1
|
Vivante A. Genetics of Chronic Kidney Disease. N Engl J Med 2024; 391:627-639. [PMID: 39141855 DOI: 10.1056/nejmra2308577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
- Asaf Vivante
- From the Department of Pediatrics and the Pediatric Nephrology Unit, Edmond and Lily Safra Children's Hospital, and the Nephro-Genetics Clinic and Genetic Kidney Disease Research Laboratory, Sheba Medical Center, Tel Hashomer, and the Faculty of Medicine, Tel Aviv University, Tel Aviv - all in Israel
| |
Collapse
|
2
|
Luo J, Zhang Y, Jayaprakash S, Zhuang L, He J. Cross-Species Insights into Autosomal Dominant Polycystic Kidney Disease: Provide an Alternative View on Research Advancement. Int J Mol Sci 2024; 25:5646. [PMID: 38891834 PMCID: PMC11171680 DOI: 10.3390/ijms25115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a prevalent hereditary disorder that affects the kidneys, characterized by the development of an excessive number of fluid-filled cysts of varying sizes in both kidneys. Along with the progression of ADPKD, these enlarged cysts displace normal kidney tissue, often accompanied by interstitial fibrosis and inflammation, and significantly impair renal function, leading to end-stage renal disease. Currently, the precise mechanisms underlying ADPKD remain elusive, and a definitive cure has yet to be discovered. This review delineates the epidemiology, pathological features, and clinical diagnostics of ADPKD or ADPKD-like disease across human populations, as well as companion animals and other domesticated species. A light has been shed on pivotal genes and biological pathways essential for preventing and managing ADPKD, which underscores the importance of cross-species research in addressing this complex condition. Treatment options are currently limited to Tolvaptan, dialysis, or surgical excision of large cysts. However, comparative studies of ADPKD across different species hold promise for unveiling novel insights and therapeutic strategies to combat this disease.
Collapse
Affiliation(s)
- Jianing Luo
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Yuan Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Sakthidasan Jayaprakash
- Department of Biotechnology, Hindustan Institute of Technology and Science, Tamil Nadu 603103, India;
| | - Lenan Zhuang
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| | - Jin He
- College of Animal Sciences, Zhejiang University, Hangzhou 310027, China; (J.L.); (Y.Z.); (L.Z.)
| |
Collapse
|
3
|
Abolhassani A, Fattahi Z, Beheshtian M, Fadaee M, Vazehan R, Ahangari F, Dehdahsi S, Faraji Zonooz M, Parsimehr E, Kalhor Z, Peymani F, Mozaffarpour Nouri M, Babanejad M, Noudehi K, Fatehi F, Zamanian Najafabadi S, Afroozan F, Yazdan H, Bozorgmehr B, Azarkeivan A, Sadat Mahdavi S, Nikuei P, Fatehi F, Jamali P, Ashrafi MR, Karimzadeh P, Habibi H, Kahrizi K, Nafissi S, Kariminejad A, Najmabadi H. Clinical application of next generation sequencing for Mendelian disease diagnosis in the Iranian population. NPJ Genom Med 2024; 9:12. [PMID: 38374194 PMCID: PMC10876633 DOI: 10.1038/s41525-024-00393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Next-generation sequencing (NGS) has been proven to be one of the most powerful diagnostic tools for rare Mendelian disorders. Several studies on the clinical application of NGS in unselected cohorts of Middle Eastern patients have reported a high diagnostic yield of up to 48%, correlated with a high level of consanguinity in these populations. We evaluated the diagnostic utility of NGS-based testing across different clinical indications in 1436 patients from Iran, representing the first study of its kind in this highly consanguineous population. A total of 1075 exome sequencing and 361 targeted gene panel sequencing were performed over 8 years at a single clinical genetics laboratory, with the majority of cases tested as proband-only (91.6%). The overall diagnostic rate was 46.7%, ranging from 24% in patients with an abnormality of prenatal development to over 67% in patients with an abnormality of the skin. We identified 660 pathogenic or likely pathogenic variants, including 241 novel variants, associated with over 342 known genetic conditions. The highly consanguineous nature of this cohort led to the diagnosis of autosomal recessive disorders in the majority of patients (79.1%) and allowed us to determine the shared carrier status of couples for suspected recessive phenotypes in their deceased child(ren) when direct testing was not possible. We also highlight the observations of recessive inheritance of genes previously associated only with dominant disorders and provide an expanded genotype-phenotype spectrum for multiple less-characterized genes. We present the largest mutational spectrum of known Mendelian disease, including possible founder variants, throughout the Iranian population, which can serve as a unique resource for clinical genomic studies locally and beyond.
Collapse
Affiliation(s)
- Ayda Abolhassani
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Zohreh Fattahi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Mahsa Fadaee
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Raheleh Vazehan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Ahangari
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Shima Dehdahsi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Elham Parsimehr
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Zahra Kalhor
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Peymani
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Khadijeh Noudehi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Fatehi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Fariba Afroozan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Hilda Yazdan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Bita Bozorgmehr
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Azita Azarkeivan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Pooneh Nikuei
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Nasle Salem Genetic Counseling Center, Bandar Abbas, Iran
| | - Farzad Fatehi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Payman Jamali
- Genetic Counseling Center, Shahroud Welfare Organization, Semnan, Iran
| | | | - Parvaneh Karimzadeh
- Pediatric Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haleh Habibi
- Hamedan University of Medical Science, Hamedan, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Najmabadi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran.
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Fong S, Carollo A, Ashour R, Dimitriou D, Gianluca Esposito. Identifying major research themes in the literature on developmental disabilities in Middle Eastern countries: A scientometric review from 1962 to 2023. RESEARCH IN DEVELOPMENTAL DISABILITIES 2023; 140:104551. [PMID: 37473627 DOI: 10.1016/j.ridd.2023.104551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/05/2023] [Accepted: 06/02/2023] [Indexed: 07/22/2023]
Abstract
Developmental disabilities have been widely studied in higher-income countries. However, most individuals with these conditions live in low- and middle-income countries and they are reportedly under-represented in the scientific literature. To tackle this issue, previous research has provided insight into the thematic developments in the research on developmental disabilities in Africa by means of a scientometric approach to reviews. The current work aims to extend the scientometric approach to investigate the main interests in the literature on developmental disabilities conducted in Middle Eastern countries. A total of 1110 documents were retrieved from Scopus and their patterns of co-citation were analysed with the CiteSpace software. Research in Developmental Disabilities emerged to be the main source in the sample of downloaded documents. Furthermore, a total of six main thematic domains and the four most impactful documents in the literature were identified. Results showed that research on developmental disabilities in the Middle East has been mainly focused on uncovering the genetic basis of this group of conditions. The study of clinical profiles, diagnosis, management, and treatment of individuals with developmental disabilities have been so far under-investigated and represents material for future studies.
Collapse
Affiliation(s)
- Seraphina Fong
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Rola Ashour
- Sleep Education and Research Laboratory, UCL Institute of Education, London WC1H 0AA, England, UK
| | - Dagmara Dimitriou
- Sleep Education and Research Laboratory, UCL Institute of Education, London WC1H 0AA, England, UK
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy.
| |
Collapse
|
5
|
Ambrosini E, Montanari F, Cristalli CP, Capelli I, La Scola C, Pasini A, Graziano C. Modifiers of Autosomal Dominant Polycystic Kidney Disease Severity: The Role of PKD1 Hypomorphic Alleles. Genes (Basel) 2023; 14:1230. [PMID: 37372410 DOI: 10.3390/genes14061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic cause of kidney failure in adult life. Rarely, ADPKD can be diagnosed in utero or in infancy, and the genetic mechanism underlying such severe presentation has been shown to be related to reduced gene dosage. Biallelic PKD1 variants are often identified in early onset ADPKD, with one main pathogenic variant and a modifier hypomorphic variant showing an in trans configuration. We describe two unrelated individuals with early onset cystic kidney disease and unaffected parents, where a combination of next-generation sequencing of cystic genes including PKHD1, HNF1B and PKD1 allowed the identification of biallelic PKD1 variants. Furthermore, we review the medical literature in order to report likely PKD1 hypomorphic variants reported to date and estimate a minimal allele frequency of 1/130 for this category of variants taken as a group. This figure could help to orient genetic counseling, although the interpretation and the real clinical impact of rare PKD1 missense variants, especially if previously unreported, remain challenging.
Collapse
Affiliation(s)
| | - Francesca Montanari
- Medical Genetics Unit, IRCCS Sant'Orsola University Hospital of Bologna, 40138 Bologna, Italy
| | - Carlotta Pia Cristalli
- Medical Genetics Unit, IRCCS Sant'Orsola University Hospital of Bologna, 40138 Bologna, Italy
| | - Irene Capelli
- Nephrology Unit, IRCCS Sant'Orsola University Hospital of Bologna, 40138 Bologna, Italy
| | - Claudio La Scola
- Paediatric Nephrology Program, Paediatrics Unit, IRCCS Sant'Orsola University Hospital of Bologna, 40138 Bologna, Italy
| | - Andrea Pasini
- Paediatric Nephrology Program, Paediatrics Unit, IRCCS Sant'Orsola University Hospital of Bologna, 40138 Bologna, Italy
| | | |
Collapse
|
6
|
Tutal O, Gulhan B, Atayar E, Yuksel S, Ozcakar ZB, Soylemezoglu O, Saygili S, Caliskan S, Inozu M, Baskin E, Duzova A, Hayran M, Topaloglu R, Ozaltin F. The Clinical and Mutational Spectrum of 69 Turkish Children with Autosomal Recessive or Autosomal Dominant Polycystic Kidney Disease: A Multicenter Retrospective Cohort Study. Nephron Clin Pract 2023; 148:319-332. [PMID: 36657418 DOI: 10.1159/000528258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/11/2022] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Autosomal recessive polycystic kidney disease (ARPKD) is associated with pathogenic variants in the PKHD1 gene. Autosomal dominant polycystic kidney disease (ADPKD) is mainly associated with pathogenic variants in PKD1 or PKD2. The present study aimed to identify the clinical and genetic features of Turkish pediatric ARPKD and ADPKD patients. METHODS This multicenter, retrospective cohort study included 21 genetically confirmed ARPKD and 48 genetically confirmed ADPKD patients from 7 pediatric nephrology centers. Demographic features, clinical, and laboratory findings at presentation and during 12-month intervals were recorded. RESULTS The median age of the ARPKD patients at diagnosis was lower than the median age of ADPKD patients (10.5 months [range: 0-15 years] vs. 5.2 years [range: 0.1-16 years], respectively, [p = 0.014]). At the time of diagnosis, the median eGFR in the ARPKD patients was lower compared to that of ADPKD patients (81.6 [IQR: 28.7-110.5] mL/min/1.73 m2 and 118 [IQR: 91.2-139.8] mL/min/1.73 m2, respectively, [p = 0.0001]). In total, 11 (52.4%) ARPKD patients had malnutrition; 7 (33.3%) patients had growth retardation at presentation; and 4 (19%) patients had both malnutrition and growth retardation. At diagnosis, 8 (16.7%) of the ADPKD patients had malnutrition, and 5 (10.4%) patients had growth retardation. The malnutrition, growth retardation, and hypertension rates at diagnosis were higher in the ARPKD patients than the ADPKD patients (p = 0.002, p = 0.02, and p = 0.0001, respectively). ARPKD patients with malnutrition and growth retardation had worse renal survival compared to the patients without (p = 0.03 and p = 0.01). Similarly, ADPKD patients with malnutrition had worse renal survival compared to the patients without (p = 0.002). ARPKD patients with truncating variants had poorer 3- and 6-year renal outcome than those carrying non-truncating variants (p = 0.017). CONCLUSION Based on renal survival analysis, type of genetic variant, growth retardation, and/or malnutrition at presentation were observed to be factors associated with progression to chronic kidney disease (CKD). Differentiation of ARPKD and ADPKD, and identification of the predictors of the development of CKD are vital for optimal management of patients with ARPKD or ADPKD.
Collapse
Affiliation(s)
- Ozum Tutal
- Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Bora Gulhan
- Division of Pediatric Nephrology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Emine Atayar
- Nephrogenetics Laboratory, Division of Pediatric Nephrology, Department of Pediatrics Hacettepe University, Ankara, Turkey
| | - Selcuk Yuksel
- Division of Pediatric Nephrology, Department of Pediatrics, Pamukkale University, Denizli, Turkey
| | - Z Birsin Ozcakar
- Division of Pediatric Nephrology, Department of Pediatrics, Ankara University, Ankara, Turkey
| | - Oguz Soylemezoglu
- Division of Pediatric Nephrology, Department of Pediatrics, Gazi University, Ankara, Turkey
| | - Seha Saygili
- Division of Pediatric Nephrology, Department of Pediatrics, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Salim Caliskan
- Division of Pediatric Nephrology, Department of Pediatrics, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Mihriban Inozu
- Department of Pediatric Nephrology, Ankara City Hospital, Bilkent, Ankara, Turkey
| | - Esra Baskin
- Division of Pediatric Nephrology, Department of Pediatrics, Baskent University, Ankara, Turkey
| | - Ali Duzova
- Division of Pediatric Nephrology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Mutlu Hayran
- Department of Preventive Oncology, Hacettepe University, Ankara, Turkey
| | - Rezan Topaloglu
- Division of Pediatric Nephrology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Fatih Ozaltin
- Division of Pediatric Nephrology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
- Nephrogenetics Laboratory, Division of Pediatric Nephrology, Department of Pediatrics Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Al-Hamed MH, Hussein MH, Shah Y, Al-Mojalli H, Alsabban E, Alshareef T, Altayyar A, Elshouny S, Ali W, Abduljabbar M, AlOtaibi A, AlShammasi A, Akili R, Abouelhoda M, Sayer JA, Dasouki MJ, Imtiaz F. Exome sequencing unravels genetic variants associated with chronic kidney disease in Saudi Arabian patients. Hum Mutat 2022; 43:e24-e37. [PMID: 36177613 DOI: 10.1002/humu.24480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/10/2022] [Accepted: 09/26/2022] [Indexed: 01/25/2023]
Abstract
The use of genetic testing within nephrology is increasing and its diagnostic yield depends on the methods utilized, patient selection criteria, and population characteristics. We performed exome sequencing (ES) analysis on 102 chronic kidney disease (CKD) patients with likely genetic kidney disease. Patients had diverse CKD subtypes with/without consanguinity, positive family history, and possible hereditary renal syndrome with extra-renal abnormalities or progressive kidney disease of unknown etiology. The identified genetic variants associated with the observed kidney phenotypes were then confirmed and reported. End-stage kidney disease was reported in 51% of the cohort and a family history of kidney disease in 59%, while known consanguinity was reported in 54%. Pathogenic/likely pathogenic variants were identified in 43 patients with a diagnostic yield of 42%, and clinically associated variants of unknown significance (VUS) were identified in further 21 CKD patients (21%). A total of eight novel predicted pathogenic variants and eight VUS were detected. The clinical utility of ES within the nephrology clinic was demonstrated allowing patient management to be disease-specific. In this cohort, ES detected a diagnostic molecular abnormality in 42% of patients with CKD phenotypes. Positive family history and high rates of consanguinity likely contributed to this high diagnostic yield.
Collapse
Affiliation(s)
- Mohamed H Al-Hamed
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Saudi Diagnostics Laboratory, KFSH&RC, Riyadh, Saudi Arabia
| | - Maged H Hussein
- Medicine Department, Nephrology Section, KFSH&RC, Riyadh, Saudi Arabia
| | - Yaser Shah
- Organ Transplant Centre of Excellence, Adult Transplant Nephrology, KFSH&RC, Riyadh, Saudi Arabia
| | - Hamad Al-Mojalli
- Organ Transplant Centre of Excellence, Adult Transplant Nephrology, KFSH&RC, Riyadh, Saudi Arabia
| | | | | | - Ali Altayyar
- Medicine Department, Nephrology Section, KFSH&RC, Riyadh, Saudi Arabia
| | - Samir Elshouny
- Medicine Department, Nephrology Section, KFSH&RC, Riyadh, Saudi Arabia
| | - Wafaa Ali
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mai Abduljabbar
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Afaf AlOtaibi
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Amal AlShammasi
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Rana Akili
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed Abouelhoda
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Majed J Dasouki
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Faiqa Imtiaz
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Saudi Diagnostics Laboratory, KFSH&RC, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Identification and Characterization of Novel Mutations in Chronic Kidney Disease (CKD) and Autosomal Dominant Polycystic Kidney Disease (ADPKD) in Saudi Subjects by Whole-Exome Sequencing. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58111657. [PMID: 36422197 PMCID: PMC9692281 DOI: 10.3390/medicina58111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Background: Autosomal dominant polycystic kidney disease (ADPKD) is a condition usually caused by a single gene mutation and manifested by both renal and extrarenal features, eventually leading to end-stage renal disease (ESRD) by the median age of 60 years worldwide. Approximately 89% of ADPKD patients had either PKD1 or PKD2 gene mutations. The majority (85%) of the mutations are in the PKD1 gene, especially in the context of family history. Objectives: This study investigated the genetic basis and the undiscovered genes that are involved in ADPKD development among the Saudi population. Materials and Methods: In this study, 11 patients with chronic kidney disease were enrolled. The diagnosis of ADPKD was based on history and diagnostic images: CT images include enlargement of renal outlines, renal echogenicity, and presence of multiple renal cysts with dilated collecting ducts, loss of corticomedullary differentiation, and changes in GFR and serum creatinine levels. Next-generation whole-exome sequencing was conducted using the Ion Torrent PGM platform. Results: Of the 11 Saudi patients diagnosed with chronic kidney disease (CKD) and ADPKD, the most common heterozygote nonsynonymous variant in the PKD1 gene was exon15: (c.4264G > A). Two missense mutations were identified with a PKD1 (c.1758A > C and c.9774T > G), and one patient had a PKD2 mutation (c.1445T > G). Three detected variants were novel, identified at PKD1 (c.1758A > C), PKD2L2 (c.1364A > T), and TSC2 (deletion of a’a at the 3’UTR, R1680C) genes. Other variants in PKD1L1 (c.3813_381 4delinsTG) and PKD1L2 (c.404C > T) were also detected. The median age of end-stage renal disease for ADPK patients in Saudi Arabia was 30 years. Conclusion: This study reported a common variant in the PKD1 gene in Saudi patients with typical ADPKD. We also reported (to our knowledge) for the first time two novel missense variants in PKD1 and PKD2L2 genes and one indel mutation at the 3’UTR of the TSC2 gene. This study establishes that the reported mutations in the affected genes resulted in ADPKD development in the Saudi population by a median age of 30. Nevertheless, future protein−protein interaction studies to investigate the influence of these mutations on PKD1 and PKD2 functions are required. Furthermore, large-scale population-based studies to verify these findings are recommended.
Collapse
|
9
|
Wang JY, Wang J, Lu XG, Song W, Luo S, Zou DF, Hua LD, Peng Q, Tian Y, Gao LD, Liao WP, He N. Recessive PKD1 Mutations Are Associated With Febrile Seizures and Epilepsy With Antecedent Febrile Seizures and the Genotype-Phenotype Correlation. Front Mol Neurosci 2022; 15:861159. [PMID: 35620448 PMCID: PMC9128595 DOI: 10.3389/fnmol.2022.861159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe PKD1 encodes polycystin-1, a large transmembrane protein that plays important roles in cell proliferation, apoptosis, and cation transport. Previous studies have identified PKD1 mutations in autosomal dominant polycystic kidney disease (ADPKD). However, the expression of PKD1 in the brain is much higher than that in the kidney. This study aimed to explore the association between PKD1 and epilepsy.MethodsTrios-based whole-exome sequencing was performed in a cohort of 314 patients with febrile seizures or epilepsy with antecedent febrile seizures. The damaging effects of variants was predicted by protein modeling and multiple in silico tools. The genotype-phenotype association of PKD1 mutations was systematically reviewed and analyzed.ResultsEight pairs of compound heterozygous missense variants in PKD1 were identified in eight unrelated patients. All patients suffered from febrile seizures or epilepsy with antecedent febrile seizures with favorable prognosis. All of the 16 heterozygous variants presented no or low allele frequencies in the gnomAD database, and presented statistically higher frequency in the case-cohort than that in controls. These missense variants were predicted to be damaging and/or affect hydrogen bonding or free energy stability of amino acids. Five patients showed generalized tonic-clonic seizures (GTCS), who all had one of the paired missense mutations located in the PKD repeat domain, suggesting that mutations in the PKD domains were possibly associated with GTCS. Further analysis demonstrated that monoallelic mutations with haploinsufficiency of PKD1 potentially caused kidney disease, compound heterozygotes with superimposed effects of two missense mutations were associated with epilepsy, whereas the homozygotes with complete loss of PKD1 would be embryonically lethal.ConclusionPKD1 gene was potentially a novel causative gene of epilepsy. The genotype-phenotype relationship of PKD1 mutations suggested a quantitative correlation between genetic impairment and phenotypic variation, which will facilitate the genetic diagnosis and management in patients with PKD1 mutations.
Collapse
Affiliation(s)
- Jing-Yang Wang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Xin-Guo Lu
- Epilepsy Center, Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Wang Song
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Dong-Fang Zou
- Epilepsy Center, Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Li-Dong Hua
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Qian Peng
- Department of Pediatrics, Dongguan City Maternal and Child Health Hospital, Southern Medical University, Dongguan, China
| | - Yang Tian
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
- *Correspondence: Na He,
| |
Collapse
|
10
|
Shamseldin HE, AlAbdi L, Maddirevula S, Alsaif HS, Alzahrani F, Ewida N, Hashem M, Abdulwahab F, Abuyousef O, Kuwahara H, Gao X, Alkuraya FS. Lethal variants in humans: lessons learned from a large molecular autopsy cohort. Genome Med 2021; 13:161. [PMID: 34645488 PMCID: PMC8511862 DOI: 10.1186/s13073-021-00973-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Molecular autopsy refers to DNA-based identification of the cause of death. Despite recent attempts to broaden its scope, the term remains typically reserved to sudden unexplained death in young adults. In this study, we aim to showcase the utility of molecular autopsy in defining lethal variants in humans. METHODS We describe our experience with a cohort of 481 cases in whom the cause of premature death was investigated using DNA from the index or relatives (molecular autopsy by proxy). Molecular autopsy tool was typically exome sequencing although some were investigated using targeted approaches in the earlier stages of the study; these include positional mapping, targeted gene sequencing, chromosomal microarray, and gene panels. RESULTS The study includes 449 cases from consanguineous families and 141 lacked family history (simplex). The age range was embryos to 18 years. A likely causal variant (pathogenic/likely pathogenic) was identified in 63.8% (307/481), a much higher yield compared to the general diagnostic yield (43%) from the same population. The predominance of recessive lethal alleles allowed us to implement molecular autopsy by proxy in 55 couples, and the yield was similarly high (63.6%). We also note the occurrence of biallelic lethal forms of typically non-lethal dominant disorders, sometimes representing a novel bona fide biallelic recessive disease trait. Forty-six disease genes with no OMIM phenotype were identified in the course of this study. The presented data support the candidacy of two other previously reported novel disease genes (FAAH2 and MSN). The focus on lethal phenotypes revealed many examples of interesting phenotypic expansion as well as remarkable variability in clinical presentation. Furthermore, important insights into population genetics and variant interpretation are highlighted based on the results. CONCLUSIONS Molecular autopsy, broadly defined, proved to be a helpful clinical approach that provides unique insights into lethal variants and the clinical annotation of the human genome.
Collapse
Affiliation(s)
- Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Lama AlAbdi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hessa S Alsaif
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Center of Excellence for Biomedicine, King Abdulaziz City for Science and Technology, Riyadh, 12354, Saudi Arabia
| | - Fatema Alzahrani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nour Ewida
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Omar Abuyousef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hiroyuki Kuwahara
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
11
|
El Mouatani A, Van Winckel G, Zaafrane-Khachnaoui K, Whalen S, Achaiaa A, Kaltenbach S, Superti-Furga A, Vekemans M, Fodstad H, Giuliano F, Attie-Bitach T. Homozygous GLI3 variants observed in three unrelated patients presenting with syndromic polydactyly. Am J Med Genet A 2021; 185:3831-3837. [PMID: 34296525 DOI: 10.1002/ajmg.a.62426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/01/2021] [Accepted: 06/12/2021] [Indexed: 11/08/2022]
Abstract
Polydactyly is a hallmark of GLI3 pathogenic variants, with Greig cephalopolysyndactyly syndrome and Pallister-Hall syndrome being the two main associated clinical presentations. Homozygous GLI3 variants are rare instances in the literature, and mendelian dominance is the accepted framework for GLI3-related diseases. Herein, we report three unrelated probands, presenting with polydactyly, and homozygous variants in the GLI3 gene. First, a 10-year-old girl, whose parents were first-degree cousins, presented with bilateral postaxial polydactyly of the hands, developmental delay and multiple malformations. Second, a male newborn, whose parents were first-degree cousins, presented with isolated bilateral postaxial polysyndactyly of the hands and the feet. Third, an adult male, whose parents were first-degree cousins, had bilateral mesoaxial polydactyly of the hands, with severe intellectual disability and multiple malformations. All three probands carried homozygous GLI3 variants. Strikingly, the parents also carried the child's variant, in the heterozygous state, without any clinical sign of GLI3 disease. Given the clinical presentation of our patients, the rarity and predicted high pathogenicity of the variants observed, and the absence of other pathogenic variants, we suggest that these GLI3 homozygous variants are causal. Moreover, the parents were heterozygous for the observed variants, but were clinically unremarkable, suggesting that these variants are hypomorphic alleles.
Collapse
Affiliation(s)
- Ahmed El Mouatani
- Service Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Géraldine Van Winckel
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | - Sandra Whalen
- Unité Fonctionnelle de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du développement et syndromes malformatifs, Hôpital Armand Trousseau, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Amale Achaiaa
- Service Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Sophie Kaltenbach
- Service Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France.,INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Andrea Superti-Furga
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Michel Vekemans
- Service Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Heidi Fodstad
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Fabienne Giuliano
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Tania Attie-Bitach
- Service Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, Paris, France.,INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| |
Collapse
|
12
|
Strong A, Simone L, Krentz A, Vaccaro C, Watson D, Ron H, Kalish JM, Pedro HF, Zackai EH, Hakonarson H. Expanding the genetic landscape of oral-facial-digital syndrome with two novel genes. Am J Med Genet A 2021; 185:2409-2416. [PMID: 34132027 PMCID: PMC8361718 DOI: 10.1002/ajmg.a.62337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Oral‐facial‐digital syndromes (OFDS) are a heterogeneous and rare group of Mendelian disorders characterized by developmental abnormalities of the oral cavity, face, and digits caused by dysfunction of the primary cilium, a mechanosensory organelle that exists atop most cell types that facilitates organ patterning and growth. OFDS is inherited both in an X‐linked dominant, X‐linked recessive, and autosomal recessive manner. Importantly, though many of the causal genes for OFDS have been identified, up to 40% of OFD syndromes are of unknown genetic basis. Here we describe three children with classical presentations of OFDS including lingual hamartomas, polydactyly, and characteristic facial features found by exome sequencing to harbor variants in causal genes not previously associated with OFDS. We describe a female with hypothalamic hamartoma, urogenital sinus, polysyndactyly, and multiple lingual hamartomas consistent with OFDVI with biallelic pathogenic variants in CEP164, a gene associated with ciliopathy‐spectrum disease, but never before with OFDS. We additionally describe two unrelated probands with postaxial polydactyly, multiple lingual hamartomas, and dysmorphic features both found to be homozygous for an identical TOPORS missense variant, c.29 C>A; (p.Pro10Gln). Heterozygous TOPORS pathogenic gene variants are associated with autosomal dominant retinitis pigmentosa, but never before with syndromic ciliopathy. Of note, both probands are of Dominican ancestry, suggesting a possible founder allele.
Collapse
Affiliation(s)
- Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Laurie Simone
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | | | - Courtney Vaccaro
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Deborah Watson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hayley Ron
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helio F Pedro
- Center for Genetic and Genomic Medicine, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Stutterd CA, Kidd A, Florkowski C, Janus E, Fanjul M, Raizis A, Wu TY, Archer J, Leventer RJ, Amor DJ, Lukic V, Bahlo M, Gow P, Lockhart PJ, van der Knaap MS, Delatycki MB. Expanding the clinical and radiological phenotypes of leukoencephalopathy due to biallelic HMBS mutations. Am J Med Genet A 2021; 185:2941-2950. [PMID: 34089223 DOI: 10.1002/ajmg.a.62377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 11/07/2022]
Abstract
Pathogenic heterozygous variants in HMBS encoding the enzyme hydroxymethylbilane synthase (HMBS), also known as porphobilinogen deaminase, cause acute intermittent porphyria (AIP). Biallelic variants in HMBS have been reported in a small number of children with severe progressive neurological disease and in three adult siblings with a more slowly, progressive neurological disease and distinct leukoencephalopathy. We report three further adult individuals who share a distinct pattern of white matter abnormality on brain MRI in association with biallelic variants in HMBS, two individuals with homozygous variants, and one with compound-heterozygous variants. We present their clinical and radiological features and compare these with the three adult siblings previously described with leukoencephalopathy and biallelic HMBS variants. All six affected individuals presented with slowly progressive spasticity, ataxia, peripheral neuropathy, with or without mild cognitive impairment, and/or ocular disease with onset in childhood or adolescence. Their brain MRIs show mainly confluent signal abnormalities in the periventricular and deep white matter and bilateral thalami. This recognizable pattern of MRI abnormalities is seen in all six adults described here. Biallelic variants in HMBS cause a phenotype that is distinct from AIP. It is not known whether AIP treatments benefit individuals with HMBS-related leukoencephalopathy. One individual reported here had improved neurological function for 12 months following liver transplantation followed by decline and progression of disease.
Collapse
Affiliation(s)
- Chloe A Stutterd
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Neurology, Royal Children's Hospital, Parkville, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia.,Victorian Clinical Genetics Services, Parkville, Australia
| | - Alexa Kidd
- Genetics Department, Canterbury Health laboratory, Christchurch, New Zealand
| | - Chris Florkowski
- Clinical Biochemistry Unit, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Edward Janus
- Western Health General Internal Medicine Unit, St Albans, Australia.,Department of Medicine, Western Health, The University of Melbourne, Melbourne, Australia
| | - Miriam Fanjul
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Anthony Raizis
- Department of Molecular Pathology, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Teddy Y Wu
- Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| | - John Archer
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Richard J Leventer
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Neurology, Royal Children's Hospital, Parkville, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - David J Amor
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Vesna Lukic
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Paul Gow
- Liver Transplant Unit, Austin Hospital, University of Melbourne, Melbourne, Australia
| | - Paul J Lockhart
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Marjo S van der Knaap
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Martin B Delatycki
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia.,Victorian Clinical Genetics Services, Parkville, Australia
| |
Collapse
|
14
|
Hu H, Zhang J, Qiu W, Liang C, Li C, Wei T, Feng Z, Guo Q, Yang K, Liu Z. Comprehensive strategy improves the genetic diagnosis of different polycystic kidney diseases. J Cell Mol Med 2021; 25:6318-6332. [PMID: 34032358 PMCID: PMC8256360 DOI: 10.1111/jcmm.16608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Polycystic kidney disease (PKD) is known to occur in three main forms, namely autosomal dominant PKD (ADPKD), autosomal recessive PKD (ARPKD) and syndromic PKD (SPKD), based on the clinical manifestations and genetic causes, which are diagnosable from the embryo stage to the later stages of life. Selection of the genetic test for the individuals with diagnostic imaging reports of cystic kidneys without a family history of the disease continues to be a challenge in clinical practice. With the objective of maintaining a limit on the time and medical cost of the procedure, a practical strategy for genotyping and targeted validation to resolve cystogene variations was developed in our clinical laboratory, which combined the techniques of whole-exome sequencing (WES), Long-range PCR (LR-PCR), Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) to work in a stepwise approach. In this context, twenty-six families with renal polycystic disorders were enrolled in the present study. Thirty-two variants involving four ciliary genes (PKD1, PKHD1, TMEM67 and TMEM107) were identified and verified in 23 families (88.5%, 23/26), which expanded the variant spectrum by 16 novel variants. Pathogenic variations in five foetuses of six families diagnosed with PKD were identified using prenatal ultrasound imaging. Constitutional biallelic and digenic variations constituted the pathogenic patterns in these foetuses. The preliminary clinical data highlighted that the WES + LR PCR-based workflow followed in the present study is efficient in detecting divergent variations in PKD. The biallelic and digenic mutations were revealed as the main pathogenic patterns in the foetuses with PKD.
Collapse
Affiliation(s)
- Hua‐Ying Hu
- Department of OphthalmologyXiang'an Hospital of Xiamen UniversityFujian Provincial Key Laboratory of Ophthalmology and Visual ScienceSchool of Medicine, Xiamen UniversityFujian Engineering and Research Center of Eye Regenerative MedicineEye Institute of Xiamen UniversityXiamenChina
- Jiaen Genetics LaboratoryBeijing Jiaen HospitalBeijingChina
| | - Jing Zhang
- Prenatal Diagnosis CenterShijiazhuang Obstetrics and Gynecology HospitalHebeiChina
| | - Wei Qiu
- Department of UrologyBeijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Chao Liang
- Department of Pediatric OrthopedicsShijiazhuang Obstetrics and Gynecology HospitalHebeiChina
| | - Cun‐Xi Li
- Jiaen Genetics LaboratoryBeijing Jiaen HospitalBeijingChina
| | - Tian‐Ying Wei
- Jiaen Genetics LaboratoryBeijing Jiaen HospitalBeijingChina
| | - Zhan‐Ke Feng
- Jiaen Genetics LaboratoryBeijing Jiaen HospitalBeijingChina
| | - Qing Guo
- Prenatal Diagnosis CenterShijiazhuang Obstetrics and Gynecology HospitalHebeiChina
| | - Kai Yang
- Prenatal Diagnosis CenterBeijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijingChina
| | - Zu‐Guo Liu
- Department of OphthalmologyXiang'an Hospital of Xiamen UniversityFujian Provincial Key Laboratory of Ophthalmology and Visual ScienceSchool of Medicine, Xiamen UniversityFujian Engineering and Research Center of Eye Regenerative MedicineEye Institute of Xiamen UniversityXiamenChina
| |
Collapse
|
15
|
Molecular genetics of renal ciliopathies. Biochem Soc Trans 2021; 49:1205-1220. [PMID: 33960378 DOI: 10.1042/bst20200791] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
Renal ciliopathies are a heterogenous group of inherited disorders leading to an array of phenotypes that include cystic kidney disease and renal interstitial fibrosis leading to progressive chronic kidney disease and end-stage kidney disease. The renal tubules are lined with epithelial cells that possess primary cilia that project into the lumen and act as sensory and signalling organelles. Mutations in genes encoding ciliary proteins involved in the structure and function of primary cilia cause ciliopathy syndromes and affect many organ systems including the kidney. Recognised disease phenotypes associated with primary ciliopathies that have a strong renal component include autosomal dominant and recessive polycystic kidney disease and their various mimics, including atypical polycystic kidney disease and nephronophthisis. The molecular investigation of inherited renal ciliopathies often allows a precise diagnosis to be reached where renal histology and other investigations have been unhelpful and can help in determining kidney prognosis. With increasing molecular insights, it is now apparent that renal ciliopathies form a continuum of clinical phenotypes with disease entities that have been classically described as dominant or recessive at both extremes of the spectrum. Gene-dosage effects, hypomorphic alleles, modifier genes and digenic inheritance further contribute to the genetic complexity of these disorders. This review will focus on recent molecular genetic advances in the renal ciliopathy field with a focus on cystic kidney disease phenotypes and the genotypes that lead to them. We discuss recent novel insights into underlying disease mechanisms of renal ciliopathies that might be amenable to therapeutic intervention.
Collapse
|
16
|
Ateş EA, Turkyilmaz A, Delil K, Alavanda C, Söylemez MA, Geçkinli BB, Ata P, Arman A. Biallelic Mutations in DNAJB11 are Associated with Prenatal Polycystic Kidney Disease in a Turkish Family. Mol Syndromol 2021; 12:179-185. [PMID: 34177435 DOI: 10.1159/000513611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/05/2020] [Indexed: 11/19/2022] Open
Abstract
Polycystic kidney disease (PKD) is a life-threatening condition resulting in end-stage renal disease. Two major forms of PKD are defined according to the inheritance pattern. Autosomal dominant PKD (ADPKD) is characterized by renal cysts, where nearly half of the patients suffers from renal failure in the 7th decade of life. Autosomal recessive PKD (ARPKD) is a rarer and more severe form presenting in childhood. Whole-exome sequencing (WES) analyses was performed to investigate molecular causes of the disease in the fetus. In this study, we present 2 fetuses prenatally diagnosed with PKD in a consanguineous family. WES analysis of the second fetus revealed a homozygous variant (c.740+1G>A) in DNAJB11 which is related to ADPKD. This study reveals that DNAJB11 biallelic mutations may cause an antenatal severe form of ARPKD and contributes to understanding the DNAJB11-related ADPKD phenotype. The possibility of ARPKD due to biallelic mutations in ADPKD genes should be considered in genetic counseling.
Collapse
Affiliation(s)
- Esra Arslan Ateş
- Department of Medical Genetics, Marmara University Pendik Training and Research Hospital, İstanbul, Turkey
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Kenan Delil
- Department of Medical Genetics, Marmara University School of Medicine, İstanbul, Turkey
| | - Ceren Alavanda
- Department of Medical Genetics, Marmara University School of Medicine, İstanbul, Turkey
| | - Mehmet Ali Söylemez
- Department of Medical Genetics, Marmara University School of Medicine, İstanbul, Turkey
| | - Bilgen Bilge Geçkinli
- Department of Medical Genetics, Marmara University School of Medicine, İstanbul, Turkey
| | - Pinar Ata
- Department of Medical Genetics, Marmara University School of Medicine, İstanbul, Turkey
| | - Ahmet Arman
- Department of Medical Genetics, Marmara University School of Medicine, İstanbul, Turkey
| |
Collapse
|
17
|
Fetal Anomalies Associated with Novel Pathogenic Variants in TMEM94. Genes (Basel) 2020; 11:genes11090967. [PMID: 32825426 PMCID: PMC7565137 DOI: 10.3390/genes11090967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Intellectual developmental disorder with cardiac defects and dysmorphic facies (IDDCDF, MIM 618316) is a newly described disorder. It is characterized by global developmental delay, intellectual disability and speech delay, congenital cardiac malformations, and dysmorphic facial features. Biallelic pathogenic variants of TMEM94 are associated with IDDCDF. Methods and Results: In a prenatal setting, where fetal abnormalities were detected using antenatal sonography, we used trio-exome sequencing (trio-ES) in conjunction with chromosomal microarray analysis (CMA) to identify two novel homozygous loss of function variants in the TMEM94 gene (c.606dupG and c.2729-2A>G) in two unrelated Saudi Arabian families. Conclusions: This study provides confirmation that TMEM94 variants may cause IDDCDF. For the first time we describe the pathogenicity of TMEM94 defects detected during the prenatal period.
Collapse
|
18
|
Cilia and polycystic kidney disease. Semin Cell Dev Biol 2020; 110:139-148. [PMID: 32475690 DOI: 10.1016/j.semcdb.2020.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 11/20/2022]
Abstract
Polycystic kidney disease (PKD), comprising autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), is characterized by incessant cyst formation in the kidney and liver. ADPKD and ARPKD represent the leading genetic causes of renal disease in adults and children, respectively. ADPKD is caused by mutations in PKD1 encoding polycystin1 (PC1) and PKD2 encoding polycystin 2 (PC2). PC1/2 are multi-pass transmembrane proteins that form a complex localized in the primary cilium. Predominant ARPKD cases are caused by mutations in polycystic kidney and hepatic disease 1 (PKHD1) gene that encodes the Fibrocystin/Polyductin (FPC) protein, whereas a small subset of cases are caused by mutations in DAZ interacting zinc finger protein 1 like (DZIP1L) gene. FPC is a type I transmembrane protein, localizing to the cilium and basal body, in addition to other compartments, and DZIP1L encodes a transition zone/basal body protein. Apparently, PC1/2 and FPC are signaling molecules, while the mechanism that cilia employ to govern renal tubule morphology and prevent cyst formation is unclear. Nonetheless, recent genetic and biochemical studies offer a glimpse of putative physiological malfunctions and the pathomechanisms underlying both disease entities. In this review, I summarize the results of genetic studies that deduced the function of PC1/2 on cilia and of cilia themselves in cyst formation in ADPKD, and I discuss studies regarding regulation of polycystin biogenesis and cilia trafficking. I also summarize the synergistic genetic interactions between Pkd1 and Pkhd1, and the unique tissue patterning event controlled by FPC, but not PC1. Interestingly, while DZIP1L mutations generate compromised PC1/2 cilia expression, FPC deficiency does not affect PC1/2 biogenesis and ciliary localization, indicating that divergent mechanisms could lead to cyst formation in ARPKD. I conclude by outlining promising areas for future PKD research and highlight rationales for potential therapeutic interventions for PKD treatment.
Collapse
|
19
|
Bokhari HA, Shaik NA, Banaganapalli B, Nasser KK, Ageel HI, Al Shamrani AS, Rashidi OM, Al Ghubayshi OY, Shaik J, Ahmad A, Alrayes NM, Al-Aama JY, Elango R, Saadah OI. Whole exome sequencing of a Saudi family and systems biology analysis identifies CPED1 as a putative causative gene to Celiac Disease. Saudi J Biol Sci 2020; 27:1494-1502. [PMID: 32489286 PMCID: PMC7254030 DOI: 10.1016/j.sjbs.2020.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 12/15/2022] Open
Abstract
Celiac disease (CD) is a gastrointestinal disorder whose genetic basis is not fully understood. Therefore, we studied a Saudi family with two CD affected siblings to discover the causal genetic defect. Through whole exome sequencing (WES), we identified that both siblings have inherited an extremely rare and deleterious CPED1 genetic variant (c.241 A > G; p.Thr81Ala) segregating as autosomal recessive mutation, suggesting its putative causal role in the CD. Saudi population specific minor allele frequency (MAF) analysis has confirmed its extremely rare prevalence in homozygous condition (MAF is 0.0004). The Sanger sequencing analysis confirmed the absence of this homozygous variant in 100 sporadic Saudi CD cases. Genotype-Tissue Expression (GTEx) data has revealed that CPED1 is abundantly expressed in gastrointestinal mucosa. By using a combination of systems biology approaches like protein 3D modeling, stability analysis and nucleotide sequence conservation analysis, we have further established that this variant is deleterious to the structural and functional aspects of CPED1 protein. To the best of our knowledge, this variant has not been previously reported in CD or any other gastrointestinal disease. The cell culture and animal model studies could provide further insight into the exact role of CPED1 p.Thr81Ala variant in the pathophysiology of CD. In conclusion, by using WES and systems biology analysis, present study for the first-time reports CPED1 as a potential causative gene for CD in a Saudi family with potential implications to both disease diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Hifaa A Bokhari
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalidah Khalid Nasser
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Ali Saad Al Shamrani
- Department of Pedidatrics, Maternity and Children Hospital, Makkah, Saudi Arabia
| | - Omran M Rashidi
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | | | - Jilani Shaik
- Dept of Biochemistry, Genome Research Chair, Faculty of Science, King Saud University, Saudi Arabia
| | - Aftab Ahmad
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nuha Mohammad Alrayes
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Yousuf Al-Aama
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omar Ibrahim Saadah
- Pediatric Gastroenterology Unit, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Kariminejad A, Ghaderi-Sohi S, Keshavarz E, Hashemi SA, Parsimehr E, Szenker-Ravi E, Khatoo M, Faraji Zonooz M, Reversade B, Najmabadi H, Hennekam RC. A GLI3 variant leading to polydactyly in heterozygotes and Pallister-Hall-like syndrome in a homozygote. Clin Genet 2020; 97:915-919. [PMID: 32112393 DOI: 10.1111/cge.13730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/21/2022]
Abstract
Variants in transcriptional activator Gli Kruppel Family Member 3 (GLI3) have been reported to be associated with several phenotypes including Greig cephalopolysyndactyly syndrome (MIM #175700), Pallister-Hall syndrome (PHS) (MIM #146510), postaxial polydactyly types A1 (PAPA1) and B (PAPB) (MIM #174200), and preaxial polydactyly type 4 (MIM #174700). All these disorders follow an autosomal dominant pattern of inheritance. Hypothalamic hamartomas (MIM 241800) is associated with somatic variants in GLI3. We report a related couple with parents having PAPA1 and PAPB, who had a fetus with a phenotype most compatible with PHS. Molecular analyses demonstrated homozygosity for a pathogenic GLI3 variant (c.1927C > T; p. Arg643*) in the fetus and heterozygosity in the parents. The genetic analysis in this family demonstrates that heterozygosity and homozygosity for the same GLI3 variant can cause a different phenotype. Furthermore, the occurrence of Pallister-Hall-like syndrome in a homozygous patient should be taken into account in genetic counseling of families with PAPA1/PAPB.
Collapse
Affiliation(s)
| | | | - Elham Keshavarz
- Department of Radiology, Mahdieh Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elham Parsimehr
- Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Emmanuelle Szenker-Ravi
- Institute of Medical Biology, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Muznah Khatoo
- Institute of Medical Biology, Agency for Science, Technology, and Research, Singapore, Singapore
| | | | - Bruno Reversade
- Institute of Medical Biology, Agency for Science, Technology, and Research, Singapore, Singapore
| | | | - Raoul C Hennekam
- Department of Pediatrics, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Shamseldin HE, Shaheen R, Ewida N, Bubshait DK, Alkuraya H, Almardawi E, Howaidi A, Sabr Y, Abdalla EM, Alfaifi AY, Alghamdi JM, Alsagheir A, Alfares A, Morsy H, Hussein MH, Al-Muhaizea MA, Shagrani M, Al Sabban E, Salih MA, Meriki N, Khan R, Almugbel M, Qari A, Tulba M, Mahnashi M, Alhazmi K, Alsalamah AK, Nowilaty SR, Alhashem A, Hashem M, Abdulwahab F, Ibrahim N, Alshidi T, AlObeid E, Alenazi MM, Alzaidan H, Rahbeeni Z, Al-Owain M, Sogaty S, Seidahmed MZ, Alkuraya FS. The morbid genome of ciliopathies: an update. Genet Med 2020; 22:1051-1060. [PMID: 32055034 DOI: 10.1038/s41436-020-0761-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Ciliopathies are highly heterogeneous clinical disorders of the primary cilium. We aim to characterize a large cohort of ciliopathies phenotypically and molecularly. METHODS Detailed phenotypic and genomic analysis of patients with ciliopathies, and functional characterization of novel candidate genes. RESULTS In this study, we describe 125 families with ciliopathies and show that deleterious variants in previously reported genes, including cryptic splicing variants, account for 87% of cases. Additionally, we further support a number of previously reported candidate genes (BBIP1, MAPKBP1, PDE6D, and WDPCP), and propose nine novel candidate genes (CCDC67, CCDC96, CCDC172, CEP295, FAM166B, LRRC34, TMEM17, TTC6, and TTC23), three of which (LRRC34, TTC6, and TTC23) are supported by functional assays that we performed on available patient-derived fibroblasts. From a phenotypic perspective, we expand the phenomenon of allelism that characterizes ciliopathies by describing novel associations including WDR19-related Stargardt disease and SCLT1- and CEP164-related Bardet-Biedl syndrome. CONCLUSION In this cohort of phenotypically and molecularly characterized ciliopathies, we draw important lessons that inform the clinical management and the diagnostics of this class of disorders as well as their basic biology.
Collapse
Affiliation(s)
- Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nour Ewida
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dalal K Bubshait
- Department of Pediatrics, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hisham Alkuraya
- Department of Ophthalmology, Specialized Medical Center Hospital, Riyadh, Saudi Arabia
| | - Elham Almardawi
- Department of Obstetrics and Gynecology, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Ali Howaidi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Yasser Sabr
- Deparment of Obstetrics and Gynecology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ebtesam M Abdalla
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Abdullah Y Alfaifi
- Department of Pediatrics, Security Forces Hospital, Riyadh, Saudi Arabia
| | | | - Afaf Alsagheir
- Endocrinology Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ahmed Alfares
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Heba Morsy
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maged H Hussein
- Nephrology Section, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammad A Al-Muhaizea
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammad Shagrani
- Organ Transplant Center, King Faisal Specialist Hospital and Research Center, and College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Essam Al Sabban
- Nephrology Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Division of Pediatric Neurology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Neama Meriki
- Department of Obstetrics and Gynecology, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Rubina Khan
- Depatment of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maisoon Almugbel
- Depatment of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Alya Qari
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maha Tulba
- Depatment of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed Mahnashi
- Divison of Genetics, Department of General Pediatrics, King Fahad Central Hospital, Jazan, Saudi Arabia
| | - Khalid Alhazmi
- Divison of Genetics, Department of General Pediatrics, King Fahad Central Hospital, Jazan, Saudi Arabia
| | - Abrar K Alsalamah
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Sawsan R Nowilaty
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Alshidi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eman AlObeid
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mona M Alenazi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hamad Alzaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sameera Sogaty
- Department of Pediatrics, King Fahad General Hospital, Jeddah, Saudi Arabia
| | | | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
22
|
Liang N, Jiang X, Zeng L, Li Z, Liang D, Wu L. 28 novel mutations identified from 33 Chinese patients with cilia-related kidney disorders. Clin Chim Acta 2019; 501:207-215. [PMID: 31730820 DOI: 10.1016/j.cca.2019.10.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/03/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Cilia play an important role in cellular signaling pathways. Defective ciliary function causes a variety of disorders involve retina, skeleton, liver, kidney or others. Cilia-related kidney disorders are characterized by cystic renal disease, nephronophthisis and renal failure in general. METHODS In this study, we collected 33 families clinically suspected of cilia-related kidney disorders. Capture-based next-generation sequencing (NGS) of 88 related genes, Sanger sequencing, pedigree analysis and functional study were performed to analyze their genetic cause. RESULTS 40 mutations in PKD1, PKD2, PKHD1, DYNC2H1 and TMEM67 genes were identified from 27 of 33 affected families. 70% (28/40) of the mutations were first found in patients. We reported a very early-onset autosomal dominant polycystic kidney disease (ADPKD) family caused by a novel heterozygous PKD1 mutation; another fetus with DYNC2H1 compound heterozygous missense mutations showed mainly kidney dysplasia instead of skeletal abnormalities; and a novel PKD1 mutation, c.12445-3C > G, was confirmed to cause two wrong splicing modes. As for previously reported mutations, such as PKD1, c.6395 T > G (p.F2132C) and c.6868G > T (p.D2290Y), we had new and different findings. CONCLUSION The findings provided new references for genotype-phenotype analyses and broadened the mutation spectrum of detected genes, which were significantly valuable for prenatal diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Nana Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Xuanyu Jiang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Lanlan Zeng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Zhuo Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China.
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China.
| |
Collapse
|