1
|
Verjans M, Hindryckx A, Rosier K, Devriendt K, Mekahli D, Bockenhauer D. Antenatal presentation and early postnatal treatment of infantile hypercalcemia type 2. Pediatr Nephrol 2024; 39:2911-2913. [PMID: 38753084 DOI: 10.1007/s00467-024-06403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 08/28/2024]
Abstract
Infantile hypercalcemia (IH) is a rare genetic disorder characterized by hypercalcemia, hypercalciuria, low parathyroid hormone, and nephrocalcinosis during the first months of life. Biallelic variants in the genes CYP24A1 and SCL34A1 cause IH1 and 2, respectively. We present the case of a newborn with an antenatal diagnosis of IH2 due to the identification of echogenic, yet normal-sized kidneys at 23 weeks gestation. Trio whole-exome sequencing initially identified only a heterozygous pathogenic variant in SLC34A1. Re-analysis of the exome data because of the clinical suspicion of IH2 revealed a 21-basepair deletion in trans that had initially been filtered out because of its high allele frequency. The diagnosis of IH2 enabled postnatal screening for hypercalcemia, present already at week 1, resulting in early treatment with phosphate supplementation and vitamin D avoidance. In the subsequent course, biochemical parameters were normalized, and the patient showed no obvious clinical complications of IH2, apart from the nephrocalcinosis.
Collapse
Affiliation(s)
- Marcelien Verjans
- Department of Paediatric Nephrology, University Hospitals Leuven, Louvain, Belgium
| | - An Hindryckx
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Louvain, Belgium
| | - Karen Rosier
- Department of Genetics, University Hospitals Leuven, Louvain, Belgium
| | - Koen Devriendt
- Department of Genetics, University Hospitals Leuven, Louvain, Belgium
| | - Djalila Mekahli
- Department of Paediatric Nephrology, University Hospitals Leuven, Louvain, Belgium
- Department of Cellular and Molecular Physiology, KUL, Louvain, Belgium
| | - Detlef Bockenhauer
- Department of Paediatric Nephrology, University Hospitals Leuven, Louvain, Belgium.
- Department of Cellular and Molecular Physiology, KUL, Louvain, Belgium.
- Great Ormond Street Hospital for Children and Department of Renal Medicine, UCL, London, UK.
| |
Collapse
|
2
|
Aigbogun OP, Vancoppenolle N, Coppens S, Marangoni M, Elsen E, Cassart M, Gounongbe C. Prenatal diagnosis of cystinuria with a heterozygous pathogenic variant in SLC7A9 gene associated with isolated hyperechogenic fetal kidneys: A case report. Clin Case Rep 2024; 12:e8730. [PMID: 39015212 PMCID: PMC11250157 DOI: 10.1002/ccr3.8730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 07/18/2024] Open
Abstract
Cystinuria is suspected antenatally by a hyperechogenic fetal colonic content. We report the first prenatal case of autosomal dominant SLC7A9-related cystinuria associated with isolated hyperechogenic kidneys as the only prenatal sonographic sign.
Collapse
Affiliation(s)
| | | | - Sandra Coppens
- ULB Center of Human Genetics, Hôpital Universitaire de Bruxelles, Université Libre de BruxellesBrusselsBelgium
| | - Martina Marangoni
- ULB Center of Human Genetics, Hôpital Universitaire de Bruxelles, Université Libre de BruxellesBrusselsBelgium
| | - Elodie Elsen
- Department of Fetal MedicineCHU Saint PierreBrusselsBelgium
| | - Marie Cassart
- Department of Fetal MedicineCHU Saint PierreBrusselsBelgium
- Department of Radiology and Fetal MedicineIris Sud HospitalsBrusselsBelgium
| | | |
Collapse
|
3
|
Koo KC, Halawani A, Wong VK, Lange D, Chew BH. Monogenic features of urolithiasis: A comprehensive review. Asian J Urol 2024; 11:169-179. [PMID: 38680588 PMCID: PMC11053333 DOI: 10.1016/j.ajur.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/28/2023] [Indexed: 05/01/2024] Open
Abstract
Objective Urolithiasis formation has been attributed to environmental and dietary factors. However, evidence is accumulating that genetic background can contribute to urolithiasis formation. Advancements in the identification of monogenic causes using high-throughput sequencing technologies have shown that urolithiasis has a strong heritable component. Methods This review describes monogenic factors implicated in a genetic predisposition to urolithiasis. Peer-reviewed journals were evaluated by a PubMed search until July 2023 to summarize disorders associated with monogenic traits, and discuss clinical implications of identification of patients genetically susceptible to urolithiasis formation. Results Given that more than 80% of urolithiases cases are associated with calcium accumulation, studies have focused mainly on monogenetic contributors to hypercalciuric urolithiases, leading to the identification of receptors, channels, and transporters involved in the regulation of calcium renal tubular reabsorption. Nevertheless, available candidate genes and linkage methods have a low resolution for evaluation of the effects of genetic components versus those of environmental, dietary, and hormonal factors, and genotypes remain undetermined in the majority of urolithiasis formers. Conclusion The pathophysiology underlying urolithiasis formation is complex and multifactorial, but evidence strongly suggests the existence of numerous monogenic causes of urolithiasis in humans.
Collapse
Affiliation(s)
- Kyo Chul Koo
- Department of Urology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | - Victor K.F. Wong
- Department of Urological Sciences, University of British Columbia, Stone Centre at Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Dirk Lange
- Department of Urological Sciences, University of British Columbia, Stone Centre at Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Ben H. Chew
- Department of Urological Sciences, University of British Columbia, Stone Centre at Vancouver General Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Walker E, Hayes W, Bockenhauer D. Inherited non-FGF23-mediated phosphaturic disorders: A kidney-centric review. Best Pract Res Clin Endocrinol Metab 2024; 38:101843. [PMID: 38042745 DOI: 10.1016/j.beem.2023.101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
Phosphate is freely filtered by the glomerulus and reabsorbed exclusively in the proximal tubule by two key transporters, NaPiIIA and NaPiIIC, encoded by SLC34A1 and SLC34A3, respectively. Regulation of these transporters occurs primarily through the hormone FGF23 and, to a lesser degree, PTH. Consequently, inherited non-FGF23 mediated phosphaturic disorders are due to generalised proximal tubular dysfunction, loss-of-function variants in SLC34A1 or SLC34A3 or excess PTH signalling. The corresponding disorders are Renal Fanconi Syndrome, Infantile Hypercalcaemia type 2, Hereditary Hypophosphataemic Rickets with Hypercalciuria and Familial Hyperparathyroidism. Several inherited forms of Fanconi renotubular syndrome (FRTS) have also been described with the underlying genes encoding for GATM, EHHADH, HNF4A and NDUFAF6. Here, we will review their pathophysiology, clinical manifestations and the implications for treatment from a kidney-centric perspective, focussing on those disorders caused by dysfunction of renal phosphate transporters. Moreover, we will highlight specific genetic aspects, as the availability of large population genetic databases has raised doubts about some of the originally proposed gene-disease associations concerning phosphate transporters or their associated proteins.
Collapse
Affiliation(s)
- Emma Walker
- Nephrology Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Wesley Hayes
- Nephrology Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Detlef Bockenhauer
- Nephrology Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; Department of Renal Medicine, University College London, London, UK.
| |
Collapse
|
5
|
Cassart M, Garel C, Ulinski T, Freddy Avni E. Reversed cortico-medullary differentiation in the fetal and neonatal kidneys: an indicator of poor prognosis? Pediatr Radiol 2024; 54:285-292. [PMID: 38150104 DOI: 10.1007/s00247-023-05833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Bilateral reversed cortico-medullary differentiation is rarely observed on fetal or neonatal renal ultrasound and is therefore a diagnostic challenge. OBJECTIVE Our purpose was to widen the differential diagnoses of fetal and neonatal nephropathies introducing reversed cortico-medullary differentiation as a clue either on obstetric US or during follow-up of hyperechoic kidneys in order to improve the management of such rare clinical situations. MATERIALS AND METHODS We retrospectively reviewed the US images of 11 patients showing bilateral reversed cortico-medullary differentiation on prenatal examination or in which this pattern developed postnatally in the follow-up of fetal hyperechoic kidneys. For each patient, a precise diagnosis was established either on clinical assessment or, when available, on histological or genetic findings. RESULTS Six fetuses displayed bilateral reversed cortico-medullary differentiation on obstetric examination, and the pattern persisted throughout pregnancy. In the five other fetuses, the kidneys appeared initially homogeneously hyperechoic; this evolved into reversed cortico-medullary differentiation during the third trimester in two cases and shortly after birth in three cases. Two pregnancies were terminated because of estimated poor prognosis. In the nine surviving neonates, four died of renal failure in the post-natal period. The clinical evolution was more favorable in the remaining five newborns. CONCLUSIONS Six different diagnoses were established in patients presenting with a reversed cortico-medullary differentiation renal pattern. This finding was associated with poor outcome in six cases. An acute prenatal diagnosis of reversed cortico-medullary differentiation improves pre- and postnatal work-up and guides counseling and genetic testing.
Collapse
Affiliation(s)
- Marie Cassart
- Department of Radiology and Fetal Medicine, Iris Hospitals South, 63 Rue J. Paquot, 1050, Brussels, Belgium.
| | - Catherine Garel
- Department of Radiology, Armand-Trousseau Hospital, APHP, Sorbonne University, Paris, France
| | - Tim Ulinski
- Pediatric Nephrology Unit, Armand-Trousseau Hospital, APHP, Sorbonne University, Paris, France
| | - E Freddy Avni
- Department of Medical Imaging, Marie Curie Civil Hospital, Charleroi, Belgium
| |
Collapse
|
6
|
Huang R, Fu F, Zhou H, Zhang L, Lei T, Cheng K, Yan S, Guo F, Wang Y, Ma C, Li R, Yu Q, Deng Q, Li L, Yang X, Han J, Li D, Liao C. Prenatal diagnosis in the fetal hyperechogenic kidneys: assessment using chromosomal microarray analysis and exome sequencing. Hum Genet 2023; 142:835-847. [PMID: 37095353 DOI: 10.1007/s00439-023-02545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/13/2023] [Indexed: 04/26/2023]
Abstract
Fetal hyperechogenic kidneys (HEK) is etiologically a heterogeneous disorder. The aim of this study was to identify the genetic causes of HEK using prenatal chromosomal microarray analysis (CMA) and exome sequencing (ES). From June 2014 to September 2022, we identified 92 HEK fetuses detected by ultrasound. We reviewed and documented other ultrasound anomalies, microscopic and submicroscopic chromosomal abnormalities, and single gene disorders. We also analyzed the diagnostic yield of CMA and ES and the clinical impact the diagnosis had on pregnancy management. In our cohort, CMA detected 27 pathogenic copy number variations (CNVs) in 25 (25/92, 27.2%) fetuses, with the most common CNV being 17q12 microdeletion syndrome. Among the 26 fetuses who underwent further ES testing, we identified 7 pathogenic/likely pathogenic variants and 8 variants of uncertain significance in 9 genes in 12 fetuses. Four novel variants were first reported herein, expanding the mutational spectra for HEK-related genes. Following counseling, 52 families chose to continue the pregnancy, and in 23 of them, postnatal ultrasound showed no detectable renal abnormalities. Of these 23 cases, 15 had isolated HEK on prenatal ultrasound. Taken together, our study showed a high rate of detectable genetic etiologies in cases with fetal HEK at the levels of chromosomal (aneuploidy), sub-chromosomal (microdeletions/microduplications), and single gene (point mutations). Therefore, we speculate that combined CMA and ES testing for fetal HEK is feasible and has good clinical utility. When no genetic abnormalities are identified, the findings can be transient, especially in the isolated HEK group.
Collapse
Affiliation(s)
- Ruibin Huang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Fang Fu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Hang Zhou
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Lu Zhang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Tingying Lei
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Ken Cheng
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - Shujuan Yan
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Fei Guo
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - You Wang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Chunling Ma
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ru Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Qiuxia Yu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Qiong Deng
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Lushan Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Xin Yang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Jin Han
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Dongzhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, Guangdong, China.
| |
Collapse
|
7
|
Deng L, Liu Y, Yuan M, Meng M, Yang Y, Sun L. Prenatal diagnosis and outcome of fetal hyperechogenic kidneys in the era of antenatal next-generation sequencing. Clin Chim Acta 2022; 528:16-28. [DOI: 10.1016/j.cca.2022.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 01/19/2023]
|
8
|
Abstract
Vitamin D metabolism represents a well-integrated, hormonally regulated endocrine unit interlinking calcium and phosphate metabolism. Pathophysiologic processes disturbing vitamin D metabolism comprise classic defects of vitamin D activation and action presenting as different forms of vitamin D-dependent rickets as well as disorders with increased vitamin D activity. The latter may result in hypercalcemia, hypercalciuria, and renal calcifications. Acquired and hereditary disorders causing hypervitaminosis D are discussed, including vitamin D intoxication, granulomatous disease, and idiopathic infantile hypercalcemia that may be caused by either a defective vitamin D degradation or by a primary defect in phosphate conservation.
Collapse
Affiliation(s)
- Karl Peter Schlingmann
- Department of General Pediatrics, University Children's Hospital, Albert-Schweitzer-Campus 1, Münster 48149, Germany.
| |
Collapse
|
9
|
Lenherr-Taube N, Young EJ, Furman M, Elia Y, Assor E, Chitayat D, Uster T, Kirwin S, Robbins K, Vinette KMB, Daneman A, Marshall CR, Collins C, Thummel K, Sochett E, Levine MA. Mild Idiopathic Infantile Hypercalcemia-Part 1: Biochemical and Genetic Findings. J Clin Endocrinol Metab 2021; 106:2915-2937. [PMID: 34125233 PMCID: PMC8475208 DOI: 10.1210/clinem/dgab431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Idiopathic infantile hypercalcemia (IIH), an uncommon disorder characterized by elevated serum concentrations of 1,25 dihydroxyvitamin D (1,25(OH)2D) and low parathyroid hormone (PTH) levels, may present with mild to severe hypercalcemia during the first months of life. Biallelic variants in the CYP24A1 or SLC34A1 genes are associated with severe IIH. Little is known about milder forms. OBJECTIVE This work aims to characterize the genetic associations and biochemical profile of mild IIH. METHODS This is a cross-sectional study including children between age 6 months and 17 years with IIH who were followed in the Calcium Clinic at the Hospital for Sick Children (SickKids), Toronto, Canada. Twenty children with mild IIH on calcium-restricted diets were evaluated. We performed a dietary assessment and analyzed biochemical measures including vitamin D metabolites and performed a stepwise molecular genetic analysis. Complementary biochemical assessments and renal ultrasounds were offered to first-degree family members of positive probands. RESULTS The median age was 16 months. Median serum levels of calcium (2.69 mmol/L), urinary calcium:creatinine ratio (0.72 mmol/mmol), and 1,25(OH)2D (209 pmol/L) were elevated, whereas intact PTH was low normal (22.5 ng/L). Mean 1,25(OH)2D/PTH and 1,25(OH)2D/25(OH)D ratios were increased by comparison to healthy controls. Eleven individuals (55%) had renal calcification. Genetic variants were common (65%), with the majority being heterozygous variants in SLC34A1 and SLC34A3, while a minority showed variants of CYP24A1 and other genes related to hypercalciuria. CONCLUSION The milder form of IIH has a distinctive vitamin D metabolite profile and is primarily associated with heterozygous SLC34A1 and SLC34A3 variants.
Collapse
Affiliation(s)
- Nina Lenherr-Taube
- Department of Pediatrics, Division of Endocrinology, The Hospital for Sick Children, University of Toronto, M5G 1X8 Toronto, Ontario, Canada
| | - Edwin J Young
- Genome Diagnostics, Department of Paediatric Medicine, The Hospital for Sick Children, M5G 1X8 Toronto, Ontario, Canada
| | - Michelle Furman
- Department of Pediatrics, Division of Endocrinology, The Hospital for Sick Children, University of Toronto, M5G 1X8 Toronto, Ontario, Canada
| | - Yesmino Elia
- Department of Pediatrics, Division of Endocrinology, The Hospital for Sick Children, University of Toronto, M5G 1X8 Toronto, Ontario, Canada
| | - Esther Assor
- Department of Pediatrics, Division of Endocrinology, The Hospital for Sick Children, University of Toronto, M5G 1X8 Toronto, Ontario, Canada
| | - David Chitayat
- Department of Obstetrics and Gynecology, The Prenatal Diagnosis and Medical Genetics Program, Mount Sinai Hospital, University of Toronto, M5G 1X8 Toronto, Ontario, Canada
- Department of Pediatrics, Division of Clinical Genetics and Metabolism, The Hospital for Sick Children, University of Toronto, M5G 1X8 Toronto, Ontario, Canada
| | - Tami Uster
- Department of Obstetrics and Gynecology, The Prenatal Diagnosis and Medical Genetics Program, Mount Sinai Hospital, University of Toronto, M5G 1X8 Toronto, Ontario, Canada
| | - Susan Kirwin
- Nemours Molecular Diagnostics Laboratory, Nemours Children’s Health System, Wilmington, Delaware 19802, USA
| | - Katherine Robbins
- Nemours Molecular Diagnostics Laboratory, Nemours Children’s Health System, Wilmington, Delaware 19802, USA
| | - Kathleen M B Vinette
- Nemours Molecular Diagnostics Laboratory, Nemours Children’s Health System, Wilmington, Delaware 19802, USA
| | - Alan Daneman
- Department of Diagnostic Imaging, Division of General Radiology and Body Imaging, The Hospital for Sick Children, University of Toronto, M5G 1X8 Toronto, Ontario, Canada
| | - Christian R Marshall
- Genome Diagnostics, Department of Paediatric Medicine, The Hospital for Sick Children, M5G 1X8 Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, M5S 1A8 Toronto, Ontario, Canada
| | - Carol Collins
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, USA
| | - Kenneth Thummel
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195, USA
| | - Etienne Sochett
- Department of Pediatrics, Division of Endocrinology, The Hospital for Sick Children, University of Toronto, M5G 1X8 Toronto, Ontario, Canada
| | - Michael A Levine
- Division of Endocrinology and Diabetes and Center for Bone Health, Children’s Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
10
|
Molin A, Lemoine S, Kaufmann M, Breton P, Nowoczyn M, Ballandonne C, Coudray N, Mittre H, Richard N, Ryckwaert A, Lavillaureix A, Jones G, Bacchetta J, Kottler ML. Overlapping Phenotypes Associated With CYP24A1, SLC34A1, and SLC34A3 Mutations: A Cohort Study of Patients With Hypersensitivity to Vitamin D. Front Endocrinol (Lausanne) 2021; 12:736240. [PMID: 34721296 PMCID: PMC8548709 DOI: 10.3389/fendo.2021.736240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Mutations in CYP24A1 (vitamin D 24-hydroxylase) and SLC34A1 (renal phosphate transporter NPT2a) cause autosomal recessive Infantile Hypercalcemia type 1 and 2, illustrating links between vitamin D and phosphate metabolism. Patients may present with hypercalciuria and alternate between chronic phases with normal serum calcium but inappropriately high 1,25-(OH)2D and appropriately low PTH, and acute phases with hypercalcemia with suppressed PTH. Mutations in SLC34A3 and SLC9A3R1 have been associated with phosphate wasting without hypercalcemia. The aims of this study were to evaluate the frequency of mutations in these genes in patients with a medical history suggestive of CYP24A1 mutation to search for a specific pattern. Using next generation sequencing, we screened for mutations in 185 patients with PTH levels < 20 pg/mL, hypercalcemia and/or hypercalciuria, and relatives. Twenty-eight (15%) patients harbored biallelic mutations in CYP24A1 (25) and SLC34A3 (3), mostly associated with renal disease (lithiasis, nephrocalcinosis) (86%). Hypophosphatemia was found in 7 patients with biallelic mutations in CYP24A1 and a normal phosphatemia was reported in 2 patients with biallelic mutations in SLC34A3. Rare variations in SLC34A1 and SLC34A3 were mostly of uncertain significance. Fifteen patients (8%) carried only one heterozygous mutation. Heterozygous relatives carrying SLC34A1 or SLC34A3 variation may present with biochemical changes in mineral metabolism. Two patients' genotype may suggest digenism (heterozygous variations in different genes). No variation was found in SLC9A3R1. As no specific pattern can be found, patients with medical history suggestive of CYP24A1 mutation should benefit from SLC34A1 and SLC34A3 analysis.
Collapse
Affiliation(s)
- Arnaud Molin
- Caen University Hospital, Department of Genetics, Molecular Genetics Laboratory and Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism (OSCAR), Caen, France
- Caen Normandy University, Medical School, Caen, France
- BioTARGEN, Caen Normandy University, Caen, France
- OeReCa, Caen Normandy University, Caen, France
- *Correspondence: Arnaud Molin,
| | - Sandrine Lemoine
- Department of Nephrology and Renal Functional Explorations, Edouard Herriot Hospital, Lyon, France
- University of Lyon, University of Lyon 1, Villeurbanne, France
| | - Martin Kaufmann
- Queen’s University, Department of Biomedical and Molecular Sciences, Kingston, ON, Canada
| | - Pierre Breton
- Caen University Hospital, Department of Genetics, Molecular Genetics Laboratory and Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism (OSCAR), Caen, France
| | - Marie Nowoczyn
- Caen Normandy University, Medical School, Caen, France
- Caen University Hospital, Department of Biochemistry, Caen, France
| | | | - Nadia Coudray
- Caen University Hospital, Department of Genetics, Molecular Genetics Laboratory and Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism (OSCAR), Caen, France
| | - Hervé Mittre
- Caen University Hospital, Department of Genetics, Molecular Genetics Laboratory and Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism (OSCAR), Caen, France
- Caen Normandy University, Medical School, Caen, France
- OeReCa, Caen Normandy University, Caen, France
| | - Nicolas Richard
- Caen University Hospital, Department of Genetics, Molecular Genetics Laboratory and Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism (OSCAR), Caen, France
- BioTARGEN, Caen Normandy University, Caen, France
| | - Amélie Ryckwaert
- Department of Pediatrics, Rennes University Hospital, Rennes, France
| | | | - Glenville Jones
- Queen’s University, Department of Biomedical and Molecular Sciences, Kingston, ON, Canada
| | - Justine Bacchetta
- University of Lyon, University of Lyon 1, Villeurbanne, France
- Reference Center for Rare Kidney Diseases (ORKID), Department of Pediatric Nephrology, Rhumatology and Dermatology, Woman Mother Children Hospital, Bron, France
- Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism (OSCAR), Department of Pediatric Nephrology, Rhumatology and Dermatology, Woman Mother Children Hospital, Bron, France
- INSERM 1033, Bone Diseases Prevention, Lyon, France
| | - Marie-Laure Kottler
- Caen University Hospital, Department of Genetics, Molecular Genetics Laboratory and Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism (OSCAR), Caen, France
- Caen Normandy University, Medical School, Caen, France
- BioTARGEN, Caen Normandy University, Caen, France
| |
Collapse
|
11
|
Lemaire M. Novel Fanconi renotubular syndromes provide insights in proximal tubule pathophysiology. Am J Physiol Renal Physiol 2020; 320:F145-F160. [PMID: 33283647 DOI: 10.1152/ajprenal.00214.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The various forms of Fanconi renotubular syndromes (FRTS) offer significant challenges for clinicians and present unique opportunities for scientists who study proximal tubule physiology. This review will describe the clinical characteristics, genetic underpinnings, and underlying pathophysiology of the major forms of FRST. Although the classic forms of FRTS will be presented (e.g., Dent disease or Lowe syndrome), particular attention will be paid to five of the most recently discovered FRTS subtypes caused by mutations in the genes encoding for L-arginine:glycine amidinotransferase (GATM), solute carrier family 34 (type Ii sodium/phosphate cotransporter), member 1 (SLC34A1), enoyl-CoAhydratase/3-hydroxyacyl CoA dehydrogenase (EHHADH), hepatocyte nuclear factor 4A (HNF4A), or NADH dehydrogenase complex I, assembly factor 6 (NDUFAF6). We will explore how mutations in these genes revealed unexpected mechanisms that led to compromised proximal tubule functions. We will also describe the inherent challenges associated with gene discovery studies based on findings derived from small, single-family studies by focusing the story of FRTS type 2 (SLC34A1). Finally, we will explain how extensive alternative splicing of HNF4A has resulted in confusion with mutation nomenclature for FRTS type 4.
Collapse
Affiliation(s)
- Mathieu Lemaire
- Division of Nephrology and Cell Biology Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
De Paolis E, Scaglione GL, De Bonis M, Minucci A, Capoluongo E. CYP24A1 and SLC34A1 genetic defects associated with idiopathic infantile hypercalcemia: from genotype to phenotype. Clin Chem Lab Med 2020; 57:1650-1667. [PMID: 31188746 DOI: 10.1515/cclm-2018-1208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
Abstract
Loss of function mutations in the CYP24A1 gene, involved in vitamin D catabolism and in calcium homeostasis, are known to be the genetic drivers of both idiopathic infantile hypercalcemia (IIH) and adult renal stone disease. Recently, also defects in the SLC34A1 gene, encoding for the renal sodium-phosphate transporter NaPi-IIa, were associated with the disease. IIH typically affects infants and pediatric patients with a syndrome characterized by severe hypercalcemia, hypercalciuria, suppressed parathyroid hormone level and nephrolithiasis. In SLC34A1 mutated carriers, hypophosphatemia is also a typical biochemical tract. IIH may also persist undiagnosed into adulthood, causing an increased risk of nephrocalcinosis and renal complication. To note, a clinical heterogeneity characterizes IIH manifestation, principally due to the controversial gene-dose effect and, to the strong influence of environmental factors. The present review is aimed to provide an overview of the current molecular findings on the IIH disorder, giving a comprehensive description of the association between genotype and biochemical and clinical phenotype of the affected patients. We also underline that patients may benefit from genetic testing into a targeted diagnostic and therapeutic workflow.
Collapse
Affiliation(s)
- Elisa De Paolis
- Laboratory of Molecular Diagnostics and Genomics, Teaching and Research Hospital "Fondazione Policlinico Agostino Gemelli" - IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Giovanni Luca Scaglione
- Laboratory of Molecular Oncology, "Fondazione Giovanni Paolo II", Catholic University of Sacred Heart, Campobasso, Italy
| | - Maria De Bonis
- Laboratory of Molecular Diagnostics and Genomics, Teaching and Research Hospital "Fondazione Policlinico Agostino Gemelli" - IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Angelo Minucci
- Laboratory of Molecular Diagnostics and Genomics, Teaching and Research Hospital "Fondazione Policlinico Agostino Gemelli" - IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Ettore Capoluongo
- Laboratory of Molecular Diagnostics and Genomics, Teaching and Research Hospital "Fondazione Policlinico Agostino Gemelli" - IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
13
|
Abstract
Kidney stone disease (nephrolithiasis) is a common problem that can be associated with alterations in urinary solute composition including hypercalciuria. Studies suggest that the prevalence of monogenic kidney stone disorders, including renal tubular acidosis with deafness, Bartter syndrome, primary hyperoxaluria and cystinuria, in patients attending kidney stone clinics is ∼15%. However, for the majority of individuals, nephrolithiasis has a multifactorial aetiology involving genetic and environmental factors. Nonetheless, the genetic influence on stone formation in these idiopathic stone formers remains considerable and twin studies estimate a heritability of >45% for nephrolithiasis and >50% for hypercalciuria. The contribution of polygenic influences from multiple loci have been investigated by genome-wide association and candidate gene studies, which indicate that a number of genes and molecular pathways contribute to the risk of stone formation. Genetic approaches, studying both monogenic and polygenic factors in nephrolithiasis, have revealed that the following have important roles in the aetiology of kidney stones: transporters and channels; ions, protons and amino acids; the calcium-sensing receptor (a G protein-coupled receptor) signalling pathway; and the metabolic pathways for vitamin D, oxalate, cysteine, purines and uric acid. These advances, which have increased our understanding of the pathogenesis of nephrolithiasis, will hopefully facilitate the future development of targeted therapies for precision medicine approaches in patients with nephrolithiasis.
Collapse
Affiliation(s)
- Sarah A Howles
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Abstract
Over the past 25 years, successive cloning of SLC34A1, SLC34A2 and SLC34A3, which encode the sodium-dependent inorganic phosphate (Pi) cotransport proteins 2a-2c, has facilitated the identification of molecular mechanisms that underlie the regulation of renal and intestinal Pi transport. Pi and various hormones, including parathyroid hormone and phosphatonins, such as fibroblast growth factor 23, regulate the activity of these Pi transporters through transcriptional, translational and post-translational mechanisms involving interactions with PDZ domain-containing proteins, lipid microdomains and acute trafficking of the transporters via endocytosis and exocytosis. In humans and rodents, mutations in any of the three transporters lead to dysregulation of epithelial Pi transport with effects on serum Pi levels and can cause cardiovascular and musculoskeletal damage, illustrating the importance of these transporters in the maintenance of local and systemic Pi homeostasis. Functional and structural studies have provided insights into the mechanism by which these proteins transport Pi, whereas in vivo and ex vivo cell culture studies have identified several small molecules that can modify their transport function. These small molecules represent potential new drugs to help maintain Pi homeostasis in patients with chronic kidney disease - a condition that is associated with hyperphosphataemia and severe cardiovascular and skeletal consequences.
Collapse
|
15
|
Lederer E, Wagner CA. Clinical aspects of the phosphate transporters NaPi-IIa and NaPi-IIb: mutations and disease associations. Pflugers Arch 2018; 471:137-148. [DOI: 10.1007/s00424-018-2246-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
|