDOANGEL-ED (explainable diagnosis) to solve this problem. A total of 4482 images and 296 videos with focal lesions from 3279 patients from eight hospitals were used for training, validating, and testing ENDOANGEL-ED. A traditional sole deep learning (DL) model was trained using the same dataset. The performance of ENDOANGEL-ED and sole DL was evaluated on six levels: internal and external images, internal and external videos, consecutive videos, and man-machine comparison with 77 endoscopists in videos. Furthermore, a multi-reader, multi-case study was conducted to evaluate the ENDOANGEL-ED's effectiveness. A scale was used to compare the overall acceptance of endoscopists to traditional and explainable AI systems. The ENDOANGEL-ED showed high performance in the image and video tests. In man-machine comparison, the accuracy of ENDOANGEL-ED was significantly higher than that of all endoscopists in internal (81.10% vs. 70.61%, p < 0.001) and external videos (88.24% vs. 78.49%, p < 0.001). With ENDOANGEL-ED's assistance, the accuracy of endoscopists significantly improved (70.61% vs. 79.63%, p < 0.001). Compared with the traditional AI, the explainable AI increased the endoscopists' trust and acceptance (4.42 vs. 3.74, p < 0.001; 4.52 vs. 4.00, p < 0.001). In conclusion, we developed a real-time explainable AI that showed high performance, higher clinical credibility, and acceptance than traditional DL models and greatly improved the diagnostic ability of endoscopists.
Collapse
Affiliation(s)
- Zehua Dong
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junxiao Wang
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxia Li
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunchao Deng
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Zhou
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoquan Zeng
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dexin Gong
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Liu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Pan
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, China
| | - Renduo Shang
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Youming Xu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Xu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihui Zhang
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengjiao Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Tao
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yijie Zhu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongliu Du
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihua Lu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liwen Yao
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianlian Wu
- Renmin Hospital of Wuhan University, Wuhan, China.
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Honggang Yu
- Renmin Hospital of Wuhan University, Wuhan, China.
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
13
|
Galati JS, Duve RJ, O'Mara M, Gross SA. Artificial intelligence in gastroenterology: A narrative review. Artif Intell Gastroenterol 2022; 3:117-141. [DOI: 10.35712/aig.v3.i5.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as the development of computer systems to perform tasks that require human intelligence. It has the capacity to revolutionize medicine by increasing efficiency, expediting data and image analysis and identifying patterns, trends and associations in large datasets. Within gastroenterology, recent research efforts have focused on using AI in esophagogastroduodenoscopy, wireless capsule endoscopy (WCE) and colonoscopy to assist in diagnosis, disease monitoring, lesion detection and therapeutic intervention. The main objective of this narrative review is to provide a comprehensive overview of the research being performed within gastroenterology on AI in esophagogastroduodenoscopy, WCE and colonoscopy.
Collapse
Affiliation(s)
- Jonathan S Galati
- Department of Medicine, NYU Langone Health, New York, NY 10016, United States
| | - Robert J Duve
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States
| | - Matthew O'Mara
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| | - Seth A Gross
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| |
Collapse
|
14
|
Ochiai K, Ozawa T, Shibata J, Ishihara S, Tada T. Current Status of Artificial Intelligence-Based Computer-Assisted Diagnosis Systems for Gastric Cancer in Endoscopy. Diagnostics (Basel) 2022; 12:diagnostics12123153. [PMID: 36553160 PMCID: PMC9777622 DOI: 10.3390/diagnostics12123153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence (AI) is gradually being utilized in various fields as its performance has been improving with the development of deep learning methods, availability of big data, and the progression of computer processing units. In the field of medicine, AI is mainly implemented in image recognition, such as in radiographic and pathologic diagnoses. In the realm of gastrointestinal endoscopy, although AI-based computer-assisted detection/diagnosis (CAD) systems have been applied in some areas, such as colorectal polyp detection and diagnosis, so far, their implementation in real-world clinical settings is limited. The accurate detection or diagnosis of gastric cancer (GC) is one of the challenges in which performance varies greatly depending on the endoscopist's skill. The diagnosis of early GC is especially challenging, partly because early GC mimics atrophic gastritis in the background mucosa. Therefore, several CAD systems for GC are being actively developed. The development of a CAD system for GC is considered challenging because it requires a large number of GC images. In particular, early stage GC images are rarely available, partly because it is difficult to diagnose gastric cancer during the early stages. Additionally, the training image data should be of a sufficiently high quality to conduct proper CAD training. Recently, several AI systems for GC that exhibit a robust performance, owing to being trained on a large number of high-quality images, have been reported. This review outlines the current status and prospects of AI use in esophagogastroduodenoscopy (EGDS), focusing on the diagnosis of GC.
Collapse
Affiliation(s)
- Kentaro Ochiai
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tsuyoshi Ozawa
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Musashi-Urawa, Saitama 336-0021, Japan
- AI Medical Service Inc. Toshima-ku, Tokyo 104-0061, Japan
| | - Junichi Shibata
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Musashi-Urawa, Saitama 336-0021, Japan
- AI Medical Service Inc. Toshima-ku, Tokyo 104-0061, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Tada
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Musashi-Urawa, Saitama 336-0021, Japan
- AI Medical Service Inc. Toshima-ku, Tokyo 104-0061, Japan
| |
Collapse
|