1
|
Wildes DM, Fitzsimons A, Doyle B, Green A, Sweeney C, Awan A. An unusual case of nephrotic syndrome. Pediatr Nephrol 2024; 39:3205-3208. [PMID: 38780768 DOI: 10.1007/s00467-024-06408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Alport syndrome is a genetically heterogenous disorder resulting from variants in genes coding for alpha-3/4/5 chains of Collagen IV, which results in defective basement membranes in the kidney, cochlea and eye. The syndrome has different inheritance patterns and historically, was thought of as a disease affecting solely males. CASE A 15-year-old female presented with pedal oedema, hypertension and proteinuria. She underwent a kidney biopsy which showed findings in keeping with focal segmental glomerulosclerosis. Her condition was refractory to steroids. Steroid-resistant nephrotic syndrome genetics were sent, revealing a rare pathogenic variant in the COL4A5 gene. CONCLUSION Heterozygous females with X-linked Alport syndrome can develop chronic kidney disease and hearing loss. Clinicians should be mindful when reviewing kidney histology to include Alport syndrome as a differential for female patients. COL4A3-5 genes should be included in all steroid-resistant nephrotic syndrome genetic panels.
Collapse
Affiliation(s)
- Dermot Michael Wildes
- RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland.
- Department of Paediatric Nephrology and Transplantation, Children's Health Ireland, Dublin, Ireland.
| | - Aisling Fitzsimons
- Department of Paediatric Nephrology and Transplantation, Children's Health Ireland, Dublin, Ireland
| | - Brendan Doyle
- RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland
- Department of Histopathology, Beaumont Hospital, Dublin 9, Ireland
| | - Andrew Green
- Department of Clinical Genetics, Children's Health Ireland, Dublin, Ireland
- Department of Medicine, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Clodagh Sweeney
- Department of Paediatric Nephrology and Transplantation, Children's Health Ireland, Dublin, Ireland
| | - Atif Awan
- RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Ireland
- Department of Paediatric Nephrology and Transplantation, Children's Health Ireland, Dublin, Ireland
- Department of Paediatrics, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Di H, Wang Q, Liang D, Zhang J, Gao E, Zheng C, Yu X, Liu Z. Genetic features and kidney morphological changes in women with X-linked Alport syndrome. J Med Genet 2023; 60:1169-1176. [PMID: 37225412 DOI: 10.1136/jmg-2023-109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND X-linked Alport syndrome (XLAS) caused by COL4A5 pathogenic variants usually has heterogeneous phenotypes in female patients. The genetic characteristics and glomerular basement membrane (GBM) morphological changes in women with XLAS need to been further investigated. METHODS A total of 83 women and 187 men with causative COL4A5 variants were enrolled for comparative analysis. RESULTS Women were more frequently carrying de novo COL4A5 variants compared with men (47% vs 8%, p=0.001). The clinical manifestations in women were variable, and no genotype-phenotype correlation was observed. Coinherited podocyte-related genes, including TRPC6, TBC1D8B, INF2 and MYH9, were identified in two women and five men, and the modifying effects of coinherited genes contributed to the heterogeneous phenotypes in these patients. X-chromosome inactivation (XCI) analysis of 16 women showed that 25% were skewed XCI. One patient preferentially expressing the mutant COL4A5 gene developed moderate proteinuria, and two patients preferentially expressing the wild-type COL4A5 gene presented with haematuria only. GBM ultrastructural evaluation demonstrated that the degree of GBM lesions was associated with the decline in kidney function for both genders, but more severe GBM changes were found in men compared with women. CONCLUSIONS The high frequency of de novo variants carried by women indicates that the lack of family history tends to make them susceptible to be underdiagnosed. Coinherited podocyte-related genes are potential contributors to the heterogeneous phenotype of some women. Furthermore, the association between the degree of GBM lesions and decline in kidney function is valuable in evaluating the prognosis for patients with XLAS.
Collapse
Affiliation(s)
- Hongling Di
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qing Wang
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- Department of Nephrology, General Hospital of Eastern Theater Command, Naval Medical University, Shanghai, Shanghai, China
| | - Dandan Liang
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jiahui Zhang
- The Key Laboratory of Biosystems Homeostasis & Protection of Ministry of Education, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaomin Yu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Abstract
A number of genes that cause inherited kidney disorders reside on the X chromosome. Given that males have only a single active X chromosome, these disorders clinically manifest primarily in men and boys. However, phenotypes in female carriers of X-linked kidney conditions are becoming more and more recognized. This article reviews the biology of X inactivation as well as the kidney phenotype in women and girls with a number of X-linked kidney disorders including Alport syndrome, Fabry disease, nephrogenic diabetes insipidus, X-linked hypophosphatemic rickets, Dent disease, and Lowe syndrome.
Collapse
Affiliation(s)
- Catherine Quinlan
- Department of Nephrology, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle N Rheault
- Division of Pediatric Nephrology, Department of Pediatrics, University of Minnesota Masonic Children's Hospital, Minneapolis, MN.
| |
Collapse
|
4
|
Nozu K, Takaoka Y, Kai H, Takasato M, Yabuuchi K, Yamamura T, Horinouchi T, Sakakibara N, Ninchoji T, Nagano C, Iijima K. Genetic background, recent advances in molecular biology, and development of novel therapy in Alport syndrome. Kidney Res Clin Pract 2020; 39:402-413. [PMID: 33214343 PMCID: PMC7771000 DOI: 10.23876/j.krcp.20.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/18/2022] Open
Abstract
Alport syndrome (AS) is a progressive inherited kidney disease characterized by hearing loss and ocular abnormalities. There are three forms of AS depending on inheritance mode: X-linked Alport syndrome (XLAS), autosomal recessive AS (ARAS), and autosomal dominant AS (ADAS). XLAS is caused by pathogenic variants in COL4A5, which encodes type IV collagen α5 chain, while ADAS and ARAS are caused by variants in COL4A3 or COL4A4, which encode type IV collagen α3 or α4 chain, respectively. In male XLAS or ARAS cases, end-stage kidney disease (ESKD) develops around a median age of 20 to 30 years old, while female XLAS or ADAS cases develop ESKD around a median age of 60 to 70 years old. The diagnosis of AS is dependent on either genetic or pathological findings. However, determining the pathogenicity of the variants detected by gene tests can be difficult. Recently, we applied the following molecular investigation tools to determine pathogenicity: 1) in silico and in vitro trimer formation assay of α345 chains to assess triple helix formation ability, 2) kidney organoids constructed from patients’ induced pluripotent stem cells to identify α5 chain expression on the glomerular basement membrane, and 3) in vitro splicing assay to detect aberrant splicing to determine the pathogenicity of variants. In this review article, we discuss the genetic background and novel assays for determining the pathogenicity of variants. We also discuss the current treatment approaches and introduce exon skipping therapy as one potential treatment option.
Collapse
Affiliation(s)
- Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Takaoka
- Division of Medical Informatics and Bioinformatics, Kobe University Hospital, Kobe, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Minoru Takasato
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kensuke Yabuuchi
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Ninchoji
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
5
|
Mastrangelo A, Giani M, Groppali E, Castorina P, Soldà G, Robusto M, Fallerini C, Bruttini M, Renieri A, Montini G. X-Linked Alport Syndrome in Women: Genotype and Clinical Course in 24 Cases. Front Med (Lausanne) 2020; 7:580376. [PMID: 33330536 PMCID: PMC7719790 DOI: 10.3389/fmed.2020.580376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022] Open
Abstract
Objectives: X-linked Alport syndrome (XLAS) females are at risk of developing proteinuria and chronic kidney damage (CKD). The aim of this study is to evaluate the genotype-phenotype correlation in this rare population. Materials and Methods: This is a prospective, observational study of XLAS females, confirmed by a pathogenic mutation in COL4A5 and renal ultrastructural evaluation. Proteinuria, renal function and extrarenal involvement were monitored during follow-up. Patients were divided in 2 groups, according to mutations in COL4A5: missense (Group 1) and non-missense variants (Group 2). Results: Twenty-four XLAS females, aged 10.6 ± 10.4 years at clinical onset (mean follow-up: 13.1 ± 12.6 years) were recruited between 2000 and 2017 at a single center. In group 1 there were 10 patients and in group 2, 14 (mean age at the end of follow-up: 24.9 ± 13.6 and 23.2 ± 13.8 years, respectively). One patient in Group 1 and 9 in Group 2 (p = 0.013) developed proteinuria during follow-up. Mean eGFR at last follow-up was lower in Group 2 (p = 0.027), where two patients developed CKD. No differences in hearing loss were documented among the two groups. Two patients in Group 2 carried one mutation in both COL4A5 and COL4A3 (digenic inheritance) and were proteinuric. In one family, the mother presented only hematuria while the daughter was proteinuric and presented a greater inactivation of the X chromosome carrying the wild-type allele. Conclusions: The appearance of proteinuria and CKD is more frequent in patients with severe variants. Carrying digenic inheritance and skewed XCI seem to be additional risk factors for proteinuria in XLAS females.
Collapse
Affiliation(s)
- Antonio Mastrangelo
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marisa Giani
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Groppali
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy
| | | | - Giulia Soldà
- Dipartimento di Scienze Biomediche, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - Michela Robusto
- Experimental Therapeutics Program, Istituto FIRC di Oncologia Molecolare-Fondazione Italiana per la Ricerca sul Cancro Institute of Molecular Oncology Foundation, Milan, Italy
| | | | - Mirella Bruttini
- Azienda Ospedaliera Universitaria Senese, Medical Genetics, University of Siena, Siena, Italy
| | - Alessandra Renieri
- Azienda Ospedaliera Universitaria Senese, Medical Genetics, University of Siena, Siena, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Giuliana and Bernardo Caprotti Chair of Pediatrics, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Yokota K, Nozu K, Minamikawa S, Yamamura T, Nakanishi K, Kaneda H, Hamada R, Nozu Y, Shono A, Ninchoji T, Morisada N, Ishimori S, Fujimura J, Horinouchi T, Kaito H, Nakanishi K, Morioka I, Taniguchi-Ikeda M, Iijima K. Female X-linked Alport syndrome with somatic mosaicism. Clin Exp Nephrol 2016; 21:877-883. [DOI: 10.1007/s10157-016-1352-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/16/2016] [Indexed: 01/15/2023]
|
7
|
Nishida M, Hashimoto F, Kaito H, Nozu K, Iijima K, Asada D, Hamaoka K. Combined Alport syndrome and Klinefelter syndrome. Pediatr Int 2016; 58:152-5. [PMID: 26554353 DOI: 10.1111/ped.12743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/18/2015] [Accepted: 06/18/2015] [Indexed: 01/18/2023]
Abstract
To date, there have been a very limited number of case reports on combined Alport syndrome (AS) and Klinefelter syndrome (KS). We herein describe the case of a 9-month-old boy diagnosed with concomitant AS and KS. KS was detected on chromosomal analysis of the amniotic fluid, and hematuria/proteinuria was identified in urinary screening at 6 months of age. Renal biopsy indicated AS, with complete deficit of the α5 chain of type IV collagen in the glomerular basement membranes. On genetic analysis for AS, de novo homozygote mutation (c.3605-2a > c) was seen in the gene encoding α5 chain of type IV collagen (COL4A5) on the X chromosomes of maternal origin. This is the first case report of combined AS and KS diagnosed during infancy, and it indicates the need to consider the concurrent existence of these two disorders in infants with urine abnormalities, even in the absence of a family history.
Collapse
Affiliation(s)
- Masashi Nishida
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Fusako Hashimoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Kaito
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Dai Asada
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Kenji Hamaoka
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
8
|
Raju P, Cimbaluk D, Korbet SM. The variable course of women with X-linked Alport Syndrome. Clin Kidney J 2013; 6:630-634. [PMID: 24286007 PMCID: PMC3842150 DOI: 10.1093/ckj/sft107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 11/13/2022] Open
Abstract
X-linked Alport syndrome (XLAS) arises from mutations in the COL4A5 gene encoding the α5-chain of type IV collagen and is associated with hematuria, ocular abnormalities and high-tone sensorineural hearing loss. Nearly all affected males have decreased kidney function resulting in end-stage renal disease (ESRD) as early as the second decade of life. It was long thought that affected females had a benign outcome; however, in recent decades, it has become quite clear that they too are at risk for developing nephrotic syndrome, decreased kidney function and ESRD. We report two young females presenting with microscopic hematuria and proteinuria diagnosed with XLAS on renal biopsy. Both developed nephrotic-range proteinuria and progressive renal insufficiency. Additionally, both developed extra-renal manifestations of XLAS. The ultrastructural and immunofluorescence features on kidney biopsy were instrumental in making the diagnosis of heterozygous XLAS as neither patient had a family history of AS.
Collapse
Affiliation(s)
- Priya Raju
- Department of Medicine , Rush University Medical Center , Chicago, IL , USA
| | | | | |
Collapse
|
9
|
Antón-Martín P, Aparicio López C, Ramiro-León S, Santillán Garzón S, Santos-Simarro F, Gil-Fournier B. Alport Syndrome: De Novo Mutation in the COL4A5 Gene Converting Glycine 1205 to Valine. CLINICAL MEDICINE INSIGHTS-PEDIATRICS 2012; 6:41-9. [PMID: 23641165 PMCID: PMC3620815 DOI: 10.2147/cbf.s23366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Alport syndrome is a primary basement membrane disorder arising from mutations in genes encoding the type IV collagen protein family. It is a genetically heterogeneous disease with different mutations and forms of inheritance that presents with renal affection, hearing loss and eye defects. Several new mutations related to X-linked forms have been previously determined. METHODS We report the case of a 12 years old male and his family diagnosed with Alport syndrome after genetic analysis was performed. RESULT A new mutation determining a nucleotide change c.3614G > T (p.Gly1205Val) in hemizygosis in the COL4A5 gene was found. This molecular defect has not been previously described. CONCLUSION Molecular biology has helped us to comprehend the mechanisms of pathophysiology in Alport syndrome. Genetic analysis provides the only conclusive diagnosis of the disorder at the moment. Our contribution with a new mutation further supports the need of more sophisticated molecular methods to increase the mutation detection rates with lower costs and less time.
Collapse
Affiliation(s)
- Pilar Antón-Martín
- Department of Pediatrics, Division of Nephrology, Hospital Universitario de Getafe, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
X-linked Alport syndrome (XLAS) is caused by mutations in type IV collagen causing sensorineural hearing loss, eye abnormalities, and progressive kidney dysfunction that results in near universal end-stage renal disease (ESRD) and the need for kidney transplantation in affected males. Until recent decades, the disease burden in heterozygous "carrier" females was largely minimized or ignored. Heterozygous females have widely variable disease outcomes, with some affected females exhibiting normal urinalysis and kidney function, while others develop ESRD and deafness. While the determinants of disease severity in females with XLAS are uncertain, skewing of X-chromosome inactivation has recently been found to play a role. This review will explore the natural history of heterozygous XLAS females, the determinants of disease severity, and the utility of using XLAS females as kidney donors.
Collapse
Affiliation(s)
- Michelle N. Rheault
- Department of Pediatrics, University of Minnesota Amplatz Children’s Hospital, Minneapolis, MN USA ,Division of Pediatric Nephrology, University of Minnesota, 420 Delaware St. SE, MMC 491, Minneapolis, MN 55455 USA
| |
Collapse
|
11
|
Antón-Martín P, López CA, Ramiro-León S, Garzón SS, Santos-Simarro F, Gil-Fournier B. Alport Syndrome: De Novo Mutation in the COL4A5 Gene Converting Glycine 1205 to Valine. CLINICAL MEDICINE. PEDIATRICS 2012. [DOI: 10.4137/cmped.s7509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BackgroundAlport syndrome is a primary basement membrane disorder arising from mutations in genes encoding the type IV collagen protein family. It is a genetically heterogeneous disease with different mutations and forms of inheritance that presents with renal affection, hearing loss and eye defects. Several new mutations related to X-linked forms have been previously determined.MethodsWe report the case of a 12 years old male and his family diagnosed with Alport syndrome after genetic analysis was performed.ResultAnew mutation determining a nucleotide change C.3614G > T (p. Gly1205Val) in hemizygosis in the COL4A5 gene was found. This molecular defect has not been previously described.ConclusionMolecular biology has helped us to comprehend the mechanisms of pathophysiology in Alport syndrome. Genetic analysis provides the only conclusive diagnosis of the disorder at the moment. Our contribution with a new mutation further supports the need of more sophisticated molecular methods to increase the mutation detection rates with lower costs and less time.
Collapse
Affiliation(s)
- Pilar Antón-Martín
- Department of Pediatrics, Division of Nephrology, Hospital Universitario de Getafe, Madrid, Spain
| | - Cristina Aparicio López
- Department of Pediatrics, Division of Nephrology, Hospital Universitario de Getafe, Madrid, Spain
| | | | | | | | | |
Collapse
|