1
|
López-García I, Oh S, Chaney C, Tsunezumi J, Drummond I, Oxburgh L, Carroll T, Marciano DK. Epithelial tubule interconnection driven by HGF-Met signaling in the kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597185. [PMID: 38895378 PMCID: PMC11185679 DOI: 10.1101/2024.06.03.597185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The formation of functional epithelial tubules is a central feature of many organ systems. Although the process of tubule formation by epithelial cells is well-studied, the way in which tubules connect with each other (i.e. anastomose) to form functional networks both in vivo and in vitro is not well understood. A key, unanswered question in the kidney is how the renal vesicles of the embryonic kidney connect with the nascent collecting ducts to form a continuous urinary system. We performed a ligand-receptor pair analysis on single cell RNA-seq data from embryonic mouse kidney tubules undergoing anastomosis to select candidates that might mediate this process in vivo. This analysis identified hepatocyte growth factor (HGF), which has known roles in cell proliferation, migration, and tubulogenesis, as one of several possible candidates. To test this possibility, we designed a novel assay to quantitatively examine epithelial tubule anastomosis in vitro using epithelial spheroids with fluorescently-tagged apical surfaces to enable direct visualization of anastomosis. This revealed that HGF is a potent inducer of tubule anastomosis. Tubule anastomosis occurs through a proliferation-independent mechanism that acts through the MAPK signaling cascade and matrix metalloproteinases (MMPs), the latter suggestive of a role in extracellular matrix turnover. Accordingly, treatment of explanted embryonic mouse kidneys with HGF and collagenase was sufficient to induce kidney tubule anastomosis. These results lay the groundwork for investigating how to promote functional interconnections between tubular epithelia, which have important clinical implications for utilizing in vitro grown kidney tissue in transplant medicine.
Collapse
Affiliation(s)
- Isabel López-García
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Sunhee Oh
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Chris Chaney
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Jun Tsunezumi
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
- Department of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Miyazaki, Japan
| | - Iain Drummond
- Mount Dessert Island Biological Laboratory, Maine, USA
| | - Leif Oxburgh
- Kidney Regenerative Medicine Laboratory, Rogosin Institute, New York, 10021, USA
| | - Thomas Carroll
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Denise K. Marciano
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| |
Collapse
|
2
|
Przepiorski A, Crunk AE, Espiritu EB, Hukriede NA, Davidson AJ. The Utility of Human Kidney Organoids in Modeling Kidney Disease. Semin Nephrol 2021; 40:188-198. [PMID: 32303281 DOI: 10.1016/j.semnephrol.2020.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of three-dimensional kidney tissue (organoids) from human pluripotent stem cell lines provides a valuable tool to examine kidney function in an in vitro model and could be used for regenerative medicine approaches. Kidney organoids have the potential to model kidney diseases and congenital defects, be used for drug development, and to further our understanding of acute kidney injury, fibrosis, and chronic kidney disease. In this review, we examine the current stage of pluripotent stem cell-derived kidney organoid technology, challenges, shortcomings, and regenerative potential of kidney organoids in the future.
Collapse
Affiliation(s)
- Aneta Przepiorski
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA.
| | - Amanda E Crunk
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Eugenel B Espiritu
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA; Center for Critical Care Nephrology, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Mansoori-Moghadam Z, Totonchi M, Hesaraki M, Aghdami N, Baharvand H, Moghadasali R. Programming of ES cells and reprogramming of fibroblasts into renal lineage-like cells. Exp Cell Res 2019; 379:225-234. [PMID: 30981668 DOI: 10.1016/j.yexcr.2019.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023]
Abstract
This study aims to prepare intermediate mesoderm-like cells from mouse embryonic fibroblasts (MEFs). In the first step, intermediate mesoderm-like cells (IMLCs) and renal epithelial-like cells (RELCs) were extracted from mouse embryonic stem cells (mESCs) in a specified media that contained two small molecules, CHIR99021 and TTNPB, along with growth factors, FGF9and BMP7. Then, MEFs were directly converted into IM by genes for the pluripotency factors, which encode the transcription factors; Oct4, Sox2, Klf4, and c-Myc (OSKM). These unstable intermediate cells were quickly encouraged to form IM with the assistance of CHIR99021 and TTNPB. The results showed that exogenous expression of OSKM factors for four days was adequate to generate partially reprogrammed cells (SSEA1+/Nanog-). Real-time PCR and immunocytochemistry analysis confirmed the presence of the MEF-derived IMs. This study introduced a method for mESCs differentiation to RELCs followed by MEF conversion in an attempt to generate IM by circumventing pluripotency.
Collapse
Affiliation(s)
- Zohreh Mansoori-Moghadam
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mahdi Hesaraki
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
4
|
Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, Inoue H, Yamashita JK, Todani M, Nakagawa M, Osawa M, Yashiro Y, Yamanaka S, Osafune K. Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiol Rev 2019; 99:79-114. [PMID: 30328784 DOI: 10.1152/physrev.00039.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The discovery of somatic cell nuclear transfer proved that somatic cells can carry the same genetic code as the zygote, and that activating parts of this code are sufficient to reprogram the cell to an early developmental state. The discovery of induced pluripotent stem cells (iPSCs) nearly half a century later provided a molecular mechanism for the reprogramming. The initial creation of iPSCs was accomplished by the ectopic expression of four specific genes (OCT4, KLF4, SOX2, and c-Myc; OSKM). iPSCs have since been acquired from a wide range of cell types and a wide range of species, suggesting a universal molecular mechanism. Furthermore, cells have been reprogrammed to iPSCs using a myriad of methods, although OSKM remains the gold standard. The sources for iPSCs are abundant compared with those for other pluripotent stem cells; thus the use of iPSCs to model the development of tissues, organs, and other systems of the body is increasing. iPSCs also, through the reprogramming of patient samples, are being used to model diseases. Moreover, in the 10 years since the first report, human iPSCs are already the basis for new cell therapies and drug discovery that have reached clinical application. In this review, we examine the generation of iPSCs and their application to disease and development.
Collapse
Affiliation(s)
- Peter Karagiannis
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Megumu Saito
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Akira Watanabe
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Jun K Yamashita
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masaya Todani
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Masato Nakagawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Mitsujiro Osawa
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Yoshimi Yashiro
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application, Kyoto University , Kyoto , Japan
| |
Collapse
|
5
|
Aikawa A. Current status and future aspects of kidney transplantation in Japan. RENAL REPLACEMENT THERAPY 2018. [DOI: 10.1186/s41100-018-0186-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
6
|
Development of new method to enrich human iPSC-derived renal progenitors using cell surface markers. Sci Rep 2018; 8:6375. [PMID: 29686294 PMCID: PMC5913312 DOI: 10.1038/s41598-018-24714-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/05/2018] [Indexed: 01/02/2023] Open
Abstract
Cell therapy using renal progenitors differentiated from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs) has the potential to significantly reduce the number of patients receiving dialysis therapy. However, the differentiation cultures may contain undifferentiated or undesired cell types that cause unwanted side effects, such as neoplastic formation, when transplanted into a body. Moreover, the hESCs/iPSCs are often genetically modified in order to isolate the derived renal progenitors, hampering clinical applications. To establish an isolation method for renal progenitors induced from hESCs/iPSCs without genetic modifications, we screened antibodies against cell surface markers. We identified the combination of four markers, CD9−CD140a+CD140b+CD271+, which could enrich OSR1+SIX2+ renal progenitors. Furthermore, these isolated cells ameliorated renal injury in an acute kidney injury (AKI) mouse model when used for cell therapy. These cells could contribute to the development of hiPSC-based cell therapy and disease modeling against kidney diseases.
Collapse
|
7
|
Immunohistochemical and electronmicroscopic features of mesenchymal-to-epithelial transition in human developing, postnatal and nephrotic podocytes. Histochem Cell Biol 2016; 147:481-495. [DOI: 10.1007/s00418-016-1507-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 01/13/2023]
|