1
|
Cheng B, Yang H, Huang L, Liao P, Peng F, Wang X. Nephrotic syndrome in a child with neurofibromatosis type 1: A case report and literature review. Nephrology (Carlton) 2024. [PMID: 39291589 DOI: 10.1111/nep.14393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder that caused by NF1 mutations. NF1 gene encodes neurofibromin (a GTPase-activating protein) and plays a regulatory role in many signalling pathway such as the Ras/MAPK pathway, which is important for regulating cell growth, proliferation and neural development. Therefore, NF1 gene mutations causes the excessive activation of signalling pathways and uncontrolled cell growth. NF1 exhibits complete genetic penetrance and clinical heterogeneity. Glomerular disease has rarely been reported in patients with NF1, especially in children. Currently, the relationship between NF1 and nephrotic syndrome is unclear. Here, we present a case of NF1 with nephrotic syndrome and further explore the association between NF1 and glomerular diseases. It also reminds clinicians that NF1 has complex and highly variable clinical manifestations and that a comprehensive workup is essential for patients.
Collapse
Affiliation(s)
- Bingjie Cheng
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Yang
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Huang
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Panli Liao
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Peng
- Department of General Surgery, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaowen Wang
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Leventoğlu E, Dönmez E, Uzun Kenan B, Yazıcıoğlu B, Büyükkaragöz B, Fidan K, Bakkaloğlu SA, Söylemezoğlu O. LAMB2 gene: broad clinical spectrum in Pierson syndrome. CEN Case Rep 2024; 13:258-263. [PMID: 38038886 PMCID: PMC11294298 DOI: 10.1007/s13730-023-00838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Pierson syndrome (PS) is a rare autosomal recessive disease, characterized by congenital nephrotic syndrome (CNS), and ocular and neurologic abnormalities. In affected cases, there is abnormal b-2 laminin which is compound of the several basement membranes caused by inherited mutations in the LAMB2 gene. Although patients have mutations in the same gene, the phenotype is highly variable. In this case series, the relationship between genotype and phenotype is emphasized, and information about the clinical follow-up of the patients is presented. Hereby, we report four pediatric cases with PS as a result of mutation in the LAMB2 gene. Clinical spectrum of LAMB2-associated disorders varies from mild-to-severe ocular, kidney, and neurologic involvement. Since genotype-phenotype correlation in PS has not been clearly demonstrated, we recommend that all patients with ophthalmic anomalies and glomerular proteinuria should be tested for LAMB2 mutations.
Collapse
Affiliation(s)
- Emre Leventoğlu
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey.
| | - Emine Dönmez
- Department of Pediatrics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Bahriye Uzun Kenan
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Burcu Yazıcıoğlu
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Bahar Büyükkaragöz
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Kibriya Fidan
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Sevcan A Bakkaloğlu
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Oğuz Söylemezoğlu
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Teng H, Chen S, Liu F, Teng Y, Li Y, Liang D, Wu L, Li Z. O-Sialoglycoprotein Endopeptidase Deficiency Impairs Proteostasis and Induces Autophagy in Human Embryonic Stem Cells. Int J Mol Sci 2024; 25:7889. [PMID: 39063131 PMCID: PMC11277037 DOI: 10.3390/ijms25147889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The OSGEP gene encodes O-sialoglycoprotein endopeptidase, a catalytic unit of the highly conserved KEOPS complex (Kinase, Endopeptidase, and Other Proteins of small Size) that regulates the second biosynthetic step in the formation of N-6-threonylcarbamoyladenosine (t6A). Mutations in KEOPS cause Galloway-Mowat syndrome (GAMOS), whose cellular function in mammals and underlying molecular mechanisms are not well understood. In this study, we utilized lentivirus-mediated OSGEP knockdown to generate OSGEP-deficient human embryonic stem cells (hESCs). OSGEP-knockdown hESCs exhibited reduced stemness factor expression and G2/M phase arrest, indicating a potential role of OSGEP in the regulation of hESC fate. Additionally, OSGEP silencing led to enhanced protein synthesis and increased aggregation of proteins, which further induced inappropriate autophagy, as evidenced by the altered expression of P62 and the conversion of LC3-I to LC3-II. The above findings shed light on the potential involvement of OSGEP in regulating pluripotency and differentiation in hESCs while simultaneously highlighting its crucial role in maintaining proteostasis and autophagy, which may have implications for human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha 410078, China; (H.T.); (S.C.); (F.L.); (Y.T.); (Y.L.); (D.L.)
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha 410078, China; (H.T.); (S.C.); (F.L.); (Y.T.); (Y.L.); (D.L.)
| |
Collapse
|
4
|
Wang Y, He QN. [Research progress on monogenic inherited glomerular diseases with central nervous system symptoms]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:652-658. [PMID: 38926384 DOI: 10.7499/j.issn.1008-8830.2312054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
To date, approximately 500 monogenic inherited kidney diseases have been reported, with more than 50 genes associated with the pathogenesis of monogenic isolated or syndromic nephrotic syndrome. Most of these genes are expressed in podocytes of the glomerulus. Neurological symptoms are common extrarenal manifestations of syndromic nephrotic syndrome, and various studies have found connections between podocytes and neurons in terms of morphology and function. This review summarizes the genetic and clinical characteristics of monogenic inherited diseases with concomitant glomerular and central nervous system lesions, aiming to enhance clinicians' understanding of such diseases, recognize the importance of genetic diagnostic techniques for comorbidity screening, and reduce the rates of missed diagnosis and misdiagnosis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | | |
Collapse
|
5
|
Riedmann H, Kayser S, Helmstädter M, Epting D, Bergmann C. Kif21a deficiency leads to impaired glomerular filtration barrier function. Sci Rep 2023; 13:19161. [PMID: 37932480 PMCID: PMC10628293 DOI: 10.1038/s41598-023-46270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
The renal glomerulus represents the major filtration body of the vertebrate nephron and is responsible for urine production and a number of other functions such as metabolic waste elimination and the regulation of water, electrolyte and acid-base balance. Podocytes are highly specialized epithelial cells that form a crucial part of the glomerular filtration barrier (GFB) by establishing a slit diaphragm for semipermeable plasma ultrafiltration. Defects of the GFB lead to proteinuria and impaired kidney function often resulting in end-stage renal failure. Although significant knowledge has been acquired in recent years, many aspects in podocyte biology are still incompletely understood. By using zebrafish as a vertebrate in vivo model, we report a novel role of the Kinesin-like motor protein Kif21a in glomerular filtration. Our studies demonstrate specific Kif21a localization to the podocytes. Its deficiency resulted in altered podocyte morphology leading to podocyte foot process effacement and altered slit diaphragm formation. Finally, we proved considerable functional consequences of Kif21a deficiency by demonstrating a leaky GFB resulting in severe proteinuria. Conclusively, our data identified a novel role of Kif21a for proper GFB function and adds another piece to the understanding of podocyte architecture and regulation.
Collapse
Affiliation(s)
- Hanna Riedmann
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Breisacher Str.113, 79106, Freiburg, Germany
| | - Séverine Kayser
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Breisacher Str.113, 79106, Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Breisacher Str.113, 79106, Freiburg, Germany
| | - Daniel Epting
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Breisacher Str.113, 79106, Freiburg, Germany.
| | - Carsten Bergmann
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Breisacher Str.113, 79106, Freiburg, Germany.
- Limbach Genetics, Medizinische Genetik Mainz, Haifa-Allee 38, 55128, Mainz, Germany.
| |
Collapse
|
6
|
Chevalier RL. Why is chronic kidney disease progressive? Evolutionary adaptations and maladaptations. Am J Physiol Renal Physiol 2023; 325:F595-F617. [PMID: 37675460 DOI: 10.1152/ajprenal.00134.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023] Open
Abstract
Despite significant advances in renal physiology, the global prevalence of chronic kidney disease (CKD) continues to increase. The emergence of multicellular organisms gave rise to increasing complexity of life resulting in trade-offs reflecting ancestral adaptations to changing environments. Three evolutionary traits shape CKD over the lifespan: 1) variation in nephron number at birth, 2) progressive nephron loss with aging, and 3) adaptive kidney growth in response to decreased nephron number. Although providing plasticity in adaptation to changing environments, the cell cycle must function within constraints dictated by available energy. Prioritized allocation of energy available through the placenta can restrict fetal nephrogenesis, a risk factor for CKD. Moreover, nephron loss with aging is a consequence of cell senescence, a pathway accelerated by adaptive nephron hypertrophy that maintains metabolic homeostasis at the expense of increased vulnerability to stressors. Driven by reproductive fitness, natural selection operates in early life but diminishes thereafter, leading to an exponential increase in CKD with aging, a product of antagonistic pleiotropy. A deeper understanding of the evolutionary constraints on the cell cycle may lead to manipulation of the balance between progenitor cell renewal and differentiation, regulation of cell senescence, and modulation of the balance between cell proliferation and hypertrophy. Application of an evolutionary perspective may enhance understanding of adaptation and maladaptation by nephrons in the progression of CKD, leading to new therapeutic advances.
Collapse
Affiliation(s)
- Robert L Chevalier
- Department of Pediatrics, The University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
7
|
Baker T, Caylor R, Wang J, Kilpatrick M, Batalis N, Wolff D, Welsh C. Neuropathologic Findings in Galloway-Mowat Syndrome 3 With a Novel OSGEP Variant. J Neuropathol Exp Neurol 2022; 81:947-949. [PMID: 36063408 DOI: 10.1093/jnen/nlac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tiffany Baker
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Raymond Caylor
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Jiyong Wang
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Matthew Kilpatrick
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Nicholas Batalis
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Daynna Wolff
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Cynthia Welsh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
8
|
Kobayashi H, Looker HC, Satake E, Saulnier PJ, Md Dom ZI, O'Neil K, Ihara K, Krolewski B, Galecki AT, Niewczas MA, Wilson JM, Doria A, Duffin KL, Nelson RG, Krolewski AS. Results of untargeted analysis using the SOMAscan proteomics platform indicates novel associations of circulating proteins with risk of progression to kidney failure in diabetes. Kidney Int 2022; 102:370-381. [PMID: 35618095 PMCID: PMC9333266 DOI: 10.1016/j.kint.2022.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
This study applies a large proteomics panel to search for new circulating biomarkers associated with progression to kidney failure in individuals with diabetic kidney disease. Four independent cohorts encompassing 754 individuals with type 1 and type 2 diabetes and early and late diabetic kidney disease were followed to ascertain progression to kidney failure. During ten years of follow-up, 227 of 754 individuals progressed to kidney failure. Using the SOMAscan proteomics platform, we measured baseline concentration of 1129 circulating proteins. In our previous publications, we analyzed 334 of these proteins that were members of specific candidate pathways involved in diabetic kidney disease and found 35 proteins strongly associated with risk of progression to kidney failure. Here, we examined the remaining 795 proteins using an untargeted approach. Of these remaining proteins, 11 were significantly associated with progression to kidney failure. Biological processes previously reported for these proteins were related to neuron development (DLL1, MATN2, NRX1B, KLK8, RTN4R and ROR1) and were implicated in the development of kidney fibrosis (LAYN, DLL1, MAPK11, MATN2, endostatin, and ROR1) in cellular and animal studies. Specific mechanisms that underlie involvement of these proteins in progression of diabetic kidney disease must be further investigated to assess their value as targets for kidney-protective therapies. Using multivariable LASSO regression analysis, five proteins (LAYN, ESAM, DLL1, MAPK11 and endostatin) were found independently associated with risk of progression to kidney failure. Thus, our study identified proteins that may be considered as new candidate prognostic biomarkers to predict risk of progression to kidney failure in diabetic kidney disease. Furthermore, three of these proteins (DLL1, ESAM, and MAPK11) were selected as candidate biomarkers when all SOMAscan results were evaluated.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, Tokyo, Japan
| | - Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Eiichiro Satake
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Pierre Jean Saulnier
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA; Centre Hospitalier Universitaire, Centre d Investigation Clinique Poitiers, France
| | - Zaipul I Md Dom
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristina O'Neil
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Katsuhito Ihara
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Bozena Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrzej T Galecki
- Cognitive Health Services Research Program, University of Michigan, Ann Arbor, Michigan, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Monika A Niewczas
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan M Wilson
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Alessandro Doria
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin L Duffin
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA.
| | - Andrzej S Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
9
|
Teng H, Liang C, Liang D, Li Z, Wu L. Novel variants in OSGEP leading to Galloway-Mowat syndrome by altering its subcellular localization. Clin Chim Acta 2021; 523:297-303. [PMID: 34666032 DOI: 10.1016/j.cca.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Galloway-Mowat syndrome (GAMOS) is an extremely rare clinically heterogeneous autosomal or X-linked inherited recessive disease characterized by early-onset steroid-resistant nephrotic syndrome (SRNS), microcephaly and neurological impairment. In this study, two siblings mainly presenting with decreased head circumference, hypotonia, gross motor delay, and dysmorphic features were initially detected without pathogenic variants by karyotyping, SNP-array and WES. After a 3 year's follow-up, the proband manifested additional proteinuria, hematuria and "deeper sulci" with a sign of brain atrophy. By reanalysis on the proband's previous WES data, two novel compound heterozygous variants of OSGEP (c.133dupA; c.608C > T) were identified. Furthermore, functional studies showed that the variants reduced the expression of OSGEP protein and activated the DNA damage response (DDR) signaling in the lymphoblastoid cell lines (LCLs) obtained from the patient. The analysis of protein localization with confocal microscopy revealed that the EGFP-tagged/HA-tagged mutant OSGEP proteins were abnormal aggregation or retained inside the cytosol, respectively. Our study not only expanded the pathogenic variant spectrum of OSGEP but also carried on regular follow-up for kidney involvement and established a strategy for evaluation on the function of mutant OSGFP by subcellular localization assay.
Collapse
Affiliation(s)
- Hua Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Chen Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China.
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|