1
|
Baert L, Mahmudul HM, Stegall M, Joo H, Oh S. B Cell-mediated Immune Regulation and the Quest for Transplantation Tolerance. Transplantation 2024; 108:2021-2033. [PMID: 38389135 DOI: 10.1097/tp.0000000000004948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Pathophysiologic function of B cells in graft rejection has been well recognized in transplantation. B cells promote alloantigen-specific T-cell response and secrete antibodies that can cause antibody-mediated graft failures and rejections. Therefore, strategies targeting B cells, for example, B-cell depletion, have been used for the prevention of both acute and chronic rejections. Interestingly, however, recent mounting evidence indicates that subsets of B cells yet to be further identified can display potent immune regulatory functions, and they contribute to transplantation tolerance and operational tolerance in both experimental and clinical settings, respectively. In this review, we integrate currently available information on B-cell subsets, including T-cell Ig domain and mucin domain 1-positive transitional and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive memory B cells, displaying immune regulatory functions, with a focus on transplantation tolerance, by analyzing their mechanisms of action. In addition, we will discuss potential T-cell Ig domain and mucin domain 1-positive and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive B cell-based strategies for the enhancement of operational tolerance in transplantation patients.
Collapse
Affiliation(s)
- Laurie Baert
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | | | - Mark Stegall
- Department of Surgery, William J. von Liebig Transplant Center, Mayo Clinic, Rochester, MN
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| |
Collapse
|
2
|
Siemionow M, Kulahci Y, Zor F. Novel cell-based strategies for immunomodulation in vascularized composite allotransplantation. Curr Opin Organ Transplant 2023; 28:431-439. [PMID: 37800652 DOI: 10.1097/mot.0000000000001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW Vascularized composite allotransplantation (VCA) has become a clinical reality in the past two decades. However, its routine clinical applications are limited by the risk of acute rejection, and the side effects of the lifelong immunosuppression. Therefore, there is a need for new protocols to induce tolerance and extend VCA survival. Cell- based therapies have emerged as an attractive strategy for tolerance induction in VCA. This manuscript reviews the current strategies and applications of cell-based therapies for tolerance induction in VCA. RECENT FINDINGS Cellular therapies, including the application of bone marrow cells (BMC), mesenchymal stem cells (MSC), adipose stem cells, regulatory T cells (Treg) cells, dendritic cells and donor recipient chimeric cells (DRCC) show promising potential as a strategy to induce tolerance in VCA. Ongoing basic science research aims to provide insights into the mechanisms of action, homing, functional specialization and standardization of these cellular therapies. Additionally, translational preclinical and clinical studies are underway, showing encouraging outcomes. SUMMARY Cellular therapies hold great potential and are supported by preclinical studies and clinical trials demonstrating safety and efficacy. However, further research is needed to develop novel cell-based immunosuppressive protocol for VCA.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Orthopeadics, University of Illinois at Chicago, Chicago, Illinois
| | - Yalcin Kulahci
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Fatih Zor
- Department of Plastic Surgery, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Sadozai H, Rojas-Luengas V, Farrokhi K, Moshkelgosha S, Guo Q, He W, Li A, Zhang J, Chua C, Ferri D, Mian M, Adeyi O, Seidman M, Gorczynski RM, Juvet S, Atkins H, Levy GA, Chruscinski A. Congenic hematopoietic stem cell transplantation promotes survival of heart allografts in murine models of acute and chronic rejection. Clin Exp Immunol 2023; 213:138-154. [PMID: 37004176 PMCID: PMC10324556 DOI: 10.1093/cei/uxad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/19/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The ability to induce tolerance would be a major advance in the field of solid organ transplantation. Here, we investigated whether autologous (congenic) hematopoietic stem cell transplantation (HSCT) could promote tolerance to heart allografts in mice. In an acute rejection model, fully MHC-mismatched BALB/c hearts were heterotopically transplanted into C57BL/6 (CD45.2) mice. One week later, recipient mice were lethally irradiated and reconstituted with congenic B6 CD45.1 Lin-Sca1+ckit+ cells. Recipient mice received a 14-day course of rapamycin both to prevent rejection and to expand regulatory T cells (Tregs). Heart allografts in both untreated and rapamycin-treated recipients that did not undergo HSCT were rejected within 33 days (median survival time = 8 days for untreated recipients, median survival time = 32 days for rapamycin-treated recipients), whereas allografts in HSCT-treated recipients had a median survival time of 55 days (P < 0.001 vs. both untreated and rapamycin-treated recipients). Enhanced allograft survival following HSCT was associated with increased intragraft Foxp3+ Tregs, reduced intragraft B cells, and reduced serum donor-specific antibodies. In a chronic rejection model, Bm12 hearts were transplanted into C57BL/6 (CD45.2) mice, and congenic HSCT was performed two weeks following heart transplantation. HSCT led to enhanced survival of allografts (median survival time = 70 days vs. median survival time = 28 days in untreated recipients, P < 0.01). Increased allograft survival post-HSCT was associated with prevention of autoantibody development and absence of vasculopathy. These data support the concept that autologous HSCT can promote immune tolerance in the setting of allotransplantation. Further studies to optimize HSCT protocols should be performed before this procedure is adopted clinically.
Collapse
Affiliation(s)
- Hassan Sadozai
- Center for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Rojas-Luengas
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kaveh Farrokhi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Qinli Guo
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Wei He
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Angela Li
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jianhua Zhang
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Conan Chua
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Dario Ferri
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Muhtashim Mian
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Oyedele Adeyi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Seidman
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Reginald M Gorczynski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Juvet
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Harold Atkins
- Division of Hematology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Gary A Levy
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Andrzej Chruscinski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Nascimento E, Filho AS, Lucas-Junior FDM, Jobim LFJ, Lasmar MF, Tavares-Filho HA, Fabreti-Oliveira RA. Remarkable 107-year-old kidney with a 49-year of long-term allograph survival through continuous azathioprine monotherapy. Transpl Immunol 2023; 78:101821. [PMID: 36921732 DOI: 10.1016/j.trim.2023.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND The main goal of kidney allograft transplantation is to improve survival in patients with end-stage kidney failure. Herein, we report a 49-year long-term allograft survival with non-identical human leukocyte antigens (HLA). The purpose of this study was to report the successful clinical outcome of 49 years of transplant survival in a 79-year-old patient with a 107-year-old kidney undergoing continued immunosuppressive monotherapy. MATERIAL AND METHODS The patient was evaluated clinically and immunologically with HLA typing and anti-HLA antibodies before transplantation. Post-transplant, the patient's clinical and immunological survival were monitored for 49 years. The state of the chimerism was assessed using the polymerase chain reaction to amplify 24 short tandem repeats using a DNA thermocycler and DNA analyzer. RESULTS The patient and donor were haploidentical and the patient was treated with azathioprine monotherapy. Donor-specific antibodies were detected only for the HLA-DPB1* 03:01 mismatch. This patient developed multiple skin tumors 26 years after transplant, which were successfully treated with topical therapy or surgical removal. The patient developed an intestinal adenocarcinoma 43 years after kidney transplantation, which was surgically removal; six years later, adenocarcinoma was diagnosed in a finger, followed by axillar and hepatic metastases. After 49 years of graft survival of a kidney of 107 years old in a patient with 79 years of age, the patient's health worsened with severe dehydration, anemia, and bacterial infection. The patient was hospitalized with a serum creatinine level of 3.45 mg/dL, urea level of 188 mg/dL, and estimated glomerular filtration rate of 22 mL/1.72 m2; septicemia developed and was treated with antibiotics. The patient had poor clinical progress, was intubated, and later died due to septic shock. CONCLUSIONS To the best of our knowledge, this is the first case of a 107-year-old kidney, transplanted into a recipient who was treated with azathioprine monotherapy for 49 years.
Collapse
Affiliation(s)
- Evaldo Nascimento
- Clinical Hospital, Kidney Transplant Unit, Belo Horizonte, MG, Brazil; Faculty of the Hospital Santa Casa, Belo Horizonte, MG, Brazil; IMUNOLAB - Laboratory of Transplant Immunology, Belo Horizonte, MG, Brazil.
| | | | | | - Luiz F J Jobim
- Clinical Hospital of Porto Alegre, Rio Grande do Sul, Brazil.
| | | | | | - Raquel A Fabreti-Oliveira
- IMUNOLAB - Laboratory of Transplant Immunology, Belo Horizonte, MG, Brazil; Faculty of Medical Sciences of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Incidental detection of operational tolerance in a deceased donor kidney transplant recipient lost to follow-up for more than 10 years: A case report and literature review. Clin Nephrol Case Stud 2023; 11:12-16. [PMID: 36844261 PMCID: PMC9948746 DOI: 10.5414/cncs111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 02/18/2023] Open
Abstract
Graft tolerance is a clinical state of absence of an immune response in the recipient toward a donor allograft without any exogenous immunosuppression. Although more prevalent in liver transplantation recipients, it has rarely been reported in renal transplant recipients. We present a 62-year-old deceased donor kidney transplant recipient who exhibited operational tolerance as they stopped immunosuppressant medications for more than 10 years and yet demonstrated stable graft function. Although various hypotheses, such as deletion, anergy, immunoregulation, and clonal exhaustion, have been experimentally validated, clinical "operational tolerance" of a renal allograft on a prolonged basis has been infrequently reported in the medical literature. This review intends to highlight possible etiologies and make clinicians aware of this possible rare condition to which more research is needed.
Collapse
|
6
|
Wang P, Leung J, Lam A, Lee S, Calabrese DR, Hays SR, Golden JA, Kukreja J, Singer JP, Wolters PJ, Tang Q, Greenland JR. Lung transplant recipients with idiopathic pulmonary fibrosis have impaired alloreactive immune responses. J Heart Lung Transplant 2021; 41:641-653. [PMID: 34924263 PMCID: PMC9038662 DOI: 10.1016/j.healun.2021.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Telomere dysfunction is associated with idiopathic pulmonary fibrosis (IPF) and worse outcomes following lung transplantation. Telomere dysfunction may impair immunity by upregulating p53 and arresting proliferation, but its influence on allograft-specific immune responses is unknown. We hypothesized that subjects undergoing lung transplantation for IPF would have impaired T cell proliferation to donor antigens. METHODS We analyzed peripheral blood mononuclear cells (PBMC) from 14 IPF lung transplant recipients and 12 age-matched non-IPF subjects, before and 2 years after transplantation, as well as PBMC from 9 non-transplant controls. We quantified T cell proliferation and cytokine secretion to donor antigens. Associations between PBMC telomere length, measured by quantitative PCR, and T cell proliferation to alloantigens were evaluated with generalized estimating equation models. RESULTS IPF subjects demonstrated impaired CD8+ T cell proliferation to donor antigens pre-transplant (p < 0.05). IL-2, IL-7, and IL-15 cytokine stimulation restored T cell proliferation, while p53 upregulation blocked proliferation. IPF subjects had shorter PBMC telomere lengths than non-IPF subjects (p < 0.001), and short PBMC telomere length was associated with impaired CD8+ T cell proliferation to alloantigens (p = 0.002). CONCLUSIONS IPF as an indication for lung transplant is associated with short PBMC telomere length and impaired T cell responses to donor antigens. However, the rescue of proliferation following cytokine exposure suggests that alloimmune anergy could be overcome. Telomere length may inform immunosuppression strategies for IPF recipients.
Collapse
Affiliation(s)
- Ping Wang
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Joey Leung
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Alice Lam
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Seoyeon Lee
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Daniel R Calabrese
- Department of Medicine, University of California San Francisco, San Francisco, California; Medical Service, San Francisco VA Health Care System, San Francisco, California
| | - Steven R Hays
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jeffery A Golden
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jasleen Kukreja
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Jonathan P Singer
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Paul J Wolters
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - John R Greenland
- Department of Medicine, University of California San Francisco, San Francisco, California; Medical Service, San Francisco VA Health Care System, San Francisco, California.
| |
Collapse
|
7
|
Ni X, Wang Q, Gu J, Lu L. Clinical and Basic Research Progress on Treg-Induced Immune Tolerance in Liver Transplantation. Front Immunol 2021; 12:535012. [PMID: 34093514 PMCID: PMC8173171 DOI: 10.3389/fimmu.2021.535012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Rejection after organ transplantation is a cause of graft failure. Effectively reducing rejection and inducing tolerance is a challenge in the field of transplantation immunology. The liver, as an immunologically privileged organ, has high rates of spontaneous and operational tolerance after transplantation, allowing it to maintain its normal function for long periods. Although modern immunosuppression regimens have serious toxicity and side effects, it is very risky to discontinue immunosuppression regimens blindly. A more effective treatment to induce immune tolerance is the most sought-after goal in transplant medicine. Tregs have been shown to play a pivotal role in the regulation of immune balance, and infusion of Tregs can also effectively prevent rejection and cure autoimmune diseases without significant side effects. Given the immune characteristics of the liver, the correct use of Tregs can more effectively induce the occurrence of operational tolerance for liver transplants than for other organ transplants. This review mainly summarizes the latest research advances regarding the characteristics of the hepatic immune microenvironment, operational tolerance, Treg generation in vitro, and the application of Tregs in liver transplantation. It is hoped that this review will provide a deeper understanding of Tregs as the most effective treatment to induce and maintain operational tolerance after liver transplantation.
Collapse
Affiliation(s)
- Xuhao Ni
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Qi Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jian Gu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Ling Lu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| |
Collapse
|
8
|
Qu Z, Lou Q, Cooper DKC, Pu Z, Lu Y, Chen J, Ni Y, Zhan Y, Chen J, Li Z, Zhan N, Zeng Y, Tu Z, Cao H, Dai Y, Cai Z, Mou L. Potential roles of mesenchymal stromal cells in islet allo- and xenotransplantation for type 1 diabetes mellitus. Xenotransplantation 2021; 28:e12678. [PMID: 33569837 DOI: 10.1111/xen.12678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/05/2021] [Accepted: 01/23/2021] [Indexed: 12/14/2022]
Abstract
Islet transplantation is poised to play an important role in the treatment of type 1 diabetes mellitus (T1DM). However, there are several challenges limiting its widespread use, including the instant blood-mediated inflammatory reaction, hypoxic/ischemic injury, and the immune response. Mesenchymal stem/stromal cells (MSCs) are known to exert regenerative, immunoregulatory, angiogenic, and metabolic properties. Here, we review recent reports on the application of MSCs in islet allo- and xenotransplantation. We also document the clinical trials that have been undertaken or are currently underway, relating to the co-transplantation of islets and MSCs. Increasing evidence indicates that co-transplantation of MSCs prolongs islet graft survival by locally secreted protective factors that reduce immune reactivity and promote vascularization, cell survival, and regeneration. MSC therapy may be a promising option for islet transplantation in patients with T1DM.
Collapse
Affiliation(s)
- Zepeng Qu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qi Lou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Lansi Institute of Artificial Intelligence in Medicine, Shenzhen, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zuhui Pu
- Department of Radiology, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jiao Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yongqiang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jun Chen
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zhenjie Li
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Naiyang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yi Zeng
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Ziwei Tu
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Huayi Cao
- Department of Hepatopancreatobiliary Surgery, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
9
|
Bassin EJ, Piganelli JD, Little SR. Auto-antigen and Immunomodulatory Agent-Based Approaches for Antigen-Specific Tolerance in NOD Mice. Curr Diab Rep 2021; 21:9. [PMID: 33547977 DOI: 10.1007/s11892-021-01376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) can be managed by insulin replacement, but it is still associated with an increased risk of microvascular/cardiovascular complications. There is considerable interest in antigen-specific approaches for treating T1D due to their potential for a favorable risk-benefit ratio relative to non-specific immune-based treatments. Here we review recent antigen-specific tolerance approaches using auto-antigen and/or immunomodulatory agents in NOD mice and provide insight into seemingly contradictory findings. RECENT FINDINGS Although delivery of auto-antigen alone can prevent T1D in NOD mice, this approach may be prone to inconsistent results and has not demonstrated an ability to reverse established T1D. Conversely, several approaches that promote presentation of auto-antigen in a tolerogenic context through cell/tissue targeting, delivery system properties, or the delivery of immunomodulatory agents have had success in reversing recent-onset T1D in NOD mice. While initial auto-antigen based approaches were unable to substantially influence T1D progression clinically, recent antigen-specific approaches have promising potential.
Collapse
Affiliation(s)
- Ethan J Bassin
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Jon D Piganelli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh, 4401 Penn Avenue, 6125 Rangos Research Center, Pittsburgh, PA, 15224, USA.
| | - Steven R Little
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Chemical Engineering, University of Pittsburgh, 3700 O'Hara Street, 940 Benedum Hall, Pittsburgh, PA, 15261, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmaceutical Science, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Bikhet M, Morsi M, Hara H, Rhodes LA, Carlo WF, Cleveland D, Cooper DK, Iwase H. The immune system in infants: Relevance to xenotransplantation. Pediatr Transplant 2020; 24:e13795. [PMID: 32845539 PMCID: PMC7606572 DOI: 10.1111/petr.13795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Despite the improvement in surgical interventions in the treatment of congenital heart disease, many life-threatening lesions (eg, hypoplastic left heart syndrome) ultimately require transplantation. However, there is a great limitation in the availability of deceased human cardiac donors of a suitable size. Hearts from genetically engineered pigs may provide an alternative source. The relatively immature immune system in infants (eg, absence of anti-carbohydrate antibodies, reduced complement activation, reduced innate immune cell activity) should minimize the risk of early antibody-mediated rejection of a pig graft. Additionally, recipient thymectomy, performed almost routinely as a preliminary to orthotopic heart transplantation in this age-group, impairs the T-cell response. Because of the increasing availability of genetically engineered pigs (eg, triple-knockout pigs that do not express any of the three known carbohydrate antigens against which humans have natural antibodies) and the ability to diagnose congenital heart disease during fetal life, cardiac xenotransplantation could be preplanned to be carried out soon after birth. Because of these several advantages, prolonged graft survival and even the induction of tolerance, for example, following donor-specific pig thymus transplantation, are more likely to be achieved in infants than in adults. In this review, we summarize the factors in the infant immune system that would be advantageous in the success of cardiac xenotransplantation in this age-group.
Collapse
Affiliation(s)
- Mohamed Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Mahmoud Morsi
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Leslie A. Rhodes
- Division of Pediatric Cardiology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Waldemar F. Carlo
- Division of Pediatric Cardiology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Cleveland
- Department of Pediatric Cardiovascular Surgery, Children’s Hospital of Alabama, Birmingham, AL, USA
| | - David K.C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
11
|
Terry LV, Oo YH. The Next Frontier of Regulatory T Cells: Promising Immunotherapy for Autoimmune Diseases and Organ Transplantations. Front Immunol 2020; 11:565518. [PMID: 33072105 PMCID: PMC7538686 DOI: 10.3389/fimmu.2020.565518] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
Regulatory T cells (Tregs) are crucial in maintaining tolerance. Hence, Treg immunotherapy is an attractive therapeutic option in autoimmune diseases and organ transplantations. Currently, autoimmune diseases do not have a curative treatment and transplant recipients require life-long immunosuppression to prevent graft rejection. There has been significant progress in understanding polyclonal and antigen-specific Treg biology over the last decade. Clinical trials with good manufacturing practice (GMP) Treg cells have demonstrated safety and early efficacy of Treg therapy. GMP Treg cells can also be tracked following infusion. In order to improve efficacy of Tregs immunotherapy, it is necessary that Tregs migrate, survive and function at the specific target tissue. Application of antigen specific Tregs and maintaining cells' suppressive function and survival with low dose interleukin-2 (IL-2) will enhance the efficacy and longevity of infused GMP-grade Tregs. Notably, stability of Tregs in the local tissue can be manipulated by understanding the microenvironment. With the recent advances in GMP-grade Tregs isolation and antigen-specific chimeric antigen receptor (CAR)-Tregs development will allow functionally superior cells to migrate to the target organ. Thus, Tregs immunotherapy may be a promising option for patients with autoimmune diseases and organ transplantations in near future.
Collapse
Affiliation(s)
- Lauren V Terry
- Centre for Liver and Gastrointestinal Research, National Institute for Health Research Birmingham Biomedical Research Council, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ye Htun Oo
- Centre for Liver and Gastrointestinal Research, National Institute for Health Research Birmingham Biomedical Research Council, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,European Reference Network (ERN) Centre-Rare Liver, Queen Elizabeth Hospital, Birmingham, United Kingdom.,Liver Transplant Unit, University Hospital of Birmingham National Health Service Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
12
|
Du X, Chang S, Guo W, Zhang S, Chen ZK. Progress in Liver Transplant Tolerance and Tolerance-Inducing Cellular Therapies. Front Immunol 2020; 11:1326. [PMID: 32670292 PMCID: PMC7326808 DOI: 10.3389/fimmu.2020.01326] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Liver transplantation is currently the most effective method for treating end-stage liver disease. However, recipients still need long-term immunosuppressive drug treatment to control allogeneic immune rejection, which may cause various complications and affect the long-term survival of the recipient. Many liver transplant researchers constantly pursue the induction of immune tolerance in liver transplant recipients, immunosuppression withdrawal, and the maintenance of good and stable graft function. Although allogeneic liver transplantation is more tolerated than transplantation of other solid organs, and it shows a certain incidence of spontaneous tolerance, there is still great risk for general recipients. With the gradual progress in our understanding of immune regulatory mechanisms, a variety of immune regulatory cells have been discovered, and good results have been obtained in rodent and non-human primate transplant models. As immune cell therapies can induce long-term stable tolerance, they provide a good prospect for the induction of tolerance in clinical liver transplantation. At present, many transplant centers have carried out tolerance-inducing clinical trials in liver transplant recipients, and some have achieved gratifying results. This article will review the current status of liver transplant tolerance and the research progress of different cellular immunotherapies to induce this tolerance, which can provide more support for future clinical applications.
Collapse
Affiliation(s)
- Xiaoxiao Du
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sheng Chang
- Key Laboratory of Organ Transplantation, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wenzhi Guo
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuijun Zhang
- Henan Key Laboratory of Digestive Organ Transplantation, Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhonghua Klaus Chen
- Key Laboratory of Organ Transplantation, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
13
|
Dafoe DC, Tantisattamo E, Reddy U. Precision Medicine and Personalized Approach to Renal Transplantation. Semin Nephrol 2018; 38:346-354. [DOI: 10.1016/j.semnephrol.2018.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Wang SZ, Qin ZH. Anti-Inflammatory and Immune Regulatory Actions of Naja naja atra Venom. Toxins (Basel) 2018; 10:E100. [PMID: 29495566 PMCID: PMC5869388 DOI: 10.3390/toxins10030100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/06/2023] Open
Abstract
Naja naja atra venom (NNAV) is composed of various proteins, peptides, and enzymes with different biological and pharmacological functions. A number of previous studies have reported that NNAV exerts potent analgesic effects on various animal models of pain. The clinical studies using whole venom or active components have confirmed that NNAV is an effective and safe medicine for treatment of chronic pain. Furthermore, recent studies have demonstrated that NNAV has anti-inflammatory and immune regulatory actions in vitro and in vivo. In this review article, we summarize recent studies of NNAV and its components on inflammation and immunity. The main new findings in NNAV research show that it may enhance innate and humoral immune responses while suppressing T lymphocytes-mediated cellular immunity, thus suggesting that NNAV and its active components may have therapeutic values in the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
15
|
Kaundal U, Bagai U, Rakha A. Immunomodulatory plasticity of mesenchymal stem cells: a potential key to successful solid organ transplantation. J Transl Med 2018; 16:31. [PMID: 29448956 PMCID: PMC5815241 DOI: 10.1186/s12967-018-1403-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/07/2018] [Indexed: 02/06/2023] Open
Abstract
Organ transplantation remains to be a treatment of choice for patients suffering from irreversible organ failure. Immunosuppressive (IS) drugs employed to maintain the allograft have shown excellent short-term graft survival, but, their long-term use could contribute to immunological and non-immunological risk factors, resulting in graft dysfunctionalities. Upcoming IS regimes have highlighted the use of cell-based therapies, which can eliminate the risk of drug-borne toxicities while maintaining efficacy of the treatment. Mesenchymal stem cells (MSCs) have been considered as an invaluable cell type, owing to their unique immunomodulatory properties, which makes them desirable for application in transplant settings, where hyper-activation of the immune system is evident. The immunoregulatory potential of MSCs holds true for preclinical studies while achieving it in clinical studies continues to be a challenge. Understanding the biological factors responsible for subdued responses of MSCs in vivo would allow uninhibited use of this therapy for countless conditions. In this review, we summarize the variations in the preclinical and clinical studies utilizing MSCs, discuss the factors which might be responsible for variability in outcome and propose the advancements likely to occur in future for using this as a "boutique/personalised therapy" for patient care.
Collapse
Affiliation(s)
- Urvashi Kaundal
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
- Department of Zoology, Panjab University, Sector 14, Chandigarh, India
| | - Upma Bagai
- Department of Zoology, Panjab University, Sector 14, Chandigarh, India
| | - Aruna Rakha
- Department of Translational and Regenerative Medicine, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| |
Collapse
|
16
|
Massart A, Ghisdal L, Abramowicz M, Abramowicz D. Operational tolerance in kidney transplantation and associated biomarkers. Clin Exp Immunol 2017; 189:138-157. [PMID: 28449211 DOI: 10.1111/cei.12981] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2017] [Indexed: 12/30/2022] Open
Abstract
In the 1960s, our predecessors won a historical battle against acute rejection and ensured that transplantation became a common life-saving treatment. In parallel with this success, or perhaps because of it, we lost the battle for long-lived transplants, being overwhelmed with chronic immune insults and the toxicities of immunosuppression. It is likely that current powerful treatments block acute rejection, but at the same time condemn the few circulating donor cells that would have been able to elicit immunoregulatory host responses towards the allograft. Under these conditions, spontaneously tolerant kidney recipients - i.e. patients who maintain allograft function in the absence of immunosuppression - are merely accidents; they are scarce, mysterious and precious. Several teams pursue the goal of finding a biomarker that would guide us towards the 'just right' level of immunosuppression that avoids rejection while leaving some space for donor immune cells. Some cellular assays are attractive because they are antigen-specific, and provide a comprehensive view of immune responses toward the graft. These seem to closely follow patient regulatory capacities. However, these tests are cumbersome, and require abundant cellular material from both donor and recipient. The latest newcomers, non-antigen-specific recipient blood transcriptomic biomarkers, offer the promise that a practicable and simple signature may be found that overcomes the complexity of a system in which an infinite number of individual cell combinations can lead possibly to graft acceptance. Biomarker studies are as much an objective - identifying tolerant patients, enabling tolerance trials - as a means to deciphering the underlying mechanisms of one of the most important current issues in transplantation.
Collapse
Affiliation(s)
- A Massart
- Department of Nephrology, Dialysis, and Transplantation, CUB Hôpital Erasme and Institute of Interdisciplinary Research in Molecular and Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - L Ghisdal
- Department of Nephrology, Centre Hospitalier EpiCURA, Baudour, Belgium
| | - M Abramowicz
- Department of Human Genetics, CUB Hôpital Erasme and Institute of Interdisciplinary Research in Molecular and Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - D Abramowicz
- Department of Nephrology, Universitair Ziekenhuis Antwerpen and Antwerp University, Antwerp, Belgium
| |
Collapse
|
17
|
Miura K, Kobayashi T, Zhang Z, Soma D, Hirose Y, Ishikawa H, Takizawa K, Nagahashi M, Sakata J, Kameyama H, Minagawa M, Kosugi S, Koyama Y, Wakai T. Study of Immune Tolerance Cases in Adult Living Donor Liver Transplantation. Transplant Proc 2016; 48:1119-22. [PMID: 27320570 DOI: 10.1016/j.transproceed.2015.12.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/30/2015] [Indexed: 10/21/2022]
Abstract
BACKGROUND Complete immune tolerance is the chief goal in organ transplantation. This study aimed to evaluate patients who successfully withdrew from immunosuppressive (IS) agents after living donor liver transplantation (LDLT). MATERIALS AND METHODS A retrospective review of all adult LDLT from July 1999 to March 2012 was conducted. In patients who acquired immune tolerance after LDLT, their background and the course of surgical procedures were evaluated. RESULTS Of a total of 101 adult LDLT patients, 8 patients were completely free of IS agents. Six of these patients (75%) were female, and the median age at the time of transplantation was 56 years (range, 31-66 years). The primary disease causing liver failure was type C liver cirrhosis (50%), fulminant hepatitis (25%), type B liver cirrhosis (12%), and alcoholic liver cirrhosis (12%). The median Child-Pugh score and MELD score were 13 points (range, 8-15 points) and 19 points (range, 10-18 points), respectively. The living related donor was the recipient's child (75%), sibling (12%), or parent (12%). ABO compatibility was identical in 62%, compatible in 25%, and incompatible in 12%. CONCLUSIONS In this study, we evaluated the adult patients who successfully withdrew from IS agents after LDLT. In most cases, it took more than 5 years to reduce IS agents. Because monitoring of the serum transaminase level is not adequate to detect chronic liver fibrosis in immune tolerance cases, further study is required to find appropriate protocols for reducing IS agent use after LDLT.
Collapse
Affiliation(s)
- K Miura
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - T Kobayashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Z Zhang
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - D Soma
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Y Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - H Ishikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - K Takizawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - M Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - J Sakata
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - H Kameyama
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - M Minagawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - S Kosugi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Y Koyama
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - T Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
18
|
Lu L, Zhang G, Li R, Zhao Z, Li W, Liu T, Fu W. Molecular Chimeric Recipient Precursor T Cells Promote Cardiac Allograft Survival in Mice. Transplant Proc 2015; 47:2978-84. [PMID: 26707325 DOI: 10.1016/j.transproceed.2015.09.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/31/2015] [Accepted: 09/17/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Molecular chimerism has become a potential method to induce donor-specific transplant tolerance. We researched the prolongation of cardiac allograft survival by recipient mouse molecular chimeric precursor T cells (pre-T cells) or hematopoietic stem cells (HSCs) infusion in vivo. METHODS The donor C57BL/6 mouse MHC-I gene (H-2K(b) and H-2D(b) gene) were amplified by RT-PCR. The identified recipient BALB/c mouse pre-T cells and HSCs were transduced by the pMSCVneo retroviral vector of C57BL/6 mouse MHC-I gene (pMSCVneo-H-2D(b)/H-2K(b)). Then the molecular chimeric cells were transfused back to the BALB/c mice. Allogeneic T-lymphocyte proliferation was assessed in mixed lymphocyte reactions (MLR). A mouse model of heterotopic abdominal heart transplantation was performed to evaluate survival times and histological grade of acute rejection at 7 days after transplantation. RESULTS BALB/c mice molecular chimeric pre-T cells and HSCs were cultured successfully after pMSCV-H-2D(b)/H-2K(b) transduction. After the molecular chimeric pre-T cell treatment, the result of MLR showed that the stimulating index of allogeneic T lymphocyte had a statistically significant decrease, which also exhibited a significant reduction after molecular chimeric HSC treatment. The survival time of cardiac allograft was prolonged after chimeric pre-T cell or HSC infusion; meanwhile, pathologic rejection grade decreased significantly. Nevertheless, molecular chimeric pre-T cells exhibited a longer median survival time. CONCLUSION The molecular chimeric recipient mouse pre-T cell or HSC infusion reduced spleen T cells' response to allogeneic T cells in vitro and delayed cardiac allograft rejection in vivo. Pre-T cells have more advantages than HSCs on the prolongation of mouse cardiac allograft survival.
Collapse
Affiliation(s)
- L Lu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - G Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - R Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Z Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - W Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - T Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - W Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
19
|
Patterns of Immune Regulation in Rhesus Macaque and Human Families. Transplant Direct 2015; 1:e20. [PMID: 27500222 PMCID: PMC4946471 DOI: 10.1097/txd.0000000000000530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/03/2015] [Indexed: 12/29/2022] Open
Abstract
Supplemental digital content is available in the text. Naturally acquired immune regulation amongst family members can result in mutual regulation between living related renal transplant donor and recipients. Pretransplant bidirectional regulation predisposed to superior renal allograft outcome in a CAMPATH-1H protocol. We tested whether Rhesus macaques, a large animal model of choice for preclinical transplant studies, share these immunoregulatory properties.
Collapse
|
20
|
Xu YL, Kou JQ, Wang SZ, Chen CX, Qin ZH. Neurotoxin from Naja naja atra venom inhibits skin allograft rejection in rats. Int Immunopharmacol 2015; 28:188-98. [PMID: 26071222 DOI: 10.1016/j.intimp.2015.05.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/22/2015] [Accepted: 05/27/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Recent studies reported that Naja naja atra venom (NNAV) regulated immune function and had a therapeutic effect on adjunctive arthritis and nephropathy. We hypothesized that NNAV and its active component, neurotoxin (NTX), might inhibit skin allograft rejection. METHODS Skin allografts were used to induce immune rejection in rats. In addition, mixed lymphocyte culture (MLC) was used to mimic immune rejection reaction in vitro. Both NNAV and NTX were orally given starting from 5days prior to skin allograft surgery. RESULTS The results showed that oral administration of NNAV or NTX prolonged the survival of skin allografts and inhibited inflammatory response. The production of Th1 cytokines (IFN-γ, IL-2) was also suppressed. NTX inhibited T-cell proliferation and CD4(+) T cell division induced by skin allografts. NTX also showed immunosuppressive activity in mixed lymphocyte culture. Atropine alone inhibited Con A-induced proliferation of T cells and potentiated NTX' s inhibitory effects on T cells, while pilocarpine only slightly enhanced Con A-induced T cell proliferation and partially reversed the inhibitory effect of NTX. On the other hand, neither nicotine nor mecamylamine had an influence on NTX's inhibitory effects on Con A-induced T cell proliferation in vitro. NTX inhibited T cell proliferation by arresting the cell cycle at the G0/G1 phase. CONCLUSIONS The present study revealed that NNAV and NTX suppressed skin allograft rejection by inhibiting T cell-mediated immune responses. These findings suggest both NNAV and NTX as potential immunosuppressants for preventing the immune response to skin allografts.
Collapse
Affiliation(s)
- Yin-Li Xu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Jian-Qun Kou
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Shu-Zhi Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Cao-Xin Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
21
|
Baron D, Giral M, Brouard S. Reconsidering the detection of tolerance to individualize immunosuppression minimization and to improve long-term kidney graft outcomes. Transpl Int 2015; 28:938-59. [DOI: 10.1111/tri.12578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/03/2015] [Accepted: 04/02/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Daniel Baron
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- Faculté de Médecine; Université de Nantes; Nantes France
| | - Magali Giral
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- Faculté de Médecine; Université de Nantes; Nantes France
| | - Sophie Brouard
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- Faculté de Médecine; Université de Nantes; Nantes France
| |
Collapse
|
22
|
Hutchinson JA, Geissler EK. Now or never? The case for cell-based immunosuppression in kidney transplantation. Kidney Int 2015; 87:1116-24. [PMID: 25738251 DOI: 10.1038/ki.2015.50] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/20/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023]
Abstract
By exploiting mechanisms of immunological regulation against donor alloantigen, it may be possible to reduce the dependence of kidney transplant recipients upon calcineurin inhibitor-based maintenance immunosuppression. One means to strengthen regulatory responses is treating recipients with preparations of regulatory cells obtained by ex vivo manipulation. This strategy, which is a well-established experimental method, has been developed to the point that early-phase clinical trials in kidney transplantation are now feasible. Cell-based therapies represent a radical departure from conventional treatment, so what grounds are there for this new approach? This article offers a three-part justification for trialing cell-based therapies in kidney transplantation: first, a clinical need for alternatives to standard immunosuppression is identified, based on the inadequacies of calcineurin inhibitor-based regimens in preventing late allograft loss; second, a mechanistic explanation of how cell-based therapies might address this clinical need is given; and third, the possible benefit to patients is weighed against the potential risks of cell-based immunosuppressive therapy. It is concluded that the safety of cell-based immunosuppressive therapy will not be greatly improved by further basic scientific and preclinical development. Only trials in humans can now tell us whether cell-based therapy is likely to benefit kidney transplant recipients, but these should be conservative in design to minimize any potential harm to patients.
Collapse
Affiliation(s)
- James A Hutchinson
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Edward K Geissler
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
Guo K, Ikehara S, Meng X. Mesenchymal stem cells for inducing tolerance in organ transplantation. Front Cell Dev Biol 2014; 2:8. [PMID: 25364716 PMCID: PMC4206979 DOI: 10.3389/fcell.2014.00008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/28/2014] [Indexed: 12/17/2022] Open
Abstract
Organ transplantation is useful for treating the end stage of organ failure. The induction of tolerance to the transplanted organ is essential for its long-term survival. Immunologic tolerance can be induced by immunosuppressive agents and mixed chimerism. Mixed chimerism is a state in which both recipient-and donor-derived blood cells remain in the hematopoietic system after allogeneic hematopoietic stem cells have been transplanted. Mesenchymal stem cells (MSCs), and immune cells such as dendritic cells and T-reg cells play an important role in the induction of tolerance. MSCs secrete cytokines, which modulate the immune response. In particular, they upregulate T-reg cell function and thereby induce tolerance. Intra-bone marrow-bone marrow transplantation recruits both donor-derived HSCs and MSCs, inducing persistent donor-specific tolerance without the use of immunosuppressants. In this review, we summarize the use of MSCs to induce tolerance in organ transplantation.
Collapse
Affiliation(s)
- Kequan Guo
- Department of Cardiac Surgery, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital affiliated to Capital Medical University Beijing, China
| | - Susumu Ikehara
- Department of Stem Cell Disorders, Kansai Medical University Hirakata City, Japan
| | - Xu Meng
- Department of Cardiac Surgery, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital affiliated to Capital Medical University Beijing, China
| |
Collapse
|