1
|
Tlałka K, Saxton H, Halliday I, Xu X, Narracott A, Taylor D, Malawski M. Sensitivity analysis of closed-loop one-chamber and four-chamber models with baroreflex. PLoS Comput Biol 2024; 20:e1012377. [PMID: 39715272 PMCID: PMC11706439 DOI: 10.1371/journal.pcbi.1012377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/07/2025] [Accepted: 12/02/2024] [Indexed: 12/25/2024] Open
Abstract
The baroreflex is one of the most important control mechanisms in the human cardiovascular system. This work utilises a closed-loop in silico model of baroreflex regulation, coupled to pulsatile mechanical models with (i) one heart chamber and 36-parameters and (ii) four chambers and 51 parameters. We perform the first global sensitivity analysis of these closed-loop systems which considers both cardiovascular and baroreflex parameters, and compare the models with their respective unregulated equivalents. Results show the reduced influence of regulated parameters compared to unregulated equivalents and that, in the physiological resting state, model outputs (pressures, heart rate, cardiac output etc.) are most sensitive to parasympathetic arc parameters. This work provides insight into the effects of regulation and model input parameter influence on clinical metrics, and constitutes a first step to understanding the role of regulation in models for personalised healthcare.
Collapse
Affiliation(s)
- Karolina Tlałka
- Sano Centre for Computational Medicine, Cracow, Poland
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Harry Saxton
- School of Computer Science, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Ian Halliday
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Xu Xu
- School of Computer Science, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Andrew Narracott
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Daniel Taylor
- Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Maciej Malawski
- Sano Centre for Computational Medicine, Cracow, Poland
- Department of Computer Science, AGH University of Science and Technology, Cracow, Poland
| |
Collapse
|
2
|
Ding CCA, Dokos S, Bakir AA, Zamberi NJ, Liew YM, Chan BT, Md Sari NA, Avolio A, Lim E. Simulating impaired left ventricular-arterial coupling in aging and disease: a systematic review. Biomed Eng Online 2024; 23:24. [PMID: 38388416 PMCID: PMC10885508 DOI: 10.1186/s12938-024-01206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/11/2024] [Indexed: 02/24/2024] Open
Abstract
Aortic stenosis, hypertension, and left ventricular hypertrophy often coexist in the elderly, causing a detrimental mismatch in coupling between the heart and vasculature known as ventricular-vascular (VA) coupling. Impaired left VA coupling, a critical aspect of cardiovascular dysfunction in aging and disease, poses significant challenges for optimal cardiovascular performance. This systematic review aims to assess the impact of simulating and studying this coupling through computational models. By conducting a comprehensive analysis of 34 relevant articles obtained from esteemed databases such as Web of Science, Scopus, and PubMed until July 14, 2022, we explore various modeling techniques and simulation approaches employed to unravel the complex mechanisms underlying this impairment. Our review highlights the essential role of computational models in providing detailed insights beyond clinical observations, enabling a deeper understanding of the cardiovascular system. By elucidating the existing models of the heart (3D, 2D, and 0D), cardiac valves, and blood vessels (3D, 1D, and 0D), as well as discussing mechanical boundary conditions, model parameterization and validation, coupling approaches, computer resources and diverse applications, we establish a comprehensive overview of the field. The descriptions as well as the pros and cons on the choices of different dimensionality in heart, valve, and circulation are provided. Crucially, we emphasize the significance of evaluating heart-vessel interaction in pathological conditions and propose future research directions, such as the development of fully coupled personalized multidimensional models, integration of deep learning techniques, and comprehensive assessment of confounding effects on biomarkers.
Collapse
Affiliation(s)
- Corina Cheng Ai Ding
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Azam Ahmad Bakir
- University of Southampton Malaysia Campus, 79200, Iskandar Puteri, Johor, Malaysia
| | - Nurul Jannah Zamberi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yih Miin Liew
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Bee Ting Chan
- Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Selangor, Malaysia
| | - Nor Ashikin Md Sari
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Alberto Avolio
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Einly Lim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Kopylova V, Boronovskiy S, Nartsissov Y. Approaches to vascular network, blood flow, and metabolite distribution modeling in brain tissue. Biophys Rev 2023; 15:1335-1350. [PMID: 37974995 PMCID: PMC10643724 DOI: 10.1007/s12551-023-01106-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/24/2023] [Indexed: 11/19/2023] Open
Abstract
The cardiovascular system plays a key role in the transport of nutrients, ensuring a continuous supply of all cells of the body with the metabolites necessary for life. The blood supply to the brain is carried out by the large arteries located on its surface, which branch into smaller arterioles that penetrate the cerebral cortex and feed the capillary bed, thereby forming an extensive branching network. The formation of blood vessels is carried out via vasculogenesis and angiogenesis, which play an important role in both embryo and adult life. The review presents approaches to modeling various aspects of both the formation of vascular networks and the construction of the formed arterial tree. In addition, a brief description of models that allows one to study the blood flow in various parts of the circulatory system and the spatiotemporal metabolite distribution in brain tissues is given. Experimental study of these issues is not always possible due to both the complexity of the cardiovascular system and the mechanisms through which the perfusion of all body cells is carried out. In this regard, mathematical models are a good tool for studying hemodynamics and can be used in clinical practice to diagnose vascular diseases and assess the need for treatment.
Collapse
Affiliation(s)
- Veronika Kopylova
- Institute of Cytochemistry and Molecular Pharmacology, Moscow, 115404 Russia
| | | | - Yaroslav Nartsissov
- Institute of Cytochemistry and Molecular Pharmacology, Moscow, 115404 Russia
- Biomedical Research Group, BiDiPharma GmbH, Siek, 22962 Germany
| |
Collapse
|
4
|
Travasso RDM, Coelho-Santos V. Image-based angio-adaptation modelling: a playground to study cerebrovascular development. Front Physiol 2023; 14:1223308. [PMID: 37565149 PMCID: PMC10411953 DOI: 10.3389/fphys.2023.1223308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Affiliation(s)
- Rui D. M. Travasso
- Department of Physics, Center for Physics of the University of Coimbra (CFisUC), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
| | - Vanessa Coelho-Santos
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Anselmino M, Scarsoglio S, Ridolfi L, De Ferrari GM, Saglietto A. Insights from computational modeling on the potential hemodynamic effects of sinus rhythm versus atrial fibrillation. Front Cardiovasc Med 2022; 9:844275. [PMID: 36187015 PMCID: PMC9515395 DOI: 10.3389/fcvm.2022.844275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Atrial fibrillation (AF) is the most common clinical tachyarrhythmia, posing a significant burden to patients, physicians, and healthcare systems worldwide. With the advent of more effective rhythm control strategies, such as AF catheter ablation, an early rhythm control strategy is progressively demonstrating its superiority not only in symptoms control but also in prognostic terms, over a standard strategy (rate control, with rhythm control reserved only to patients with refractory symptoms). This review summarizes the different impacts exerted by AF on heart mechanics and systemic circulation, as well as on cerebral and coronary vascular beds, providing computational modeling-based hemodynamic insights in favor of pursuing sinus rhythm maintenance in AF patients.
Collapse
Affiliation(s)
- Matteo Anselmino
- Division of Cardiology, Department of Medical Sciences, “Città della Salute e della Scienza di Torino” Hospital, University of Turin, Turin, Italy
- *Correspondence: Matteo Anselmino,
| | - Stefania Scarsoglio
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Luca Ridolfi
- Department of Environmental, Land, and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Department of Medical Sciences, “Città della Salute e della Scienza di Torino” Hospital, University of Turin, Turin, Italy
| | - Andrea Saglietto
- Division of Cardiology, Department of Medical Sciences, “Città della Salute e della Scienza di Torino” Hospital, University of Turin, Turin, Italy
| |
Collapse
|