1
|
Liu K, Chai L, Zhao T, Zhang S, Wang J, Yu Y, Niu R, Sun Z. Effects of Treadmill Exercise on Liver Apoptosis in Fluoride-Exposed Mice. Biol Trace Elem Res 2023; 201:5734-5746. [PMID: 36884125 DOI: 10.1007/s12011-023-03619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
Hepatotoxicity induced by excessive fluoride (F) exposure has been extensively studied in both humans and animals. Chronic fluorosis can result in liver apoptosis. Meanwhile, moderate exercise alleviates apoptosis caused by pathological factors. However, the effect of moderate exercise on F-induced liver apoptosis remains unclear. In this research, sixty-four three-week-old Institute of Cancer Research (ICR) mice, half male and half female, were randomly divided into four groups: control group (distilled water); exercise group (distilled water and treadmill exercise); F group [100 mg/L sodium fluoride (NaF)]; and exercise plus F group (100 mg/L NaF and treadmill exercise). The liver tissues of mice were taken at 3 months and 6 months, respectively. Hematoxylin-eosin (HE) staining and situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) results showed that nuclear condensation and apoptotic hepatocytes occurred in the F group. However, this phenomenon could be reversed with the intervention of treadmill exercise. The results of QRT-PCR and western blot displayed NaF- induced apoptosis via tumor necrosis factor recpter 1 (TNFR1) signaling pathway, while treadmill exercise could restore the molecular changes caused by excessive NaF exposure.
Collapse
Affiliation(s)
- Ke Liu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Lei Chai
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Taotao Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Shaosan Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Jixiang Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Yanghuan Yu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China.
| |
Collapse
|
2
|
Li W, Lu L, Zhu D, Liu J, Shi Y, Zeng H, Yu X, Guo J, Wei B, Cai Y, Sun M. Gestational exposure to fluoride impairs cognition in C57 BL/6 J male offspring mice via the p-Creb1-BDNF-TrkB signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113682. [PMID: 35643027 DOI: 10.1016/j.ecoenv.2022.113682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Fluoride exposure has a detrimental effect on neurodevelopment, while the underlying processes remain unknown. The goal of this study was to investigate how fluoride impacts synaptogenesis, with a focus on the phosphorylation of Creb1 (p-Creb1)-brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) pathway. We generated a sodium fluoride (NaF) model using C57 BL/6 J mice exposed to 100 mg/L NaF from gestation day 1 (GD1) to GD20. It was identified that NaF treatment impaired the learning and memory abilities of the male offspring, reduced dendritic spine density, lowered postsynaptic density protein-95 (PSD95) and synaptophysin (SYN) expression in the male offspring's hippocampus, indicating that synaptic dysfunction may contribute to the cognitive impairment in the NaF model. In addition, in vivo experiment demonstrated that the protein abundance of BDNF and the ratio of p-Creb1 to Creb1 were increased in the hippocampus of NaF offspring, while the level of TrkB was reduced. Similarly, PC12 cells treated with NaF also showed increased expression of BDNF and decreased levels of TrkB. Notably, fluoride treatment increased p-Creb1 in vitro, while inhibiting p-Creb1 by 66615 significantly alleviated the effects of NaF exposure, indicating that p-Creb1 exerts a regulatory function in the BDNF-TrkB pathway. Altogether, these results demonstrated prenatal fluoride exposure triggered neurotoxicity in the male offspring hippocampus was linked to synaptogenesis damage caused by activating p-Creb1, which disrupted the BDNF-TrkB pathway.
Collapse
Affiliation(s)
- Weisheng Li
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Likui Lu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Dan Zhu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jingliu Liu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Hongtao Zeng
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Xi Yu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jun Guo
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Yongle Cai
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
3
|
Nadei OV, Khvorova IA, Agalakova NI. Cognitive Decline of Rats with Chronic Fluorosis Is Associated with Alterations in Hippocampal Calpain Signaling. Biol Trace Elem Res 2020; 197:495-506. [PMID: 31797207 DOI: 10.1007/s12011-019-01993-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022]
Abstract
The study was designed to evaluate an influence of excessive fluoride (F-) intake on cognitive capacities of adult rats and on proteins of memory-related calpain signaling in hippocampus. Control animals were given water with natural F- content of 0.4 ppm; rats from other groups consumed the same water supplemented with 5, 20, and 50 ppm F- (as NaF) for 12 months. The efficiency of learning and memory formation was evaluated by novel object recognition (NOR) and Morris water maze tests. The expression of enzymes of calpain-1 and calpain-2 signaling in hippocampus was detected by Western blotting. Excessive F- consumption had moderate impact on short-term memory, but impaired spatial learning and long-term memory of animals. Intoxication of rats with 5-50 ppm F- led to stimulation of calpain-1 in hippocampal cells and its translocation from cytosol to membranes, accompanied by activation of GTPase RhoA. Exposure to 20-50 ppm F- resulted in proteolytic cleavage of phosphatase PHLPP1 and increased expression of phospho-ERK1/2 kinase with insignificant decline of total ERK1/2 activity. In contrast, F- did not change the expression of calpain-2 and its substrates-phosphatase PTEN and kinase mTOR. However, F- intake led to downregulation of cAMP-response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF). Thus, altered expression of calpain-1 and its downstream effectors at a background of stable activity of calpain-2 indicates overstimulation of signaling pathways of early LTP phase and disrupted link between early and late LTP phases, most probably due to altered activity of transcriptional and neurotrophic factors.
Collapse
Affiliation(s)
- Olga V Nadei
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez av., Saint Petersburg, Russia, 194223
| | - Irina A Khvorova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez av., Saint Petersburg, Russia, 194223
| | - Natalia I Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez av., Saint Petersburg, Russia, 194223.
| |
Collapse
|
4
|
Zhou G, Tang S, Yang L, Niu Q, Chen J, Xia T, Wang S, Wang M, Zhao Q, Liu L, Li P, Dong L, Yang K, Zhang S, Wang A. Effects of long-term fluoride exposure on cognitive ability and the underlying mechanisms: Role of autophagy and its association with apoptosis. Toxicol Appl Pharmacol 2019; 378:114608. [DOI: 10.1016/j.taap.2019.114608] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
|
5
|
Chen J, Niu Q, Xia T, Zhou G, Li P, Zhao Q, Xu C, Dong L, Zhang S, Wang A. ERK1/2-mediated disruption of BDNF-TrkB signaling causes synaptic impairment contributing to fluoride-induced developmental neurotoxicity. Toxicology 2018; 410:222-230. [PMID: 30130557 DOI: 10.1016/j.tox.2018.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 11/26/2022]
Abstract
Excessive exposure to fluoride has adverse effects on neurodevelopment, but the mechanisms remain unclear. This study aimed to investigate the effects of fluoride exposure on synaptogenesis, and focused on the role of brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling in these effects. Using Sprague-Dawley rats developmentally exposed to sodium fluoride (NaF) from pregnancy until 6 months of delivery as in vivo model, we showed that fluoride impaired the cognitive abilities of offspring rats, decreased the density of dendritic spines and the expression of synapse proteins synaptophysin (SYN) and postsynaptic density protein-95 (PSD-95) in hippocampus, suggesting fluoride-induced cognitive deficit associates with synaptic impairment. Consistently, NaF treatment reduced dendritic outgrowth and expression of SYN and PSD-95 in human neuroblastoma SH-SY5Y cells. Further studies demonstrated that the BDNF-TrkB axis was disrupted in vivo and in vitro, as manifested by BDNF accumulation and TrkB reduction. Importantly, fluoride treatment increased phospho-extracellular signal-regulated kinases 1 and 2 (p-ERK1/2) expression, while inhibition of p-ERK1/2 significantly attenuated the effects of NaF, indicating a regulating role of p-ERK1/2 in BDNF-TrkB signaling disruption. Collectively, these data suggest that the developmental neurotoxicity of fluoride is associated with the impairment of synaptogenesis, which is caused by ERK1/2-mediated BDNF-TrkB signaling disruption.
Collapse
Affiliation(s)
- Jingwen Chen
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China
| | - Qiang Niu
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China
| | - Tao Xia
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China
| | - Guoyu Zhou
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China
| | - Pei Li
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China
| | - Qian Zhao
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China
| | - Chunyan Xu
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China
| | - Lixin Dong
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China
| | - Shun Zhang
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China.
| | - Aiguo Wang
- Department of Environmental Health, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Zhang J, Zhu Y, Shi Y, Han Y, Liang C, Feng Z, Zheng H, Eng M, Wang J. Fluoride-Induced Autophagy via the Regulation of Phosphorylation of Mammalian Targets of Rapamycin in Mice Leydig Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8966-8976. [PMID: 28927274 DOI: 10.1021/acs.jafc.7b03822] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fluoride is known to impair testicular function and decrease testosterone levels, yet the underlying mechanisms remain inconclusive. The objective of this study is to investigate the roles of autophagy in fluoride-induced male reproductive toxicity using both in vivo and in vitro Leydig cell models. Using transmission electron microscopy and monodansylcadaverine staining, we observed increasing numbers of autophagosomes in testicular tissue, especially in Leydig cells of fluoride-exposed mice. Further study revealed that fluoride increased the levels of mRNA and protein expression of autophagy markers LC3, Beclin1, and Atg 5 in primary Leydig cells. Furthermore, fluoride inhibited the phosphorylation of mammalian targets of rapamycin and 4EBP1, which in turn resulted in a decrease in the levels of AKT and PI3K mRNA expression, as well as an elevation of the level of AMPK expression in both testes and primary Leydig cells. Additionally, fluoride exposure significantly changed the mRNA expression of the PDK1, TSC, and Atg13 regulator genes in primary Leydig cells but not in testicular cells. Taken together, our findings highlight the roles of autophagy in fluoride-induced testicular and Leydig cell damage and contribute to the elucidation of the underlying mechanisms of fluoride-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Taigu, Shanxi 030801, China
| | - Yuchen Zhu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Taigu, Shanxi 030801, China
| | - Yan Shi
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Taigu, Shanxi 030801, China
| | - Yongli Han
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Taigu, Shanxi 030801, China
| | - Chen Liang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Taigu, Shanxi 030801, China
| | - Zhiyuan Feng
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Taigu, Shanxi 030801, China
| | - Heping Zheng
- Department of Molecular Physiology and Biological Physics, University of Virginia , Charlottesville, Virginia 22908, United States
| | - Michelle Eng
- Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Taigu, Shanxi 030801, China
| |
Collapse
|
7
|
Güner Ş, Uyar-Bozkurt S, Haznedaroğlu E, Menteş A. Dental Fluorosis and Catalase Immunoreactivity of the Brain Tissues in Rats Exposed to High Fluoride Pre- and Postnatally. Biol Trace Elem Res 2016; 174:150-157. [PMID: 27052310 DOI: 10.1007/s12011-016-0695-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/30/2016] [Indexed: 12/18/2022]
Abstract
This study evaluated dental fluorosis of the incisors and immunoreactivity in the brain tissues of rats given chronic fluoride doses pre- and postnatally. Female rats were given drinking water with 0, 30 or 100 ppm fluoride ad libitum throughout gestation and the nursing period. In addition, 63 male offspring were treated with the same water regimens as the mothers after weaning and were followed for 1, 3 or 5 months. The upper and lower incisors were collected, and all teeth were examined under a stereomicroscope and scored by two blinded examiners using a modified rodent enamel fluorosis index. Cortical, hippocampal and cerebellar brain samples were evaluated morphologically and immunohistochemically. All fluoride-treated pups were born with low body weight (p = 0.001). All animals from the fluoride groups had enamel fluorosis with defects of various degrees. The increase in the dental fluorosis scores in the fluoride treatment groups was significant (p < 0.01). The catalase immunoreactivity in the 30- and 100-ppm fluoride groups was significantly higher than that in the controls after 1, 3 and 5 months (p < 0.001). In conclusion, this study showed that rats with dental fluorosis had catalase immunoreactivity in the brain tissues, which may reflect the neurobehavioral toxicity of fluoride.
Collapse
Affiliation(s)
- Şirin Güner
- Department of Pediatric Dentistry, Faculty of Dentistry, Trakya University, Balkan Campus, 22030, Edirne, Turkey
| | - Süheyla Uyar-Bozkurt
- Department of Pathology, Institute for Neurological Sciences, Marmara University, Istanbul, Turkey
| | - Eda Haznedaroğlu
- Department of Pediatric Dentistry, Faculty of Dentistry, Marmara University, Basibuyuk Campus, Basibuyuk, Maltepe, 34854, Istanbul, Turkey
| | - Ali Menteş
- Department of Pediatric Dentistry, Faculty of Dentistry, Marmara University, Basibuyuk Campus, Basibuyuk, Maltepe, 34854, Istanbul, Turkey.
| |
Collapse
|
8
|
Zhang J, Zhang Y, Liang C, Wang N, Zheng H, Wang J. Choline supplementation alleviates fluoride-induced testicular toxicity by restoring the NGF and MEK expression in mice. Toxicol Appl Pharmacol 2016; 310:205-214. [PMID: 27664006 DOI: 10.1016/j.taap.2016.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 02/05/2023]
Abstract
Fluoride is known to cause male reproductive toxicity, and the elucidation of its underlying mechanisms is an ongoing research focus in reproductive toxicology and epidemiology. Choline, an essential nutrient, has been extensively studied for its benefits in nervous system yet was rarely discussed for its prospective effect in male reproductive system. This study aims to explore the potential protective role of choline against NaF-induced male reproductive toxicity via MAPK pathway. The male mice were administrated by 150mg/L NaF in drinking water, 5.75g/kg choline in diet, and their combination respectively from maternal gestation to postnatal 15weeks. The results showed that fluoride exposure reduced body weight growth, lowered sperm count and survival percentages, altered testicular histology, down-regulated the mRNA expressions of NGF, Ras, Raf, and MEK genes in testes, as well as significantly decreased the expressions of both NGF and phosphor-MEK proteins in testes. Examination of data from choline-treated mice revealed that choline supplementation ameliorated these fluoride-induced changes. Taken together, our findings suggest that choline supplementation alleviates fluoride-induced testicular toxicity by restoring the NGF and phosphor-MEK expression. The suitable dosage and supplementation periods of choline await further exploration.
Collapse
Affiliation(s)
- Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yufang Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Veterinary Station in Chen Villages of Lin Country, Linxian, Shanxi 033200, China
| | - Chen Liang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Nasui Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Division of Endocrinology and Metabolism, Department of Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Heping Zheng
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
9
|
Zhang S, Niu Q, Gao H, Ma R, Lei R, Zhang C, Xia T, Li P, Xu C, Wang C, Chen J, Dong L, Zhao Q, Wang A. Excessive apoptosis and defective autophagy contribute to developmental testicular toxicity induced by fluoride. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:97-104. [PMID: 26840522 DOI: 10.1016/j.envpol.2016.01.059] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Fluoride, a ubiquitous environmental contaminant, is known to impair testicular functions and fertility; however the underlying mechanisms remain obscure. In this study, we used a rat model to mimic human exposure and sought to investigate the roles of apoptosis and autophagy in testicular toxicity of fluoride. Sprague-Dawley rats were developmentally exposed to 25, 50, or 100 mg/L sodium fluoride (NaF) via drinking water from pre-pregnancy to post-puberty, and then the testes of offspring were excised on postnatal day 56. Our results demonstrated that developmental NaF exposure induced an enhanced testicular apoptosis, as manifested by a series of hallmarks such as caspase-3 activation, chromatin condensation and DNA fragmentation. Further study revealed that fluoride exposure elicited significant elevations in the levels of cell surface death receptor Fas with a parallel increase in cytoplasmic cytochrome c, indicating the involvement of both extrinsic and intrinsic apoptotic pathways. Intriguingly, fluoride treatment also simultaneously increased the number of autophagosomes and the levels of autophagy marker LC3-II but not Beclin1. Unexpectedly, the expression of p62, a substrate that is degraded by autophagy, was also significantly elevated, suggesting that the accumulated autophagosomes resulted from impaired autophagy degradation rather than increased formation. Importantly, these were associated with marked histopathological lesions including spermatogenic failure and germ cell loss, along with severe ultrastructural abnormalities in testes. Taken together, our findings provide deeper insights into roles of excessive apoptosis and defective autophagy in the aggravation of testicular damage, which could contribute to a better understanding of fluoride-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Qiang Niu
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Hui Gao
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Rulin Ma
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Rongrong Lei
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Cheng Zhang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Tao Xia
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Pei Li
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Chunyan Xu
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Chao Wang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Jingwen Chen
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Lixing Dong
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Qian Zhao
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Aiguo Wang
- Department of Environmental Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
10
|
Appropriate real-time PCR reference genes for fluoride treatment studies performed in vitro or in vivo. Arch Oral Biol 2015; 62:33-42. [PMID: 26615575 DOI: 10.1016/j.archoralbio.2015.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/15/2015] [Accepted: 11/05/2015] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Quantitative real-time PCR (qPCR) is routinely performed for experiments designed to identify the molecular mechanisms involved in the pathogenesis of dental fluorosis. Expression of reference gene(s) is expected to remain unchanged in fluoride-treated cells or in rodents relative to the corresponding untreated controls. The aim of this study was to select optimal reference genes for fluoride experiments performed in vitro and in vivo. DESIGN Five candidate genes were evaluated: B2m, Eef1a1, Gapdh, Hprt and Tbp. For in vitro experiments, LS8 cells derived from mouse enamel organ were treated with 0, 1, 3 and/or 5mM sodium fluoride (NaF) for 6 or 18 h followed by RNA isolation. For in vivo experiments, six-week old rats were treated with 0 or 100 ppm fluoride as NaF for six weeks at which time RNA was isolated from enamel organs. RNA from cells and enamel organs were reverse-transcribed and stability of gene expression for the candidate reference genes was evaluated by qPCR in treated versus non-treated samples. RESULTS The most stably expressed genes in vitro according to geNorm were B2m and Tbp, and according to Normfinder were Hprt and Gapdh. The most stable genes in vivo were Eef1a1 and Gapdh. Expression of Ddit3, a gene previously shown to be induced by fluoride, was demonstrated to be accurately calculated only when using an optimal reference gene. CONCLUSIONS This study identifies suitable reference genes for relative quantification of gene expression by qPCR after fluoride treatment both in cultured cells and in the rodent enamel organ.
Collapse
|
11
|
Martín-Pardillos A, Sosa C, Millán Á, Sorribas V. Effect of water fluoridation on the development of medial vascular calcification in uremic rats. Toxicology 2014; 318:40-50. [PMID: 24561004 DOI: 10.1016/j.tox.2014.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/08/2014] [Accepted: 01/26/2014] [Indexed: 10/25/2022]
Abstract
Public water fluoridation is a common policy for improving dental health. Fluoride replaces the hydroxyls of hydroxyapatite, thereby improving the strength of tooth enamel, but this process can also occur in other active calcifications. This paper studies the effects of water fluoridation during the course of vascular calcification in renal disease. The effect of fluoride was studied in vitro and in vivo. Rat aortic smooth muscle cells were calcified with 2mM Pi for 5 days. Fluoride concentrations of 5-10 μM--similar to those found in people who drink fluoridated water--partially prevented calcification, death, and osteogene expression in vitro. The anticalcifying mechanism was independent of cell activity, matrix Gla protein, and fetuin A expressions, and it exhibited an IC50 of 8.7 μM fluoride. In vivo, however, fluoridation of drinking water at 1.5mg/L (concentration recommended by the WHO) and 15 mg/L dramatically increased the incipient aortic calcification observed in rats with experimental chronic kidney disease (CKD, 5/6-nephrectomy), fed a Pi-rich fodder (1.2% Pi). Fluoride further declined the remaining renal function of the CKD animals, an effect that most likely overwhelmed the positive effect of fluoride on calcification in vitro. Ultrastructural analysis revealed that fluoride did not modify the Ca/P atomic ratio, but it was incorporated into the lattice of in vivo deposits. Fluoride also converted the crystallization pattern from plate to rode-like structures. In conclusion, while fluoride prevents calcification in vitro, the WHO's recommended concentrations in drinking water become nephrotoxic to CKD rats, thereby aggravating renal disease and making media vascular calcification significant.
Collapse
Affiliation(s)
- Ana Martín-Pardillos
- Department of Toxicology, University of Zaragoza, Veterinary Faculty, Calle Miguel Servet 177, E50013 Zaragoza, Spain.
| | - Cecilia Sosa
- Department of Toxicology, University of Zaragoza, Veterinary Faculty, Calle Miguel Servet 177, E50013 Zaragoza, Spain.
| | - Ángel Millán
- Instituto de Ciencia de Materiales de Aragón, Consejo Superior de Investigaciones Científicas-University of Zaragoza, Calle Pedro Cerbuna, s/n. E50009 Zaragoza, Spain.
| | - Víctor Sorribas
- Department of Toxicology, University of Zaragoza, Veterinary Faculty, Calle Miguel Servet 177, E50013 Zaragoza, Spain.
| |
Collapse
|
12
|
Suzuki M, Bartlett JD. Sirtuin1 and autophagy protect cells from fluoride-induced cell stress. Biochim Biophys Acta Mol Basis Dis 2013; 1842:245-55. [PMID: 24296261 DOI: 10.1016/j.bbadis.2013.11.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/12/2013] [Accepted: 11/25/2013] [Indexed: 12/11/2022]
Abstract
Sirtuin1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase functioning in the regulation of metabolism, cell survival and organismal lifespan. Active SIRT1 regulates autophagy during cell stress, including calorie restriction, endoplasmic reticulum (ER) stress and oxidative stress. Previously, we reported that fluoride induces ER-stress in ameloblasts responsible for enamel formation, suggesting that ER-stress plays a role in dental fluorosis. However, the molecular mechanism of how cells respond to fluoride-induced cell stress is unclear. Here, we demonstrate that fluoride activates SIRT1 and initiates autophagy to protect cells from fluoride exposure. Fluoride treatment of ameloblast-derived cells (LS8) significantly increased Sirt1 expression and induced SIRT1 phosphorylation resulting in the augmentation of SIRT1 deacetylase activity. To demonstrate that fluoride exposure initiates autophagy, we characterized the expression of autophagy related genes (Atg); Atg5, Atg7 and Atg8/LC3 and showed that both their transcript and protein levels were significantly increased following fluoride treatment. To confirm that SIRT1 plays a protective role in fluoride toxicity, we used resveratrol (RES) to augment SIRT1 activity in fluoride treated LS8 cells. RES increased autophagy, inhibited apoptosis, and decreased fluoride cytotoxicity. Rats treated with fluoride (0, 50, 100 and 125ppm) in drinking water for 6weeks had significantly elevated expression levels of Sirt1, Atg5, Atg7 and Atg8/LC3 in their maturation stage enamel organs. Increased protein levels of p-SIRT1, ATG5 and ATG8/LC3 were present in fluoride-treated rat maturation stage ameloblasts. Therefore, the SIRT1/autophagy pathway may play a critical role as a protective response to help prevent dental fluorosis.
Collapse
Affiliation(s)
- Maiko Suzuki
- Department of Mineralized Tissue Biology, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - John D Bartlett
- Department of Mineralized Tissue Biology, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Sahlberg C, Pavlic A, Ess A, Lukinmaa PL, Salmela E, Alaluusua S. Combined effect of amoxicillin and sodium fluoride on the structure of developing mouse enamel in vitro. Arch Oral Biol 2013; 58:1155-64. [DOI: 10.1016/j.archoralbio.2013.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/19/2012] [Accepted: 03/12/2013] [Indexed: 10/26/2022]
|
14
|
Li P, Xue Y, Zhang W, Teng F, Sun Y, Qu T, Chen X, Cheng X, Song B, Luo W, Yu Q. Sodium fluoride induces apoptosis in odontoblasts via a JNK-dependent mechanism. Toxicology 2013; 308:138-45. [PMID: 23578390 DOI: 10.1016/j.tox.2013.03.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/30/2013] [Accepted: 03/30/2013] [Indexed: 12/31/2022]
Abstract
Sodium fluoride (NaF) is widely used for the treatment of dental caries and dentin hypersensitivity. However, its pro-apoptotic effect on odontoblasts may lead to harmful side-effects. The purpose of this study was to evaluate the pro-apoptotic effects of NaF in odontoblasts and elucidate the possible underlying molecular mechanisms. NaF generated cytotoxic effects in odontoblast-lineage cell (OLC) in a dose- and time-dependent manner. Exposure of cells to 4mM NaF for 24h induced caspase-3 activation, ultrastructural alterations, and resulted in the translocation of Bax to the mitochondria and the release of cytochrome c from the mitochondrial inter-membrane space into the cytosol, indicating that fluoride-mediated apoptosis is mitochondria-dependent. Fluoride treatment also increased phosphorylation of JNK and ERK, but not p38, and apoptosis induced by fluoride was notably or partly suppressed by treatment with JNK or ERK inhibitors, respectively. Taken together, these findings suggest that NaF induces apoptosis in OLC odontoblasts through a JNK-dependent mitochondrial pathway.
Collapse
Affiliation(s)
- Peng Li
- Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jekl V, Krejcirova L, Buchtova M, Knotek Z. Effect of high phosphorus diet on tooth microstructure of rodent incisors. Bone 2011; 49:479-84. [PMID: 21571111 DOI: 10.1016/j.bone.2011.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 04/05/2011] [Accepted: 04/26/2011] [Indexed: 01/02/2023]
Abstract
Enamel hypoplasia and disruption of dentinogenesis are the most common abnormalities of development and mineralization of human teeth. Several reports are available in the literature on the influence of dietary calcium on the formation of human and rodent tooth; however, the information about the influence of dietary phosphorus on the tooth formation is scarce. The aim of the present investigation was to examine the chronic effect of high phosphorus diet and improper dietary calcium to phosphorus ratio on the mandibular incisor microstructure in a hystricomorph rodent--Octodon degu--using macroscopic observation, histopathological examination, transmission and scanning electron microscopy. The present study shows that enamel and dentin development is disturbed under high phosphorus diet and improper calcium to phosphorus ratio. Disturbed mineral metabolism resulted in enamel depigmentation, enamel hypoplasia, enamel pitting and altered dentin morphology. The results suggest that more attention should be focused on dietary phosphorus content when facing altered tooth structure in young patients with deciduous or permanent dentition. Furthermore, we showed that degus can be used as an experimental animal model for the study of the developmental teeth disturbances.
Collapse
Affiliation(s)
- Vladimir Jekl
- Avian and Exotic Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| | | | | | | |
Collapse
|
16
|
Wu Y, Hao YQ, Li JY, Zhou XD. Gene expression profiles of the incisor pulp tissue during fluorosis. Int Endod J 2010; 43:629-36. [DOI: 10.1111/j.1365-2591.2010.01697.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Bronckers ALJJ, Lyaruu DM, DenBesten PK. The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. J Dent Res 2009; 88:877-93. [PMID: 19783795 DOI: 10.1177/0022034509343280] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Intake of excess amounts of fluoride during tooth development cause enamel fluorosis, a developmental disturbance that makes enamel more porous. In mild fluorosis, there are white opaque striations across the enamel surface, whereas in more severe cases, the porous regions increase in size, with enamel pitting, and secondary discoloration of the enamel surface. The effects of fluoride on enamel formation suggest that fluoride affects the enamel-forming cells, the ameloblasts. Studies investigating the effects of fluoride on ameloblasts and the mechanisms of fluorosis are based on in vitro cultures as well as animal models. The use of these model systems requires a biologically relevant fluoride dose, and must be carefully interpreted in relation to human tooth formation. Based on these studies, we propose that fluoride can directly affect the ameloblasts, particularly at high fluoride levels, while at lower fluoride levels, the ameloblasts may respond to local effects of fluoride on the mineralizing matrix. A new working model is presented, focused on the assumption that fluoride increases the rate of mineral formation, resulting in a greater release of protons into the forming enamel matrix.
Collapse
Affiliation(s)
- A L J J Bronckers
- Department of Oral Cell Biology, ACTA, University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Amsterdam, The Netherlands
| | | | | |
Collapse
|