1
|
Nandlal L, Winkler CA, Bhimma R, Cho S, Nelson GW, Haripershad S, Naicker T. Causal and putative pathogenic mutations identified in 39% of children with primary steroid-resistant nephrotic syndrome in South Africa. Eur J Pediatr 2022; 181:3595-3606. [PMID: 35920919 PMCID: PMC10673688 DOI: 10.1007/s00431-022-04581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
There is a paucity of data identifying genetic mutations that account for the high rate of steroid-resistant nephrotic syndrome (SRNS) in a South African paediatric population. The aim was to identify causal mutations in genes implicated in SRNS within a South African paediatric population. We enrolled 118 children with primary nephrotic syndrome (NS), 70 SRNS and 48 steroid-sensitive NS. All children with SRNS underwent kidney biopsy. We first genotyped the NPHS2 gene for the p.V260E variant in all NS cases (n = 118) and controls (n = 219). To further identify additional variants, we performed whole-exome sequencing and interrogated ten genes (NPHS1, NPHS2, WT1, LAMB2, ACTN4, TRPC6, INF2, CD2AP, PLCE1, MYO1E) implicated in SRNS with histopathological features of focal segmental glomerulosclerosis (FSGS) in 56 SRNS cases and 29 controls; we also performed exome sequencing on two patients carrying the NPHS2 p.V260E mutation as positive controls. The overall detection rate of causal and putative pathogenic mutations in children with SRNS was 27/70 (39%): 15 (21%) carried the NPHS2 p.V260E causal mutation in the homozygous state, and 12 (17%) SRNS cases carried a putative pathogenic mutation in the heterozygous state in genes (INF2 (n = 8), CD2AP (n = 3) and TRPC6 (n = 1)) known to have autosomal dominant inheritance mode. NPHS2 p.V260E homozygosity was specifically associated with biopsy-proven FSGS, accounting for 24% of children of Black ethnicity (15 of 63) with steroid-resistant FSGS. No causal or putative pathogenic mutations were identified in NPHS1, WT1, LAMB2, PLCE1, MYO1E and ACTN4. We report four novel variants in INF2, PLCE1, ACTN4 and TRPC6. Conclusion: We report putative missense variants predicted to be pathogenic in INF2, CD2AP and TRPC6 among steroid-resistant-FSGS children. However, the NPHS2 p.V260E mutation is a prevalent cause of steroid-resistant FSGS among Black South African children occurring in 24% of children with SRNS. Screening all Black African children presenting with NS for NPHS2 p.V260E will provide a precision diagnosis of steroid-resistant FSGS and inform clinical management. What is Known: • Limited data is available on the genetic disparity of SNRS in a South African paediatric setting. • The high rate of steroid resistance in Black South African children with FSGS compared to other racial groups is partially explained by the founder variant NPHS2 p.V260E. What is New: • We report putative missense variants predicted to be pathogenic in INF2, CD2AP and TRPC6 among steroid-resistant FSGS children. • NPHS2 p.V260E mutation remains a prevalent cause of steroid-resistant FSGS among Black South African children, demonstrating precision diagnostic utility.
Collapse
Affiliation(s)
- Louansha Nandlal
- Discipline of Optics and Imaging, University of KwaZulu-Natal, Durban, South Africa.
| | - Cheryl A Winkler
- Basic Research Program, Molecular Genetics Epidemiology Section, Frederick National Laboratory of the National Cancer Institute, Washington, DC, USA
| | - Rajendra Bhimma
- Department of Paediatrics and Child Health, University of KwaZulu-Natal, Durban, South Africa
| | - Sungkweon Cho
- Basic Research Program, Molecular Genetics Epidemiology Section, Frederick National Laboratory of the National Cancer Institute, Washington, DC, USA
| | - George W Nelson
- Frederick National Laboratory for Cancer Research, Frederick Advanced Biomedical Computational Science, Washington, DC, USA
| | - Sudesh Haripershad
- Department of Nephrology, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Discipline of Optics and Imaging, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
He C, Wang D, Wang R, Huang Y, Huang X, Shen S, Lv J, Wu M. Epigallocatechin Gallate Induces the Demethylation of Actinin Alpha 4 to Inhibit Diabetic Nephropathy Renal Fibrosis via the NF-KB Signaling Pathway In Vitro. Dose Response 2022; 20:15593258221105704. [PMID: 35706474 PMCID: PMC9189538 DOI: 10.1177/15593258221105704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 11/15/2022]
Abstract
Actinin alpha 4 (ACTN4) is expressed in the kidney podocytes. ACTN4 gene methylation in patients with diabetic nephropathy (DN) remains high. Underlying mechanism of epigallocatechin-3-gallate (EGCG) inducing ACTN4 demethylation, and its inhibitory effect on DN renal fibrosis remains unclear.
Collapse
Affiliation(s)
- Chunling He
- Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Dong Wang
- Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Ruoling Wang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Yongli Huang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Xin Huang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - ShuMin Shen
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Jun Lv
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Mingcai Wu
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| |
Collapse
|
3
|
Yu SMW, Nissaisorakarn P, Husain I, Jim B. Proteinuric Kidney Diseases: A Podocyte's Slit Diaphragm and Cytoskeleton Approach. Front Med (Lausanne) 2018; 5:221. [PMID: 30255020 PMCID: PMC6141722 DOI: 10.3389/fmed.2018.00221] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/18/2018] [Indexed: 01/19/2023] Open
Abstract
Proteinuric kidney diseases are a group of disorders with diverse pathological mechanisms associated with significant losses of protein in the urine. The glomerular filtration barrier (GFB), comprised of the three important layers, the fenestrated glomerular endothelium, the glomerular basement membrane (GBM), and the podocyte, dictates that disruption of any one of these structures should lead to proteinuric disease. Podocytes, in particular, have long been considered as the final gatekeeper of the GFB. This specialized visceral epithelial cell contains a complex framework of cytoskeletons forming foot processes and mediate important cell signaling to maintain podocyte health. In this review, we will focus on slit diaphragm proteins such as nephrin, podocin, TRPC6/5, as well as cytoskeletal proteins Rho/small GTPases and synaptopodin and their respective roles in participating in the pathogenesis of proteinuric kidney diseases. Furthermore, we will summarize the potential therapeutic options targeting the podocyte to treat this group of kidney diseases.
Collapse
Affiliation(s)
- Samuel Mon-Wei Yu
- Department of Medicine, Jacobi Medical Center, Bronx, NY, United States
| | | | - Irma Husain
- Department of Medicine, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Belinda Jim
- Department of Medicine, Jacobi Medical Center, Bronx, NY, United States.,Renal Division, Jacobi Medical Center, Bronx, NY, United States
| |
Collapse
|
4
|
Abstract
Podocytes exhibit a unique cytoskeletal architecture that is fundamentally linked to their function in maintaining the kidney filtration barrier. The cytoskeleton regulates podocyte shape, structure, stability, slit diaphragm insertion, adhesion, plasticity, and dynamic response to environmental stimuli. Genetic mutations demonstrate that even slight impairment of the podocyte cytoskeletal apparatus results in proteinuria and glomerular disease. Moreover, mechanisms underpinning all acquired glomerular pathologies converge on disruption of the cytoskeleton, suggesting that this subcellular structure could be targeted for therapeutic purposes. This review summarizes our current understanding of the function of the cytoskeleton in podocytes and the associated implications for pathophysiology.
Collapse
Affiliation(s)
- Christoph Schell
- Institute of Surgical Pathology and.,Department of Medicine IV, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Tobias B Huber
- Department of Medicine IV, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; .,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and.,BIOSS Centre for Biological Signalling Studies and Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
5
|
Nourbakhsh N, Mak RH. Steroid-resistant nephrotic syndrome: past and current perspectives. PEDIATRIC HEALTH MEDICINE AND THERAPEUTICS 2017; 8:29-37. [PMID: 29388620 PMCID: PMC5774596 DOI: 10.2147/phmt.s100803] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patients with steroid-resistant nephrotic syndrome (SRNS) represent a challenging subset of patients with nephrotic syndrome who often fail standard immunosuppression and have a higher likelihood of progressing to end-stage renal disease. Appropriate treatment of SRNS requires an adequate understanding of the historical treatment, renal histopathology, and genetics associated with the disease. The aim of this review is to present a comprehensive appraisal of the history, role of renal biopsy, genetics, and treatment of SRNS.
Collapse
Affiliation(s)
- Noureddin Nourbakhsh
- Division of Pediatric Nephrology, Rady Children's Hospital San Diego, University of California, San Diego, La Jolla, CA, USA
| | - Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital San Diego, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Büscher AK, Beck BB, Melk A, Hoefele J, Kranz B, Bamborschke D, Baig S, Lange-Sperandio B, Jungraithmayr T, Weber LT, Kemper MJ, Tönshoff B, Hoyer PF, Konrad M, Weber S. Rapid Response to Cyclosporin A and Favorable Renal Outcome in Nongenetic Versus Genetic Steroid-Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol 2015; 11:245-53. [PMID: 26668027 DOI: 10.2215/cjn.07370715] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/30/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND OBJECTIVES Treatment of congenital nephrotic syndrome (CNS) and steroid-resistant nephrotic syndrome (SRNS) is demanding, and renal prognosis is poor. Numerous causative gene mutations have been identified in SRNS that affect the renal podocyte. In the era of high-throughput sequencing techniques, patients with nongenetic SRNS frequently escape the scientific interest. We here present the long-term data of the German CNS/SRNS Follow-Up Study, focusing on the response to cyclosporin A (CsA) in patients with nongenetic versus genetic disease. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Cross-sectional and longitudinal clinical data were collected from 231 patients with CNS/SRNS treated at eight university pediatric nephrology units with a median observation time of 113 months (interquartile range, 50-178). Genotyping was performed systematically in all patients. RESULTS The overall mutation detection rate was high at 57% (97% in CNS and 41% in SRNS); 85% of all mutations were identified by the analysis of three single genes only (NPHS1, NPHS2, and WT1), accounting for 92% of all mutations in patients with CNS and 79% of all mutations in patients with SRNS. Remission of the disease in nongenetic SRNS was observed in 78% of patients after a median treatment period of 2.5 months; 82% of nongenetic patients responded within 6 months of therapy, and 98% of patients with nongenetic SRNS and CsA-induced complete remission (normalbuminemia and no proteinuria) maintained a normal renal function. Genetic SRNS, on the contrary, is associated with a high rate of ESRD in 66% of patients. Only 3% of patients with genetic SRNS experienced a complete remission and 16% of patients with genetic SRNS experienced a partial remission after CsA therapy. CONCLUSIONS The efficacy of CsA is high in nonhereditary SRNS, with an excellent prognosis of renal function in the large majority of patients. CsA should be given for a minimum period of 6 months in these patients with nongenetic SRNS. In genetic SRNS, response to CsA was low and restricted to exceptional patients.
Collapse
Affiliation(s)
- Anja K Büscher
- Pediatric Nephrology, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Anette Melk
- Pediatric Nephrology, Hanover Medical School, Hanover, Germany
| | - Julia Hoefele
- Center for Human Genetics and Laboratory Medicine Dr. Klein, Dr. Rost and Colleagues, Martinsried, Germany
| | - Birgitta Kranz
- Pediatric Nephrology, University Children's Hospital, Munster, Germany
| | | | - Sabrina Baig
- Pediatric Nephrology, Hanover Medical School, Hanover, Germany
| | | | | | - Lutz T Weber
- Pediatric Nephrology, University Children's Hospital Cologne, Cologne, Germany
| | - Markus J Kemper
- Pediatric Nephrology, University Children´s Hospital Hamburg, Hamburg, Germany; and
| | - Burkhard Tönshoff
- Department of Pediatric Nephrology, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Peter F Hoyer
- Pediatric Nephrology, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Martin Konrad
- Pediatric Nephrology, University Children's Hospital, Munster, Germany
| | - Stefanie Weber
- Pediatric Nephrology, Pediatrics II, University of Duisburg-Essen, Essen, Germany;
| | | |
Collapse
|
7
|
Ambrus L, Oláh A, Oláh T, Balla G, Saleem MA, Orosz P, Zsuga J, Bíró K, Csernoch L, Bíró T, Szabó T. Inhibition of TRPC6 by protein kinase C isoforms in cultured human podocytes. J Cell Mol Med 2015; 19:2771-9. [PMID: 26404773 PMCID: PMC4687697 DOI: 10.1111/jcmm.12660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/23/2015] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential canonical‐6 (TRPC6) ion channels, expressed at high levels in podocytes of the filtration barrier, are recently implicated in the pathogenesis of various forms of proteinuric kidney diseases. Indeed, inherited or acquired up‐regulation of TRPC6 activities are suggested to play a role in podocytopathies. Yet, we possess limited information about the regulation of TRPC6 in human podocytes. Therefore, in this study, we aimed at defining how the protein kinase C (PKC) system, one of the key intracellular signalling pathways, regulates TRPC6 function and expression. On human differentiated podocytes, we identified the molecular expressions of both TRPC6 and several PKC isoforms. We also showed that TRPC6 channels are functional since the TRPC6 activator 1‐oleoyl‐2‐acetyl‐sn‐glycerol (OAG) induced Ca2+‐influx to the cells. By assessing the regulatory roles of the PKCs, we found that inhibitors of the endogenous activities of classical and novel PKC isoforms markedly augmented TRPC6 activities. In contrast, activation of the PKC system by phorbol 12‐myristate 13‐acetate (PMA) exerted inhibitory actions on TRPC6 and suppressed its expression. Importantly, PMA treatment markedly down‐regulated the expression levels of PKCα, PKCβ, and PKCη reflecting their activation. Taken together, these results indicate that the PKC system exhibits a ‘tonic’ inhibition on TRPC6 activity in human podocytes suggesting that pathological conditions altering the expression and/or activation patterns of podocyte‐expressed PKCs may influence TRPC6 activity and hence podocyte functions. Therefore, it is proposed that targeted manipulation of certain PKC isoforms might be beneficial in certain proteinuric kidney diseases with altered TRPC6 functions.
Collapse
Affiliation(s)
- Lídia Ambrus
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - György Balla
- Department of Pediatrics, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Moin A Saleem
- Renal Academic Unit, University of Bristol, Bristol, UK
| | - Petronella Orosz
- Department of Pediatrics, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Judit Zsuga
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Klára Bíró
- Department of Health Systems Management and Quality Management for Health Care, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary.,Department of Immunology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Tamás Szabó
- Department of Pediatrics, Medical Faculty, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
8
|
Rheault MN, Gbadegesin RA. The Genetics of Nephrotic Syndrome. J Pediatr Genet 2015; 5:15-24. [PMID: 27617138 DOI: 10.1055/s-0035-1557109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022]
Abstract
Nephrotic syndrome (NS) is a common pediatric kidney disease and is defined as massive proteinuria, hypoalbuminemia, and edema. Dysfunction of the glomerular filtration barrier, which is made up of endothelial cells, glomerular basement membrane, and visceral epithelial cells known as podocytes, is evident in children with NS. While most children have steroid-responsive nephrotic syndrome (SSNS), approximately 20% have steroid-resistant nephrotic syndrome (SRNS) and are at risk for progressive kidney dysfunction. While the cause of SSNS is still not well understood, there has been an explosion of research into the genetic causes of SRNS in the past 15 years. More than 30 proteins regulating the function of the glomerular filtration barrier have been associated with SRNS including podocyte slit diaphragm proteins, podocyte actin cytoskeletal proteins, mitochondrial proteins, adhesion and glomerular basement membrane proteins, transcription factors, and others. A genetic cause of SRNS can be found in approximately 70% of infants presenting in the first 3 months of life and 50% of infants presenting between 4 and 12 months, with much lower likelihood for older patients. Identification of the underlying genetic etiology of SRNS is important in children because it allows for counseling of other family members who may be at risk, predicts risk of recurrent disease after kidney transplant, and predicts response to immunosuppressive therapy. Correlations between genetic mutation and clinical phenotype as well as genetic risk factors for SSNS and SRNS are reviewed in this article.
Collapse
Affiliation(s)
- Michelle N Rheault
- Division of Nephrology, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota, United States
| | - Rasheed A Gbadegesin
- Division of Nephrology and Center for Human Genetics, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
9
|
Weins A, Wong JS, Basgen JM, Gupta R, Daehn I, Casagrande L, Lessman D, Schwartzman M, Meliambro K, Patrakka J, Shaw A, Tryggvason K, He JC, Nicholas SB, Mundel P, Campbell KN. Dendrin ablation prolongs life span by delaying kidney failure. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2143-57. [PMID: 26073036 DOI: 10.1016/j.ajpath.2015.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 04/01/2015] [Accepted: 04/21/2015] [Indexed: 12/16/2022]
Abstract
Podocyte loss is central to the progression of proteinuric kidney diseases leading to end-stage kidney disease (ESKD), requiring renal replacement therapy, such as dialysis. Despite modern tools and techniques, the 5-year mortality of some patients requiring dialysis remains at about 70% to 80%. Thus, there is a great unmet need for podocyte-specific treatments aimed at preventing podocyte loss and the ensuing development of ESKD. Here, we show that ablation of the podocyte death-promoting protein dendrin delays the onset of ESKD, thereby expanding the life span of mice lacking the adapter protein CD2AP. Ablation of dendrin delays onset and severity of proteinuria and podocyte loss. In addition, dendrin ablation ameliorates mesangial volume expansion and up-regulation of mesangial fibronectin expression, which is mediated by a podocyte-secreted factor. In conclusion, onset of ESKD and death can be markedly delayed by blocking the function of dendrin.
Collapse
Affiliation(s)
- Astrid Weins
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jenny S Wong
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John M Basgen
- Department of Research, Morphometry and Stereology Laboratory, Charles R. Drew University of Medicine and Science, Los Angeles, California
| | - Ritu Gupta
- Department of Pathology, Albert Einstein College of Medicine, Medicine, Bronx, New York
| | - Ilse Daehn
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lisette Casagrande
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - David Lessman
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Monica Schwartzman
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristin Meliambro
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jaakko Patrakka
- KI/AZ Integrated CardioMetabolic Center (ICMC), Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Andrey Shaw
- Division of Immunobiology, Washington University School of Medicine, St. Louis, Missouri
| | - Karl Tryggvason
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - John Cijiang He
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Susanne B Nicholas
- Division of Nephrology, University of California Los Angeles, Los Angeles, California
| | - Peter Mundel
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kirk N Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
10
|
Unique features of mutations revealed by sequentially reprogrammed induced pluripotent stem cells. Nat Commun 2015; 6:6318. [PMID: 25692725 DOI: 10.1038/ncomms7318] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 01/16/2015] [Indexed: 01/06/2023] Open
Abstract
Although viable mice can be generated from induced pluripotent stem cells (iPSCs), the impact of accumulated mutations on the developmental potential of the resulting iPSCs remains to be determined. Here, we demonstrate that all-iPSC mice generated through tetraploid blastocysts complementation can tolerate the accumulation of somatic mutations for up to six generations using a Tet-on inducible reprogramming system. But, the viability of the all-iPS mice decreased with increasing generations. A whole-genome sequencing survey revealed that thousands of single-nucleotide variations (SNVs), including 44 non-synonymous ones, accumulated throughout the sequential reprogramming process. Subsequent analysis provides evidence that these accumulated SNVs account for the gradual reduction in viability of the resultant all-iPSC mice. Unexpectedly, our present reprogramming system revealed that pluripotent stem cells are heterogeneous in terms of possessing a set of copy-number alterations (CNAs). These CNAs are unique for pluripotent cells and subsequently disappear in the differentiating progenies.
Collapse
|
11
|
Pollak MR. Familial FSGS. Adv Chronic Kidney Dis 2014; 21:422-5. [PMID: 25168831 DOI: 10.1053/j.ackd.2014.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 12/12/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) and nephrotic syndrome can be caused by rare highly penetrant mutations in number of genes. FSGS can follow both recessive and dominant inheritance patterns. In general, recessive forms present early, whereas the autosomal dominant forms present in adolescence or adulthood. Many of the genes found to be mutated in FSGS and nephrotic syndrome patients encode proteins essential for normal podocyte structure and/or function. An exception appears to be APOL1, which harbors common variants responsible for the high rate of FSGS and other nephropathies in people of recent African ancestry. Familial FSGS should be regarded as part of a spectrum of inherited glomerulopathies where the precise histologic presentation may depend on the age of onset, function of the responsible gene and gene products, and other factors.
Collapse
|
12
|
Sharma KL, Umar M, Pandey M, Misra S, Kumar A, Kumar V, Mittal B. Association of potentially functional genetic variants of PLCE1 with gallbladder cancer susceptibility in north Indian population. J Gastrointest Cancer 2014; 44:436-43. [PMID: 23975622 DOI: 10.1007/s12029-013-9537-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Phospholipase C epsilon 1 (PLCE1) plays crucial roles in carcinogenesis and progression of esophageal and gastric cancers. In the present study, we investigated association of GWAS identified rs2274223 A>G and. rs7922612 T>C polymorphism of PLCE1 with susceptibility to gallbladder cancer (GBC). METHODS The study involved genotyping of selected PLCE1 variants in 416 GBC cases and 225 controls. Haplotype analysis was done by SNPStats. In silico analyses were performed using bioinformatic tools. RESULTS PLCE1 rs2274223 [AG] and rs7922612 [CC] genotypes were found to be significantly associated with an increased risk of GBC [OR = 1.9, p = 0.002; OR = 2.0, p = 0.04, respectively]. PLCE1 haplotype [Grs2274223-Crs7922612] also showed significant association with GBC [OR = 1.8, p = 0.04]. The association was significant in females and GBC patients with stones and female GBC patients with gallstones [OR = 2.6, p = 0.01; OR = 3.3, p = 0.007], respectively. However, no significant associations with other risk factors such as tobacco usage and age of onset were found. Functional prediction of rs2274223 A>G suggested change in protein coding and splicing regulation. CONCLUSION The present study found a significant association of PLCE1 rs2274223 and rs7922612 polymorphisms with susceptibility to GBC probably through gallstone-mediated inflammatory pathway.
Collapse
Affiliation(s)
- Kiran Lata Sharma
- Department of Genetics, SGPGIMS, Lucknow, 226014, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
13
|
Brown EJ, Pollak MR, Barua M. Genetic testing for nephrotic syndrome and FSGS in the era of next-generation sequencing. Kidney Int 2014; 85:1030-8. [PMID: 24599252 PMCID: PMC4118212 DOI: 10.1038/ki.2014.48] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 12/11/2022]
Abstract
The haploid human genome is composed of three billion base pairs, about one percent of which consists of exonic regions, the coding sequence for functional proteins, also now known as the “exome”. The development of next-generation sequencing makes it possible from a technical and economic standpoint to sequence an individual’s exome but at the cost of generating long lists of gene variants that are not straightforward to interpret. Various public consortiums such as the 1000 Genomes Project and the NHLBI Exome Sequencing Project have sequenced the exomes and a subset of entire genomes of over 2500 control individuals with ongoing efforts to further catalogue genetic variation in humans.1 The use of these public databases facilitates the interpretation of these variant lists produced by exome sequencing and, as a result, novel genetic variants linked to disease are being discovered and reported at a record rate. However, the interpretation of these results and their bearing on diagnosis, prognosis, and treatment is becoming ever more complicated. Here, we discuss the application of genetic testing to individuals with focal and segmental glomerulosclerosis (FSGS), taking a historical perspective on gene identification and its clinical implications along with the growing potential of next-generation sequencing.
Collapse
Affiliation(s)
- Elizabeth J Brown
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Martin R Pollak
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Moumita Barua
- 1] Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA [2] Department of Medicine, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
14
|
254C>G: a TRPC6 promoter variation associated with enhanced transcription and steroid-resistant nephrotic syndrome in Chinese children. Pediatr Res 2013; 74:511-6. [PMID: 23999069 DOI: 10.1038/pr.2013.144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 04/08/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND Mutations in canonical transient receptor potential channel 6 (TRPC6) have been identified as responsible for the development of focal segmental glomerulosclerosis, a proteinuric disease with steroid resistance and poor prognosis. This study explores the prevalence of TRPC6 variants in Chinese children with idiopathic nephrotic syndrome (INS), the genotype/phenotype correlation of TRPC6 variants, the therapeutic response, and the underlying molecular mechanism. METHODS Fifty-one children with sporadic INS were enrolled: 23 steroid-sensitive cases and 28 steroid-resistant cases Polymerase chain reaction was used to amplify 13 exons and the promoter sequences of TRPC6 before sequencing. The expression of TRPC6 in renal tissues was illustrated by immunohistochemistry staining. The transcriptional activity of variants in TRPC6 promoter was measured by the luciferase assay. RESULTS Three variants (-254C>G, rs3824934; +43C/T, rs3802829; and 240 G>A, rs17096918) were identified. The allele frequency of the -254C>G single-nucleotide polymorphism (SNP) in the steroid-resistant nephrotic syndrome (SRNS) patients (40.5%) was higher than that in the steroid-sensitive nephrotic syndrome subjects (27.1%; P = 0.046). The -254C>G SNP enhanced transcription from TRPC6 promoter in vitro and was associated with increased TRPC6 expression in renal tissues of SRNS patients. CONCLUSION -254C>G, a SNP underlying enhanced TRPC6 transcription and expression, may be correlated with the development of steroid resistance in Chinese children with INS.
Collapse
|
15
|
Kari JA, El-Desoky SM, Gari M, Malik K, Vega-Warner V, Lovric S, Bockenhauer D. Steroid-resistant nephrotic syndrome: impact of genetic testing. Ann Saudi Med 2013; 33:533-8. [PMID: 24413855 PMCID: PMC6074900 DOI: 10.5144/0256-4947.2013.533] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Mutations in several genes are known to cause steroid-resistant nephrotic syndome (SRNS), most commonly in NPHS1, NPHS2, and WT1. Our aims were to determine the frequency of mutations in these genes in children with SRNS, the response of patients with SRNS to various immunosuppressants, and the disease outcome, and to review the predictive value of genetic testing and renal biopsy result. DESIGN AND SETTINGS A retrospective review was performed of the medical records for all children with SRNS who were treated and followed-up in the Pediatric Nephrology Unit of King Abdulaziz University Hospital (KAUH), Jeddah, Saudi Arabia from 2002-2012. PATIENTS AND METHODS We retrospectively reviewed the medical records of children above 1 year of age, who presented with SRNS to KAUH, Jeddah, Saudi Arabia, in the 10-year interval from 2002-2012 and for whom the results of genetic testing for NPHS1, NPHS2, and WT1 were available. We compared the clinical phenotype, including response to treatment and renal outcome to genotype data. RESULTS We identified 44 children with a clinical diagnosis of SRNS in whom results of genetic testing were available. Presumably disease-causing mutations were detected in 5 children (11.4%) of which 3 (6.8%) had NPHS2 mutation and 2 (4.5%) had NPHS1 mutation. Renal biopsy revealed minimal change disease (MCD) or variants in 17 children, focal segmental glomerulosclerosis (FSGS) in 23 children, membranoproliferative changes (MPGN) in 2 children, and IgA nephropathy in another 2 children. Children with MCD on biopsy were more likely to respond to treatment than those with FSGS. None of those with an identified genetic cause showed any response to treatment. CONCLUSION The frequency of identified disease-causing mutations in children older than 1 year with SRNS presented to KAUH was 11.4%, and these patients showed no response to treatment. Initial testing for gene mutation in children with SRNS may obviate the need for biopsy, and the use of immunosuppressive treatment in children with disease due to NPHS1 or NPHS2 mutations. Renal biopsy was useful in predicting response in those without genetic mutations.
Collapse
Affiliation(s)
- Jameela A Kari
- Jameela Abdulaziz Kari, Pediatrics, King Abdulaziz University,, PO Box 13042 Jeddah 21943, Saudi Arabia, T: 966-505-677904, F: 966-22-408-8353,
| | | | | | | | | | | | | |
Collapse
|
16
|
A molecular genetic analysis of childhood nephrotic syndrome in a cohort of Saudi Arabian families. J Hum Genet 2013; 58:480-9. [PMID: 23595123 DOI: 10.1038/jhg.2013.27] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/02/2013] [Accepted: 03/21/2013] [Indexed: 02/08/2023]
Abstract
Nephrotic syndrome (NS) is a renal disease characterized by heavy proteinuria, hypoalbuminemia, edema and hyperlipidemia. Its presentation within the first 3 months of life or in multiple family members suggests an underlying inherited cause. To determine the frequency of inherited NS, 62 cases (representing 49 families with NS) from Saudi Arabia were screened for mutations in NPHS1, NPHS2, LAMB2, PLCE1, CD2AP, MYO1E, WT1, PTPRO and Nei endonuclease VIII-like 1 (NEIL1). We detected likely causative mutations in 25 out of 49 families studied (51%). We found that the most common genetic cause of NS in our cohort was a homozygous mutation in the NPHS2 gene, found in 11 of the 49 families (22%). Mutations in the NPHS1 and PLCE1 genes allowed a molecular genetic diagnosis in 12% and 8% of families, respectively. We detected novel MYO1E mutations in three families (6%). No mutations were found in WT1, PTPRO or NEIL1. The pathogenicity of novel variants was analyzed by in silico tests and by genetic screening of ethnically matched control populations. This is the first report describing the molecular genetics of NS in the Arabian Peninsula.
Collapse
|
17
|
A spectrum of novel NPHS1 and NPHS2 gene mutations in pediatric nephrotic syndrome patients from Pakistan. Gene 2012; 502:133-7. [PMID: 22565185 DOI: 10.1016/j.gene.2012.04.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/22/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND Mutations in the NPHS1 and NPHS2 genes are among the main causes of early-onset and familial steroid resistant nephrotic syndrome respectively. This study was carried out to assess the frequencies of mutations in these two genes in a cohort of Pakistani pediatric NS patients. METHODS Mutation analysis was carried out by direct sequencing of the NPHS1 and NPHS2 genes in 145 nephrotic syndrome (NS) patients. This cohort included 36 samples of congenital or infantile onset NS cases and 39 samples of familial cases obtained from 30 families. RESULTS A total of 7 homozygous (6 novel) mutations were found in the NPHS1 gene and 4 homozygous mutations in the NPHS2 gene. All mutations in the NPHS1 gene were found in the early onset cases. Of these, one patient has a family history of NS. Homozygous p.R229Q mutation in the NPHS2 gene was found in two children with childhood-onset NS. CONCLUSIONS Our results show a low prevalence of disease causing mutations in the NPHS1 (22% early onset, 5.5% overall) and NPHS2 (3.3% early onset and 3.4% overall) genes in the Pakistani NS children as compared to the European populations. In contrast to the high frequency of the NPHS2 gene mutations reported for familial SRNS in Europe, no mutation was found in the familial Pakistani cases. To our knowledge, this is the first comprehensive screening of the NPHS1 and NPHS2 gene mutations in sporadic and familial NS cases from South Asia.
Collapse
|
18
|
Rood IM, Deegens JKJ, Wetzels JFM. Genetic causes of focal segmental glomerulosclerosis: implications for clinical practice. Nephrol Dial Transplant 2012; 27:882-90. [PMID: 22334613 DOI: 10.1093/ndt/gfr771] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common cause of steroid-resistant nephrotic syndrome in children and adults. Although FSGS is considered a podocyte disease, the aetiology is diverse. In recent years, many inheritable genetic forms of FSGS have been described, caused by mutations in proteins that are important for podocyte function. In the present commentary, we review these genetic causes of FSGS and describe their prevalence in familial and sporadic FSGS. In routine clinical practice, the decision to perform the costly DNA analysis should be based on the assessment if the results affect the care of the individual patient with respect to the evaluation of extra-renal manifestations, treatment decisions, transplantation and genetic counselling.
Collapse
Affiliation(s)
- Ilse M Rood
- Department of Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
19
|
Zhou TB, Qin YH, Su LN, Lei FY, Huang WF, Zhao YJ, Pang YS. Insertion/Deletion (I/D) Polymorphism of Angiotensin-Converting Enzyme Gene in Steroid-Resistant Nephrotic Syndrome for Children: A Genetic Association Study and Meta-analysis. Ren Fail 2011; 33:741-8. [PMID: 21787164 DOI: 10.3109/0886022x.2011.589954] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Santín S, Bullich G, Tazón-Vega B, García-Maset R, Giménez I, Silva I, Ruíz P, Ballarín J, Torra R, Ars E. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 2011; 6:1139-48. [PMID: 21415313 DOI: 10.2215/cjn.05260610] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES The increasing number of podocyte-expressed genes implicated in steroid-resistant nephrotic syndrome (SRNS), the phenotypic variability, and the uncharacterized relative frequency of mutations in these genes in pediatric and adult patients with SRNS complicate their routine genetic analysis. Our aim was to compile the clinical and genetic data of eight podocyte genes analyzed in 110 cases (125 patients) with SRNS (ranging from congenital to adult onset) to provide a genetic testing approach. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Mutation analysis was performed by sequencing the NPHS1, NPHS2, TRPC6, CD2AP, PLCE1, INF2, WT1 (exons 8 and 9), and ACTN4 (exons 1 to 10) genes. RESULTS We identified causing mutations in 34% (37/110) of SRNS patients, representing 67% (16/24) familial and 25% (21/86) sporadic cases. Mutations were detected in 100% of congenital-onset, 57% of infantile-onset, 24 and 36% of early and late childhood-onset, 25% of adolescent-onset, and 14% of adult-onset patients. The most frequently mutated gene was NPHS1 in congenital onset and NPHS2 in the other groups. A partial remission was observed in 7 of 26 mutation carriers treated with immunosuppressive agents and/or angiotensin-converting enzyme inhibitors. Patients with NPHS1 mutations showed a faster progression to ESRD than patients with NPHS2 mutations. None of these mutation carriers relapsed after kidney transplantation. CONCLUSIONS We propose a genetic testing algorithm for SRNS based on the age at onset and the familial/sporadic status. Mutation analysis of specific podocyte-genes has a clinical value in all age groups, especially in children.
Collapse
Affiliation(s)
- Sheila Santín
- Molecular Biology Laboratory, Fundació Puigvert, Universitat Autònoma de Barcelona, REDinREN, Instituto de Investigación Carlos III, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Novel mutations in steroid-resistant nephrotic syndrome diagnosed in Tunisian children. Pediatr Nephrol 2011; 26:241-9. [PMID: 21125408 DOI: 10.1007/s00467-010-1694-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/19/2010] [Accepted: 09/10/2010] [Indexed: 12/15/2022]
Abstract
Steroid-resistant nephrotic syndrome (NS) remains one of the most intractable causes of end-stage renal disease in the first two decades of life. Several genes have been involved including NPHS1, NPHS2, WT1, PLCE1, and LAMB2. Our aim was to identify causative mutations in these genes, in 24 children belonging to 13 families with NS manifesting with various ages of onset. We performed haplotype analysis and direct exon sequencing of NPHS1, NPHS2, PLCE1, LAMB2, and the relevant exons 8 and 9 of WT1. Ten different pathogenic mutations were detected in seven families concerning four genes (NPHS1 (3/7), LAMB2 (2/7), NPHS2 (1/7), and WT1 (1/7)). Five of the detected mutations were novel; IVS9+2 T>C and p.D616G in NPHS1; p.E371fsX16 in NPHS2, and p.E705X and p.D1151fsX23 in LAMB2. Nine of 24 patients failed to be categorized by mutational analysis. Our study extends the spectrum of abnormalities underlying NS, by reporting novel mutations in the NPHS1 and NPHS2 genes and the first cases of LAMB2 mutations in Tunisia. Congenital and infantile NS can be explained by mutations in NPHS1, NPHS2, WT1, or LAMB2 genes. The identification of additional genes mutated in NS can be anticipated.
Collapse
|
22
|
Benoit G, Machuca E, Antignac C. Hereditary nephrotic syndrome: a systematic approach for genetic testing and a review of associated podocyte gene mutations. Pediatr Nephrol 2010; 25:1621-32. [PMID: 20333530 PMCID: PMC2908444 DOI: 10.1007/s00467-010-1495-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/04/2010] [Accepted: 02/08/2010] [Indexed: 11/30/2022]
Abstract
Several genes have been implicated in genetic forms of nephrotic syndrome occurring in children. It is now known that the phenotypes associated with mutations in these genes display significant variability, rendering genetic testing and counselling a more complex task. This review will focus on the recent clinical findings associated with those genes known to be involved in isolated steroid-resistant nephrotic syndrome in children and, thereby, propose an approach for appropriate mutational screening. The recurrence of proteinuria after transplantation in patients with hereditary forms of nephrotic syndrome will also be discussed.
Collapse
Affiliation(s)
- Geneviève Benoit
- Inserm, U983, Hôpital Necker-Enfants Malades, Paris, France ,CHU Sainte-Justine, Université de Montréal, Montréal, Canada
| | - Eduardo Machuca
- Inserm, U983, Hôpital Necker-Enfants Malades, Paris, France ,Pontificia Universidad Católica de Chile, Escuela de Medicina, Santiago, Chile
| | - Corinne Antignac
- Inserm, U983, Hôpital Necker-Enfants Malades, Paris, France ,Faculté de Médecine Paris Descartes, Université Paris Descartes, Paris, France ,Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France ,Inserm, U983, 6e étage, Tour Lavoisier, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| |
Collapse
|
23
|
Machuca E, Benoit G, Nevo F, Tête MJ, Gribouval O, Pawtowski A, Brandström P, Loirat C, Niaudet P, Gubler MC, Antignac C. Genotype-phenotype correlations in non-Finnish congenital nephrotic syndrome. J Am Soc Nephrol 2010; 21:1209-17. [PMID: 20507940 DOI: 10.1681/asn.2009121309] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mutations in NPHS1, which encodes nephrin, are the main causes of congenital nephrotic syndrome (CNS) in Finnish patients, whereas mutations in NPHS2, which encodes podocin, are typically responsible for childhood-onset steroid-resistant nephrotic syndrome in European populations. Genotype-phenotype correlations are not well understood in non-Finnish patients. We evaluated the clinical presentation, kidney histology, and disease progression in non-Finnish CNS cases by mutational screening in 107 families (117 cases) by sequencing the entire coding regions of NPHS1, NPHS2, PLCE1, WT1, LAMB2, PDSS2, COQ2, and NEPH1. We found that CNS describes a heterogeneous group of disorders in non-Finnish populations. We identified nephrin and podocin mutations in most families and only rarely found mutations in genes implicated in other hereditary forms of NS. In approximately 20% of cases, we could not identify the underlying genetic cause. Consistent with the major role of nephrin at the slit diaphragm, NPHS1 mutations associated with an earlier onset of disease and worse renal outcomes than NPHS2 mutations. Milder cases resulting from mutant NPHS1 had either two mutations in the cytoplasmic tail or two missense mutations in the extracellular domain, including at least one that preserved structure and function. In addition, we extend the spectrum of known NPHS1 mutations by describing long NPHS1 deletions. In summary, these data demonstrate that CNS is not a distinct clinical entity in non-Finnish populations but rather a clinically and genetically heterogeneous group of disorders.
Collapse
|